
International Symposium on Information Theory and its Applications, ISITA2008
Auckland, New Zealand, 7-10, December, 2008

A linear-time nearest point algorithm for the lattice A∗n

Robby G. McKilliam†, I. Vaughan L. Clarkson†, Warren D. Smith and Barry G. Quinn‡

† School of Information Technology & Electrical Engineering
The University of Queensland

Brisbane, QLD 4072 AUSTRALIA
Email: [robertm, v.clarkson]@itee.uq.edu.au

‡ Department of Statistics, EFS
Macquarie University

Sydney, NSW 2109 AUSTRALIA
Email: bquinn@efs.mq.edu.au

Abstract

The lattice A∗n is an important lattice because of its
covering properties in low dimensions. Two algorithms
exist in the literature that compute the nearest point in
the lattice A∗n in O(n log n) arithmetic operations. In
this paper we describe a new algorithm that requires
only O(n) operations. The new algorithm makes use of
an approximate sorting procedure called a bucket sort.
This is the fastest known nearest point algorithm for
this lattice.

1. Introduction

The study of point lattices is of great importance in
several areas of number theory, particularly the stud-
ies of quadratic forms, the geometry of numbers and
simultaneous Diophantine approximation, and also to
the practical engineering problems of quantisation and
channel coding. They are also important in studying
the sphere packing problem and the kissing number
problem [1,2].

A lattice, L, is a set of points in Rn such that

L = {x ∈ Rn|x = Bw,w ∈ Zn}

where B is termed the generator matrix.
The lattice A∗n is an interesting lattice due to its

covering properties in low dimensions. It gives the
thinnest covering in all dimensions up to 8 [2]. A∗n
has also found application in a number of estimation
problems including period estimation from sparse tim-
ing data [3, 4], frequency estimation [5] and direction
of arrival estimation [6].

The nearest lattice point problem is: Given y ∈
Rn and some lattice L whose lattice points lie in Rn,
find the lattice point x ∈ L such that the Euclidean
distance between y and x is minimised. If the lattice
is used for vector quantisation then the nearest lattice

Robby McKilliam is partly supported by the CSIRO ICT,
Sydney, NSW, AUSTRALIA

point corresponds to the minimum distortion point. If
the lattice is used as a code for a Gaussian channel,
then the nearest lattice point corresponds to maximum
likelihood decoding [7].

Conway and Sloane [7] appear to have been the first
to study the problem of computing the nearest lattice
point in A∗n. By decomposing A∗n into a union of trans-
lations of its dual lattice An, they discovered an algo-
rithm for computing the nearest lattice point to a given
point in O(n2 log n) arithmetic operations. Later [8],
they were able to improve the execution time of the
algorithm to O(n2) operations.

Clarkson [1] further improved upon the work of
Conway and Sloane and described an algorithm to
compute the nearest lattice point that requires only
O(n log n) operations. Recently another algorithm that
requires O(n log n) operations was described [9]. This
algorithm proved to be simpler to describe, prove and
implement than the algorithm proposed by Clarkson.
The complexity of the algorithms from [1] and [9] are
dominated by a sorting operation.

In this paper we describe a new algorithm that re-
quires O(n) arithmetic operations. The new algorithm
makes use of an approximate sorting technique called a
bucket sort [10]. Particular properties of the lattice A∗n
are used to show that the approximate sort is sufficient
to find the nearest lattice point.

We now describe how the paper is organised. Sec-
tion 2 introduces some properties of the lattice A∗n. In
Section 3 we derive results necessary to prove that our
algorithm finds the nearest lattice point. In Section 4
the O(n)-time algorithm is described. Two pseudocode
implementations are provided. The first being more
instructive and easy to follow. The second being less
intuitive but precisely indicating how to efficiently im-
plement the algorithm practice. In Section 5 we provide
a table displaying the practical run-time performance
of the algorithms in [1, 9] and the new algorithm. Un-
surprisingly, the new, linear-time algorithm is shown to
be faster in practice.

2. Properties of A∗n

Vectors and matrices are written in bold font. The
ith element in a vector is denoted by a subscript: xi.
The transpose of a vector is indicated by ′: x′. We let
1 be a column vector of 1’s and ei be a column vector
of zeros with a 1 in the ith position.

The Voronoi region or nearest-neighbour region
Vor (x, L) of a lattice point x ∈ L for a lattice L is
the subset of Rn such that, with respect to a given
norm, all points in Vor (x, L) are nearer to x than to
any other point in L. The Voronoi regions are n di-
mensional polytopes [2].

