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|dentifiability and aliasing

In polynomial-phase signals

Robby G. McKilliam and I. Vaughan L. Clarkson

Abstract—Polynomial-phase signals have numerous applications in-
cluding radar, sonar, geophysics, and radio communicationMany tech-
niques for estimating the parameters of polynomial-phaseignals have
been described in the literature. Despite the significant iterest, aliasing
of polynomial-phase parameters has not been fully clarifiedWe address
the problem of identifiability and aliasing in polynomial-p hase signals. We
fully describe the region in which aliasing does not occur fopolynomial-
phase signals of any order. We call this thédentifiable region We find that
this region is the Voronoi region of a lattice generated by the coefficients
of a set of polynomials known as theinteger-valued polynomialsWe
show how aliasing can be resolved by solving theearest lattice point
problem We discuss some of the consequences of these results on
popular estimator for polynomial-phase signals that is basd on the
discrete polynomial phase transform (DPPT). It is shown thathe range
of parameters suitable for the DPPT estimator is very small ompared
to the identifiable region.

Index Terms—Polynomial-phase signals, lattice theory, antialiasing
parameter estimation, chirp signals, polynomials, radar gynal processing,
Doppler measurements, closest point search, lattice dedod, Voronoi
diagram.

I. INTRODUCTION

A uniformly sampled polynomial-phase signal of orderhas the
model [1-4],

wheren € Z, A[n] is the signal amplitude at theth sample, the
pr are the parameterg, = v/—1 and A is the interval between

z[n] = Aln] exp <27rj > pr(An) €N

k=0

For largerm the identifiable region becomes more complicated. The
identifiable regions form < 2 have been found bngeby [5] but

a general description does not appear to exist in the literature. In
this paper, we fully describe the identifiable region forsall> 0.

The region is shown to be théoronoi regionof a lattice. The lattice
points are given by the coefficients of a set of polynomials known as
the integer-valued polynomialgl3].

Some work on resolving aliasing in polynomial-phase signals has
been conducted biingeby [5]. Angeby suggests that aliasing can be
avoided by nonuniform sampling. Specifically, the interval between
some of the samples should be irrational. A similar approach was
suggested by Legg and Gray [14]. However, they used randomly
generated sampling times.

Although these approaches avoid aliasing in the noise free case,
it can be shown that they lead to large estimation error when noise
is added. In effect, the previously ambiguous parameters are now
“close” to each other. An estimator is then likely to incorrectly
choose one of thalmost ambiguous parameters. This is a result
of Kronecker’'s approximation theorem [15, pp. 148-155]. We will
briefly describe this problem. Let be a vector of (potentially
non-uniform) sampling times. Lgb be a set of polynomial phase
parameters and define

Using Kronecker’s approximation theorem it can be shown that for
any € > 0 there exists @* # p such that||p* — p|| > ¢ for any

z(p)[n] = exp (27rj Z pkt[n]k

k=0

consecutive samples. We will assume, without loss of generality, thiat- 0 and

A = 1. We will often write the parameterg,, as a column vector
p

are also used to describe the sounds emitted by bats for echp-
location [1]. Of significant practical importance is the estimation o?

the parameterp from the signalz[n] + s[n] wheres[n] is a noise

process. Many estimators for polynomial-phase parameters hame bee

studied and implemented [1-3, 6-12].

Polynomial-phase signals have numerous applications includi
radar, sonar, geophysics, and radio communication [5]. The signals

|2(p)[n] — 2(P")[n]|* < e 7
for all n = 1,2,..., N where| - | is the complex magnitude. In
Rt there are an infinite number of sugti for arbitrarily larged.
onsider the noisy signal(p)[n]+ s[n]. The least squares estimator
pis

arg min
p* ERm,+1

> [z(e)n] + sln] — 2(p7) ]|

Despite the significant interest in polynomial-phase signals, alidsonsidering (2) we see that this mininlization may result in one of
ing of polynomial-phase parameters has not been fully clarified [gf! infinite number oélmostambiguousp™ rather than the true value
Inherent ambiguities exist in (1). For example, consider the case wHén'Ve have fixedA[n] = 1 in this example, but a similar result can

m = 0. The model becomes
z[n] = A[n] exp (2mjpo)

wherepy € R. Thenz[n] is identical forpo+c for anyc € Z. In order
to avoid these ambiguities we must restrigt to some interval of
length1. A natural choice i§—1/2,1/2). We call this theidentifiable
region For the case whem = 1 we find that the identifiable region is

