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Abstract—Polynomial-phase signals have attracted significant
interest due to their applicability to radar, sonar, geophysics, and
radio communication. In this paper we introduce a new technique
for estimating the parameters of polynomial phase signals. The
parameters are estimated by performing phase unwrapping in a
least squares manner. The least squares problem is formulated
as a nearest lattice point problem that can be solved using existing
techniques. The statistical performance of the new estimator is
excellent when compared with popular estimators such as those
based on the discrete polynomial phase transform.

Index Terms—Polynomial-phase signals, lattice theory, pa-
rameter estimation, chirp signals, polynomials, radar signal
processing, closest point search, lattice decoding.

I. INTRODUCTION

Polynomial-phase signals have numerous applications in-
cluding radar, sonar, geophysics, and radio communication [1].
A uniformly sampled, constant amplitude, polynomial-phase
signal of order m has the model [2],

zn = Aexp <27Tj Zpknk) (D

k=0

where n = 1,2..., N, the p; are the polynomial phase
parameters, A is the signal amplitude and j = /—1. We
will often write the parameters, pg, as a column vector p. Of
significant practical importance is the estimation of p from the
signal y, = z, + s, where the sequence si,5s3,...,Sy 1S a
complex noise process. Many estimators for polynomial-phase
parameters have been studied and implemented [1, 3-8].

A popular method of estimation is by way of the discrete
polynomial-phase transform (DPT) studied by Peleg et. al.
[2, 3, 9]. The DPT enables each parameter to be be esti-
mated iteratively using the fast Fourier transform in a way
analogous to the frequency estimator of Rife and Boorstyn
[10, 11]. Numerous modifications of the DPT estimator have
been described. Two examples are O’Shea [5] and Golden
and Friedlander [12]. These modifications trade computational
performance and statistical accuracy.

Another estimation method is phase unwrapping. Phase
unwrapping estimators appear to have been first suggested by
Tretter [13]. Tretter focused on the specific case of frequency
estimation i.e. when m = 1. Tretter noticed that the phase of a

complex sinusoid is a linear function that is ‘wrapped’ modulo
2m. If the phase could be ‘unwrapped’ then the parameters
can be estimated by linear regression. An analogous situation
occurs when m # 1 by replacing the linear function with a
polynomial of order m. Many phase unwrapping estimators
have been suggested for the specific cases when m = 1
[14, 15], m = 2 [4] and for the general case of polynomial
phase estimation [7, 16].

A common approach to phase unwrapping is to compute
the mth other difference of the complex argument of the
Yn. The resulting signal then resembles a moving average
process and can be estimated by standard linear techniques.
This approach was first suggested by Kay for the case when
m = 1 [14] and extended to the general case by Kitchen [7].
A significant advantage of this approach is that the moving
average process has structure enough that the estimates can
be computed with only O(N) arithmetic computations. The
estimators also appear to be statistically efficient when the
signal to noise ratio (SNR) is sufficiently large and N is
sufficiently small.

An important consideration in polynomial-phase estimation
is that of parameter aliasing. For example, consider the case
when m = 0. The model becomes

Yn = Aexp (27ij0> + sp,

where pg € R. Then y,, is identical for py + ¢ for any ¢ €
Z. In order to avoid these ambiguities we must restrict pg
to some interval of length 1. A natural choice is [—1/2, 1/2).
We call this the identifiable region (IR). For the case when
m = 1 we find that the IR is (pg,p1) € [—1/2,1/2)? which
corresponds with the Nyquist criterion. In [17] it is shown that,
for larger m, the IR can be represented as the rectangular prism
[Ti o [=9-3/k1,0-5/k1). Moreover, estimators based on the DPT
only operate correctly over a small fraction of the IR.

In this paper we consider a new phase unwrapping estimator
for polynomial-phase parameters. The approach is to unwrap
the phase in a least squares manner. We call the resulting
estimator the least squares phase unwrapping estimator (LSU).
When m = 0 and when m = 1 the LSU is known to be
strongly consistent and its central limit theorem has been
derived [18, 19]. For the case when m = 1, Clarkson showed



how the LSU is related to a problem in algorithmic number
theory known as the nearest lattice point problem [15, 20]. We
extend this result to the general case in this paper. We show
how the LSU can be computed by solving the nearest lattice
point problem in a lattice determined by N and m.