The cubic lattice Zn is the set of n dimensional
vectors with integer elements. The Voronoi regions of
Zn are hypercubes of side length 1.

The lattice A∗n can be defined as the projection of
the cubic lattice Zn+1 onto the hyperplane orthogonal
to 1. This is,

A∗n =
{
Qx | x ∈ Zn+1

}
(1)

where Q is the projection matrix

Q =
(
I− 11′

n+ 1

)
(2)

where I is the (n+ 1)× (n+ 1) identity matrix.

3. The closest point

Lemma 1. If x = Qk is a closest point in A∗n to
y ∈ Rn+1 then there exists some λ ∈ R for which k
is a closest point in Zn+1 to y + λ1.

Proof. See [9].

Now consider the function f : R 7→ Zn+1 defined so
that

f(λ) = by + λ1e
where b·e applied to a vector denotes the vector in
which each element is rounded to a nearest integer1.
That is, f(λ) gives a nearest point in Zn+1 to y + λ1
as a function of λ. Observe that f(λ + 1) = f(λ) + 1.
Hence,

Qf(λ+ 1) = Qf(λ). (3)

Lemma 1 implies there exists some λ ∈ R such that
x = Qf(λ) is a closest point to y. Furthermore, we
see from (3) that λ can be found within an interval of
length 1. Hence, if we define the set

S = {f(λ) | λ ∈ [0, 1)}
1The direction of rounding for half-integers is not important.

However, the authors have chosen to round up half-integers in
their own implementation.

then QS contains a closest point in A∗n to y. In fact
only some of the vectors in QS are candidates for the
nearest point. To show this we firstly require the rele-
vant vectors for the lattice A∗n and to prove a prelimi-
nary result in Lemma 2.

Consider the Voronoi region about the origin,
Vor (0, L). Its faces lie in hyperplanes that are on the
midway point between the lines connecting nearby lat-
tice points. The set of vectors that define the faces are
called the Voronoi relevant vectors or simply relevant
vectors.

Remark 1. Let r be a relevant vector in the lattice L.
If y ∈ Vor (0, L) then

y · r 6
r · r

2
.

Remark 2. The relevant vectors for the lattice A∗n are
given by the vectors Qu where

u =
∑
i∈P

ei

and where P ⊂ {1, 2, . . . , n+ 1}.

A proof of Remark 2 is given in [1].

Lemma 2. Let Qf(λ0) be the closest point in A∗n to
y ∈ Rn+1. If I is defined as the interval containing λ0

on which f(λ) is constant then the length of the interval
is not less than 1/(n+ 1).

Proof. Observe that f(λ) is piecewise constant, by
virtue of the rounding operation. I will be open at
one end and closed at the other. Which end is open
and which is closed depends on the direction that half-
integers are rounded. Let the endpoints of the interval
be λmin 6 λmax.

Consider λ ∈ I . For all such λ, f(λ) is constant.
Let its value be k and let x = Qk. It is clear that
y ∈ Vor (x, A∗n) and so y + λ1 ∈ Vor (x, A∗n). Also,
y+λ1 ∈ Vor (k,Zn+1). With z = y−k, it follows that
z + λ1 ∈ Vor (0, A∗n) ∩Vor (0,Zn+1).

The fact that z + λ1 ∈ Vor (0, A∗n) does not im-
mediately yield any information on the length of the
interval I since this Voronoi region is an infinite cylin-
der whose central axis is in the direction of the vector
1. On the other hand, z + λ1 ∈ Vor (0,Zn+1) im-
plies that |zi + λ| 6 1

2 . If we set ` = arg maxi zi and
m = arg mini zi, it is clear that λmax = 1

2 − z` and
λmin = − 1

2 − zm. Hence, the length of the interval is

λmax − λmin = 1− z` + zm. (4)

Now, from Remark 1, it follows that

z · (Qe`) 6
1
2
‖Qe`‖2

which implies that

z` − z̄ 6
n

2(n+ 1)
(5)

where z̄ = 1·z/n+1. On the other hand, we must also
have that

z · (−Qem) 6
1
2
‖Qem‖2

which implies that

zm − z̄ > − n

2(n+ 1)
. (6)

Combining (4), (5) and (6), we find that the length
of the interval I conforms to the lower bound

λmax − λmin >
1

n+ 1
.