(po,p1) € [—1/2,1/2)® which corresponds with the Nyquist criterion.
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be shown for arbitraryd[n].

Attempts at avoiding aliasing by modifying the sampling interval
were probably motivated by the difficulty of describing the iden-
tifiable region. We solve this problem in this paper. The paper is
organized as follows. In Section Il we introduce some basic concepts
in lattice theory. This includes the Voronoi region and the nearest
lattice point problem. In Section Il we describe the identifiable
region. We show that the identifiable region is the Voronoi region
of a lattice. In Section IV we describe how to resolve aliasing in
polynomial-phase parameters. We also show how to calculate the
square error between two parameters and how to generate parameters
that are uniformly distributed in the identifiable region. Finally, we
discuss the consequences of these results on a popular existing
estimator based on the discrete polynomial-phase transform (DPPT)
[1, 3]. It is shown that the range of parameters suitable for the DPPT
estimator is very small compared to the identifiable region.
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Il. LATTICE THEORY polynomials. Assume that the parametprandp+v are ambiguous.
Then
A lattice, L, is a set of points irR™ such that .
. k
L={xeR"|x=Bw,wecZ"} Aln]exp (271 gpkn >
whereB is called thegeneratoror basismatrix [16]. TheVoronoi o e k
region or nearest-neighbor regignVor(L), for a lattice L is the = AlnJexp | 2mj ;0 (pe + ve)n

subset ofR™ such that, with respect to a given norm, all points in m m
Vor(L) are nearer to the origin than to any other pointZin The = Aln] exp <2ﬂjzpknk> exp (27sz vknk>
\Voronoi region is am dimensional polytope [16]. Given some lattice =0

pointx € L we will write Vor(L) 4+ x to denote the Voronoi region 4 therefore

centered around the lattice poixt It follows that Vor(L) + x is the

subset ofR"™ that is nearer tax than any other lattice point itd. €xp (

m
27ervk.nk> =1

Figure 1 is an example of a lattice and its Voronoi regioiRi This k=0
lattice has basis matrix which occurs if and only if
1 1/5 i k
B:<1/5 1) kakn cZ.
0=0

for all n € Z. We consider the set of all such

A . m
. L:{VERM+1|kank6Z,n6Z}.
: k=0
. Let Int,,[Z] denote the set of polynomials of ordes that are
. integer valued when evaluated at integers. Given a polynomiaf

. . order at mostn, defineCoef(P) to be the column vector of length
. m + 1 containing the coefficients aP. If P is of orderk < m then
. the lastm — k elements ofCoef(P) are zero. Then

. . L = {v = Coef(P) | P € Int,[Z]} . (3)

Define the polynomials

. . Pk[n]:n(n+1)(n+2k),'...(n+k71)
and definePy[n] = 1. We will often drop the[n] and write P;[n] as
Fig. 1. A lattice inR2. The shaded region is the Voronoi region. Py. These polynomials are known as timéeger-valued polynomials
and have been extensively studied [13]. The following lemma and
A fundamental problem in lattice theory is thearest lattice point proof is adapted from Cahen and Chabert [13, p. 2]

problem The nearest lattice point problem is, givere R™ and some

M v

. : . . ) ) . Lemma 1. The P, for k = 0,1,...,m, are an in r is for
lattice L whose lattice points lie ifR"™, to find a lattice pointk € L h?t [Za]l That ?s Zve? ](:Iemgnt it T[nZ] acl:aenabe utneigielbavsvrsitteon
such that, with respect to a given norm, the distance betyeand as e ' y " quely
x is minimized. We will use the notatioNearestPt(y, L) to denote c0Po L 1Pt Po @

the nearest point itl. to y. Clearly*

where thec; € Z.
x = NearestPt(y, L) < y € Vor(L) + x. o
Proof: Note thatn(n+1)(n+2) ... (n+k—1) is divisible by all