The paper is organized as follows. In Section II we describe
the objective function used by the LSU. In Section III we
introduce some basic concepts in lattice theory including
the nearest lattice point problem. We introduce two common
techniques for solving the nearest lattice point problem, the
sphere decoder [20-22] and Babai’s nearest plane algorithm
[23]. In Section IV we show how the LSU can be represented
as a nearest lattice point problem. By using the sphere decoder
the exact LSU can be found. By using Babai’s algorithm an
approximation of the LSU can be made. In Section V we use
Monte Carlo simulation to analyse the statistical performance
of the LSU, the phase unwrapping estimator of Kitchen [7]
and the DPT estimator of Peleg [3]. We find that the LSU
is statistically superior to the other estimators. Moreover, in
contrast to the other estimators, we find that the LSU performs
well for parameters anywhere in the IR.

II. LEAST SQUARES PHASE UNWRAPPING

The complex argument of the y,,, denoted Zy,,, is given by

Lyp =27 (Un + Zpknk> (mod 27),

k=0

where v,, is noise in the range [—1/2, 1/2) and has a distribution
depending only on A and the probability density function (pdf)
of the s,. When s,, is complex Gaussian noise the distribution
of the v,, is known as the projected normal distribution and has
been studied by Mardia and Jupp [24, p. 46]. The distribution
has also been discussed by Quinn [18] and Tretter [13]. Other
circular noise distributions may be used, for example, the
wrapped normal, or von Mises distributions [24, 25]. In this
paper we make the assumption that the v, are zero mean,
independent and identically distributed. We also assume that
the probability density function of the v, is symetric and
unimodal with mode at 0.
Let x, = Zyy/ (27). Then

&y = {vn+2pknk}, ()
k=0

where {z} = x — |z] is the centered fractional part of = and
| 7] denotes the nearest integer to x.!
We may write (2) as

m
Ty = Up +Up + Zpknk7 (3)
k=0
where u,, = — Lvn + Z?:o pkn’ﬂ. By considering the u,, as

nuisance parameters, where u,, € Z, we may derive the sum

The direction of rounding for half-integers is not important, so long as it
is consistent. The authors have chosen to round up half-integers here.

of squares function

N m 2
%@mZ%memﬁ>. @)
n=1 k=0
where we write the u,, in vector form as u. The LSU then
returns
p=a i in SS(p,u
p = argmin min S5(p, u)

where IR is the identifiable region described in [17].

III. LATTICE THEORY
A lattice, L, is a set of points in R™ such that

L={xeR"|x=Bw,wecZ"}

where B is called the generator or basis matrix [26]. A
fundamental problem in lattice theory is the nearest lattice
point problem. Given y € R™ and some lattice L whose lattice
points lie in R”, the nearest lattice point problem is to find the
lattice point x € L such that the Euclidean distance between
y and x is minimised. We will use the notation NPt(y, L) to
denote the nearest point in L to y.

The nearest lattice point problem is known to be NP-hard
under certain conditions when the lattice itself is considered
as an additional input parameter [27, 28]. Nevertheless, al-
gorithms exist that can compute the nearest lattice point in
reasonable time if the dimension is small [20-22]. One such
algorithm introduced by Pohst [21] in 1981 was popularised in
signal processing and communications fields by Viterbo and
Boutros [22] and has since been called the sphere decoder.
Approximate algorithms for computing the nearest point have
also been studied. One example is Babai’s nearest plane
algorithm [23] which has worst case polynomial complexity.