Lemma 3. If Qk is the nearest point in A∗n to y ∈
Rn+1 then

k = f
(
i− 1
n+ 1

)
for some i ∈ {1, · · · , n+ 1}.

Proof. Assume that the lemma is false. Then k = f(λ)
for some λ ∈ [λmin, λmax] such that

i− 1
n+ 1

< λ <
i

n+ 1

for some i ∈ {1, · · · , n+ 1}. However then

λmax − λmin <
i

n+ 1
− i− 1
n+ 1

=
1

n+ 1

contradicting Lemma 2.

From Lemma 3 we see that only the lattice points

Qf
(
i− 1
n+ 1

)
for i ∈ {1, · · · , n + 1} are candidates for the nearest
point. An algorithm suggests itself: test each point
in turn and find the closest to y. This is exactly the
principal of the algorithm we propose here. It only
remains to show that this can done in linear time.

4. The linear-time algorithm

We define n+ 1 sets

Si =
{
j | 0.5− yj + byje ∈

(
i− 1
n+ 1

,
i

n+ 1

]}

for i ∈ {1, · · · , n+ 1}. Then it follows that

f
(

0
n+ 1

)
= bye

f
(

1
n+ 1

)
= bye+

∑
j∈S1

ej

f
(

2
n+ 1

)
= bye+

∑
j∈S1

ej +
∑
j∈S2

ej

and in general

f
(

i

n+ 1

)
= bye+

∑
j∈Ki

ej (7)

where

Ki =
i⋃

j=1

Sj

Let

ui = f
(

i

n+ 1

)
(8)

and let
zi = y − ui (9)

Clearly, z0 = y − bye. Decompose y into orthogonal
components Qy and t1 for some t ∈ R. The squared
distance between Qui and y is

‖y −Qui‖2 = di + t2(n+ 1) (10)

where we define di as

di = ‖Qy −Qui‖2 = ‖Qzi‖2

=
∥∥∥∥zi − z′i1

n+ 1
1
∥∥∥∥2

= z′izi −
(z′i1)2

n+ 1
. (11)

We know that the nearest point to y is that Qui which
minimises (11). Since the term t2(n+1) is independent
of the index i, we can ignore it. That is, it is sufficient
to minimise di, i = 0, . . . , n.

We now show that di can be calculated inexpen-
sively in a recursive fashion. We define two new quan-
tities, αi = z′i1 and βi = z′izi. Using (7), (8) and (9),

αi = z′i1 =

zi−1 −
∑
j∈Si

ej

 · 1
= αi−1 − |Si| (12)

and

βi = z′izi =

∥∥∥∥∥∥zi−1 −
∑
j∈Si

ej

∥∥∥∥∥∥
2

= βi−1 + |Si| − 2
∑
j∈Si

yj − byje. (13)

Algorithm 1 now follows. Lines 4–7 calculate the
sets Si. This is the bucket sort operation [10]. The
main loop beginning at line 10 calculates the αi and
βi recursively. There is no need to retain their previ-
ous values, so the subscripts are dropped. The variable
D maintains the minimum value of the (implicitly cal-
culated values of) di so far encountered, and m the
corresponding index.

The vector operations on lines 1–3 and 21 all require
O(n) operations. Provided that the set operations on
lines 4, 7, 11 and 19 can be performed in constant time
the loops on lines 4, 5, 10 and 18 require only O(n)
operations. The overall computational complexity of
the algorithm is then O(n).

Naive implementation of the set operations may
lead to poor performance. For this reason we have pro-
vided a second version of the pseudocode (Algorithm
2) that hides the set notation but demonstrates how
to efficiently implement the algorithm in practice. The
sets, Si, are replaced by two arrays bucket and link,
both of length n+ 1.

5. Run-time analysis

Table 1 shows the practical computation times
achieved with the algorithms from [1] and [9] and with
the new algorithm. The Clarkson algorithm is that de-
scribed in [1] and the MCQ algorithm is that described
in [9]. Not surprisingly, the linear-time algorithm is the
fastest. The computer used is an Intel Core2 running
at 2.4GHz. The software is written in Java.