The nearest lattice point problem is known to be NP-hard undeategersl,2, ...,k and soP; takes integer values for all € Z. Then
certain conditions when the lattice itself, or rather a basis thereafyy polynomial generated as in (4) is an elementrit,[Z]. The
is considered as an additional input parameter [17, 18]. Neverthelgg®of proceeds by induction. Consider any polynonfiat Int,, [Z)].
algorithms exist that can compute the nearest lattice point in rdaet d < n and assume that; € Z for all ¢ < d. Let g be the
sonable time if the dimension is small [19-21]. One such algorithpolynomial

introduced by Pohst [21] in 1981 was popularized in signal processing d

and communications fields by Viterbo and Boutros [20] and has since g=1r- kzockpk‘

been called thesphere decoder
and note thay € Int,,[Z]. Then

Ill. THE IDENTIFIABLE REGION g=ci+1Pay1+ -+ cmPm. (5)

In this section we show that the identifiable region of (1) is th¥OW Pat1[~d—1] = £l andP;[-d—1] = Oforall k > d+1. Then
Voronoi region of a lattice inRR™*!. The lattice points are given 9[—4—1] = ca+1Pa+1[—d—1] and thereforeq., = +g[-d—1] €

by the coefficients of a set of polynomials called the integer-valuéd 1€ proof follows by induction becaus0] = co € Z. u
Theorem 1. Construct the(m + 1) x (m + 1) matrix with columns
1There is a slight technical deficiency here. We actually ireqto define Coef(Pk) fork=0,1,...,m, i.e.

half of the faces ofVor(L) to be closed and half to be open. Ties in
NearestPt(y, L) can then be broken accordingly. B = [Coef(Py) Coef(Py) ... Coef(Pn)].
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Then where | -] denotes rounding to the nearest intégémalogously, to
L={v=Bw|wez""} compute the square error for any > 0 we first compute
and it is clear thatl is a lattice inR™** with basis matrixB. g =P —p — NearestPt(p — p, L)
Proof: The proof follows directly from consideration of (3) andWhere NearestPt(-) is computed .Wlth re23pect to thiznorm. The
square error of théth parameter is thep;,.
Lemma 1. . - . . o .
} o ) A parameter uniformly distributed in the identifiable region can be
The lattice points inL are the parameters that are ambiguous W“Benerated as
the origin = 0). The identifiable region is the Voronoi region of - N
2 ) p = NearestPt(Bu, L)
L*. As an example, consider when = 3,

whereB is the basis matrix fol. andu is a vector whose elements

Py=1 are independent and uniformly distributed [on1).
P1 =N
2 V. CONSEQUENCES FOR SOME EXISTING ESTIMATORS
Py = 9 + 2 A popular estimator for polynomial-phase parameters is based
n® n? n on the discrete polynomial-phase transform (DPPT) first introduced
Py = 6 + 9 + 3" by Peleg and Porat [1]. The transform enables each parameter to
. . . be be estimated iteratively using the Fast Fourier transform in a
The basis matrix fot is . :
way analogous to the frequency estimator of Rife and Boorstyn
1 0 0 O [22, 23]. The DPPT estimator is characterized by good statistical
0 1 Y2 1/3 performance and computational efficiency. Variants of the DPPT have
0 0 12 1/2 been suggested by numerous authors. These include Golden and
0 0 0 s Friedlander [24] and O’Shea [8]. These variants typically make trade

offs between computational efficiency and statistical accuracy.
One property of the DPPT estimator is that it only functions when
the parameters satisfy

and the identifiable region ¥or(L).