IV. LEAST SQUARES UNWRAPPING AND THE NEAREST
LATTICE POINT PROBLEM

In this section we show how the LSU can be represented as
a nearest lattice point problem in a lattice determined by N
and m. If we let n* = [1¥,2F 3% ... nF]" where ' denotes
transpose and define the Vandermonde matrix

M=[n"n' ... n"" ! n™
then SS(P,u) may be written in vector form as
§S(p,u) = [ly —u—Mp|*. )

Given u the least squares estimator of p is obtained by the
usual linear regression formulae and is given by

p=M"(y—u) (6)

where MT = (M'M)~!M’. Substituting (6) into (5) and
rearranging, the least squares estimate of u, conditioned on
maximisation with respect to p, is

0= in |B(y —u)|. 7
0 = arg min |[B(y —u)l| 9]

where B=1— MMT and I is the N x N identity matrix.



Let A be the lattice with generator matrix B. Then the least
squares phase unwrapping is the @ such that B is the nearest
lattice point in A to By. The least squares estimate of p (6)
can be computed by first computing NPt(By, A), producing
both B1i and 4. p can then be computed using (6). After this
procedure it is possible that the p obtained is not in the IR
but instead is an aliased version of the desired estimate. This
aliasing can be resolved using the procedure described in [17].

The most difficult part of this procedure is finding the
nearest lattice point. When m = 0 the lattice A coincides
with the well studied lattice A%,_; [26, 29-31] for which a
linear-time nearest point algorithm exists [32]. When m = 1
an algorithm to compute the nearest point in O(N3log N)
operations is known [19]. For m > 1 we propose two
solutions. Firstly, the sphere decoder can be used to compute
the nearest point and return the true LSU. Unfortunately
the sphere decoder has worst case exponential complexity
and therefore is only computationally feasible when N is
small. An alternative approach is to compute an approximate
nearest point using Babai’s nearest plane algorithm [23]. The
estimate is no longer guaranteed to correspond to the LSU
but the nearest point can be computed with O(N?) arithmetic
operations. Notice that Babai’s algorithm requires LLL lattice
reduction [33]. This requires O(N*) operations. However, in
this case, LLL reduction can be performed offline and the
remainder of Babai’s algorithm requires O(NN?) operations.

V. SIMULATIONS

In this section we evaluate the statistical performance of
the estimators using Monte Carlo simulation. We compare the
LSU calculated exactly using the sphere decoder and calcu-
lated approximately using Babai’s algorithm with Kitchen’s
phase unwrapping estimator [7] and Peleg et al.’s estimator
based on the DPT [3]. The simulations are run with m = 3
and N = 50 under the assumption that the s,, are independent
and identically distributed complex Gaussian random variables
with real and imaginary parts that have variance o2. The
mean square error (MSE) of the estimator after 1000 trials
is computed for each value of SNR = A/202 in the range
[2dB,20dB]. The MSE is calculated modulo the IR as de-
scribed in [17].

In Figure 1, p = [0.1,0.05, 0.01,0.0005]. This is within the
range that is suitable for the DPT estimator [3, 17]. It is evident
that the sphere decoder estimator is statistically superior to the
other estimators. A rather significant penalty is paid by using
Babai’s approximate nearest point algorithm.

In Figure 2 the parameters used are randomly generated so
that they are uniformly distributed in the IR. It was noted in
[17] that the DPT estimator only operates correctly on a small
subset of the IR. The result of this is that the DPT estimator
performs very poorly for parameters uniformly distributed in
the IR. This effect is clearly seen in Figure 2. It appears
that Kitchen’s estimator suffers from a similar problem. By
comparison, both the sphere decoder and Babai’s LSU are
unaffected.

VI. CONCLUSION

The paper introduces a new technique for estimating the
parameters of a polynomial phase signal. The method is
based on least squares phase unwrapping. It is found that
the LSU estimator can be computed by solving the nearest
lattice point problem in a lattice determined by N and m. The
estimator appears to have good statistical performance when
compared with the DPT estimator and Kitchen’s estimator. The
estimator also performs equally well over the entire IR. Best
performance is obtained when the LSU is used in conjunction
with the sphere decoder. A significant disadvantage is that
this is exponential complex in N. A compromise is to use
Babai’s algorithm which has O(NN?) and quite good statistical
performance. It may be that faster nearest point algorithms
exist for these lattices. This is a topic for future research.
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