Table 1: Computation time in seconds for 105 trials
Algorithm n=20 n=50 n=100 n=500

Clarkson O(n log n) 2.72 5.73 10.99 58.98
MCQ O(n log n) 2.28 4.60 8.61 32.73
O(n) 1.83 3.33 5.86 25.91

6. Conclusion

In this paper we have derived a linear-time algo-
rithm to compute the nearest lattice point in the lattice
A∗n. Two O(n log n)-time algorithms have previously

Input: y ∈ Rn+1

z = y − bye1

α = z′12

β = z′z3

for i = 1 to n+ 1 do Si = ∅4

for t = 1 to n+ 1 do5

i = n+ 1− (n+ 1) bzt + 0.5c6

Si = Si ∪ {t}7

D = β − α2

n+18

m = 09

for i = 1 to n+ 1 do10

forall t ∈ Si do11

α = α− 112

β = β − 2zt + 113

if β − α2

n+1 < D then14

D = β − α2

n+115

m = i16

k = bye17

for i = 1 to m do18

forall t ∈ Si do19

kt = kt + 120

x = k− 1′k
n+1121

return x22

Algorithm 1: Algorithm to find a nearest lattice point in
A∗

n to y ∈ Rn+1 that requires O(n) arithmetic operations.

been described in the literature [1, 9]. The computa-
tional complexity of these algorithms was dominated
by a sorting operation. By exploiting properties of the
Voronoi region of the lattice A∗n the new algorithm only
requires to perform a partial sort that can be computed
in O(n)-time using a bucket sort [10]. This results in
the new algorithm requiring only O(n) arithmetic op-
erations. The new algorithm is in practice faster than
previous algorithms as observed in Table 1.

References

[1] I. V. L. Clarkson, “An algorithm to compute a near-
est point in the lattice A∗

n,” in Applied Algebra, Al-
gebraic Algorithms and Error-Correcting Codes, Marc
Fossorier, Hideki Imai, Shu Lin, and Alain Poli, Eds.,
vol. 1719 of Lecture Notes in Computer Science, pp.
104–120. Springer, 1999.

[2] J. H. Conway and N. J. A. Sloane, Sphere packings,
lattices and groups, Springer, 3rd edition, 1998.

[3] I. V. L. Clarkson, “Approximate maximum-likelihood
period estimation from sparse, noisy timing data,”
IEEE Trans. Signal Process., vol. 56, no. 5, pp. 1779–
1787, May 2008.

Input: y ∈ Rn+1

z = y − bye1

α = z′12

β = z′z3

bucket = 04

for t = 1 to n+ 1 do5

i = n+ 1− (n+ 1) bzt + 0.5c6

linkt = bucketi7

bucketi = t8

D = β − α2

n+19

m = 010

for i = 1 to n+ 1 do11

t = bucketi12

while t 6= 0 do13

α = α− 114

β = β − 2zt + 115

t = linkt16

if β − α2

n+1 < D then17

D = β − α2

n+118

m = i19

k = bye20

for i = 1 to m do21

t = bucketi22

while t 6= 0 do23

kt = kt + 124

t = linkt25

x = k− 1′k
n+1126

return x27

Algorithm 2: Algorithm to find a nearest lattice point
in A∗

n to y ∈ Rn+1 that requires O(n) arithmetic opera-
tions. This pseudocode indicates how to implement the
algorithm in practice using two arrays.

[4] R. G. McKilliam and I. V. L. Clarkson, “Maximum-
likelihood period estimation from sparse, noisy tim-
ing data,” Proc. Internat. Conf. Acoust. Speech Signal
Process., pp. 3697–3700, Mar. 2008.

[5] I. V. L. Clarkson, “Frequency estimation, phase un-
wrapping and the nearest lattice point problem,” Proc.
Internat. Conf. Acoust. Speech Signal Process., vol. 3,
pp. 1609–1612, Mar. 1999.

[6] B. G. Quinn, “Estimating the mode of a phase dis-
tribution,” Asilomar Conference on Signals, Systems
and Computers, pp. 587–591, Nov 2007.

[7] J. H. Conway and N. J. A. Sloane, “Fast quantizing
and decoding and algorithms for lattice quantizers and
codes,” IEEE Trans. Inform. Theory, vol. 28, no. 2,
pp. 227–232, Mar. 1982.

[8] J. H. Conway and N. J. A. Sloane, “Soft decoding tech-
niques for codes and lattices, including the Golay code

and the Leech lattice,” IEEE Trans. Inform. Theory,
vol. 32, no. 1, pp. 41–50, Jan. 1986.

[9] R. G. McKilliam, I. V. L. Clarkson, and B. G. Quinn,
“An algorithm to compute the nearest point in the
lattice A∗

n,” IEEE Trans. Inform. Theory, vol. 54, no.
9, pp. 4378–4381, Sep. 2008.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, MIT Press. and
McGraw-Hill, 2nd edition, 2001.