IV. RESOLVING ALIASING, COMPUTING ERROR AND 2pi| < 1
GENERATING PARAMETERS — klrk-t

In thi " how h . | ial-oh for kK > 2 and |px| < 0.5 for £ = 0,1 and wherer is a ‘lag’
n N IS s?c lon we S’I ow “?W’.dglvf.? ch)me polynomial-p ?Sz ? arameter that is free to be selected. Peleg and Porat suggest using
rameter not necessarily in the identifiable region, we can find the_ N/m whenm < 4 andr = ¥/oni2) for m > 4 where N is

equivalent parameter in the identifiable region. For evaluating thr?e_number of samples of data available. The functional region of the

performance of estimators it is usuz_illy necessary to calculate lb PT estimator is then am + 1 dimensional rectangular prism of
square error between the true and estimated parameters. We show e

the square error can be calculated unambiguously. Finally we show o
how to generate polynomial-phase parameters that are uniformly Vpppr = Vrmi=m) H 7 (6)
distributed in the identifiable region. This is useful if we wish to k=0 "
evaluate the performance of an estimator over the entire identifiableThe volume of the identifiable region is the volume 6ér(L)
region. These procedures are facilitated by solving the nearest paititich is given by
problem for the latticeL. In practicem is typically small and the m o
gii’;\rest point can be efficiently computed by sphere decoding [19— Vi = /det(B’'B) = H o

. k=0

Given some parametex the equivalent parameter within thewheredet(.) indicates the matrix determinant [16]. Note thatr(L)
identifiable region is depends only om and not\ and so the aliasing of polynomial phase
signals is not dependent aW. By contrast the functional region of
the DPPT estimator shrinks with increasihgbecause the parameter

L . . T must be chosen to increase within order for the DPPT estimator
When estimating the parameters of polynomial-phase signals ¥v

e T . i
usually have some true parametgrsand the estimated parameters]?] ?r:s:/éggezof? gni(s)tltrgalt(l)%nénlzgx;eefmsflo;vsctlf; zrrléfﬂvlgvappT<iS
p. We often wish to compute the square error between the true ?d - Y VDpPpPT

estimated parameters. Some difficulties arise due to aliasing. Fdr for large Vand therefore the range of parameters suitable for

example, consider whem = 0. It may be that the true parameter;hoesggePT estimator is only a small fraction of what is theoretically

po = 0.49 and the estimated parametgy = —0.49. Naively we
might compute the square error s — po)> = 0.982. Intuitively
this is wrong becausep, andnp, are phases that are close together, V1. ConcLusioN

but lie on either side of the branch on the unit circle. We can correctly Polynomial-phase signals have attracted significant interest due

p = x — NearestPt(x, L).

compute the square error as to their applicability to radar, sonar, geophysics, and radio com-
munication. Despite this interest the aliasing of polynomial-phase
(Bo — po — |Po — po])? = 0.02* parameters had never been fully described. In this paper we describe

the identifiable region for the parameters. The region is found to
2Note we may choose other regions that tessellate the spacex#&wople, a be the Voronoi region of a lattice with lattice points described
fundamental parallelepiped of the lattice or thet 1 dimensional rectangular
prism[ ], [~0-5/k!, 0-5/k1). However, the Voronoi region is the most natural 3The direction of rounding for half-integers is not importaHowever, the
choice. authors have chosen to round up half-integers here.
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by the coefficients of the integer valued polynomials. By solvin%&]

nearest lattice point problem we show how to resolve alias

parameters, compute square error and generate parametersnlynifor

in the identifiable region. Finally, we discuss the consequences [Qé]
these results on the popular DPPT estimator for polynomial-phase
signals [1, 3]. It is shown that the range of parameters suitable figu]
the DPPT estimator is very small compared to the identifiable region.
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