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Identifiability and aliasing in polynomial-phase signals
Robby G. McKilliam and I. Vaughan L. Clarkson

Abstract—Polynomial-phase signals have numerous applications in-
cluding radar, sonar, geophysics, and radio communication. Many tech-
niques for estimating the parameters of polynomial-phase signals have
been described in the literature. Despite the significant interest, aliasing
of polynomial-phase parameters has not been fully clarified. We address
the problem of identifiability and aliasing in polynomial-phase signals. We
fully describe the region in which aliasing does not occur for polynomial-
phase signals of any order. We call this theidentifiable region. We find that
this region is the Voronoi region of a lattice generated by the coefficients
of a set of polynomials known as theinteger-valued polynomials. We
show how aliasing can be resolved by solving thenearest lattice point
problem. We discuss some of the consequences of these results on a
popular estimator for polynomial-phase signals that is based on the
discrete polynomial phase transform (DPPT). It is shown that the range
of parameters suitable for the DPPT estimator is very small compared
to the identifiable region.

Index Terms—Polynomial-phase signals, lattice theory, antialiasing,
parameter estimation, chirp signals, polynomials, radar signal processing,
Doppler measurements, closest point search, lattice decoding, Voronoi
diagram.

I. I NTRODUCTION

A uniformly sampled polynomial-phase signal of orderm has the
model [1–4],

z[n] = A[n] exp

(

2πj
m
∑

k=0

pk(∆n)k

)

(1)

wheren ∈ Z, A[n] is the signal amplitude at thenth sample, the
pk are the parameters,j =

√
−1 and ∆ is the interval between

consecutive samples. We will assume, without loss of generality, that
∆ = 1. We will often write the parameters,pk, as a column vector
p.

Polynomial-phase signals have numerous applications including
radar, sonar, geophysics, and radio communication [5]. The signals
are also used to describe the sounds emitted by bats for echo-
location [1]. Of significant practical importance is the estimation of
the parametersp from the signalz[n] + s[n] wheres[n] is a noise
process. Many estimators for polynomial-phase parameters have been
studied and implemented [1–3, 6–12].

Despite the significant interest in polynomial-phase signals, alias-
ing of polynomial-phase parameters has not been fully clarified [5].
Inherent ambiguities exist in (1). For example, consider the case when
m = 0. The model becomes

z[n] = A[n] exp (2πjp0)

wherep0 ∈ R. Thenz[n] is identical forp0+c for anyc ∈ Z. In order
to avoid these ambiguities we must restrictp0 to some interval of
length1. A natural choice is[−1/2, 1/2). We call this theidentifiable
region. For the case whenm = 1 we find that the identifiable region is
(p0, p1) ∈ [−1/2, 1/2)2 which corresponds with the Nyquist criterion.
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For largerm the identifiable region becomes more complicated. The
identifiable regions form ≤ 2 have been found bÿAngeby [5] but
a general description does not appear to exist in the literature. In
this paper, we fully describe the identifiable region for allm ≥ 0.
The region is shown to be theVoronoi regionof a lattice. The lattice
points are given by the coefficients of a set of polynomials known as
the integer-valued polynomials[13].

Some work on resolving aliasing in polynomial-phase signals has
been conducted bÿAngeby [5].Ängeby suggests that aliasing can be
avoided by nonuniform sampling. Specifically, the interval between
some of the samples should be irrational. A similar approach was
suggested by Legg and Gray [14]. However, they used randomly
generated sampling times.

Although these approaches avoid aliasing in the noise free case,
it can be shown that they lead to large estimation error when noise
is added. In effect, the previously ambiguous parameters are now
“close” to each other. An estimator is then likely to incorrectly
choose one of thealmost ambiguous parameters. This is a result
of Kronecker’s approximation theorem [15, pp. 148-155]. We will
briefly describe this problem. Lett be a vector of (potentially
non-uniform) sampling times. Letp be a set of polynomial phase
parameters and define

z(p)[n] = exp

(

2πj
m
∑

k=0

pkt[n]k
)

Using Kronecker’s approximation theorem it can be shown that for
any ǫ > 0 there exists ap∗ 6= p such that‖p∗ − p‖ > δ for any
δ > 0 and

∣

∣z(p)[n] − z(p∗)[n]
∣

∣

2
< ǫ (2)

for all n = 1, 2, . . . , N where | · | is the complex magnitude. In
fact there are an infinite number of suchp∗ for arbitrarily largeδ.
Consider the noisy signalz(p)[n]+s[n]. The least squares estimator
of p is

arg min
p∗∈Rm+1

N
∑

n=1

∣

∣z(p)[n] + s[n] − z(p∗)[n]
∣

∣

2
.

Considering (2) we see that this minimization may result in one of
the infinite number ofalmostambiguousp∗ rather than the true value
p. We have fixedA[n] = 1 in this example, but a similar result can
be shown for arbitraryA[n].

Attempts at avoiding aliasing by modifying the sampling interval
were probably motivated by the difficulty of describing the iden-
tifiable region. We solve this problem in this paper. The paper is
organized as follows. In Section II we introduce some basic concepts
in lattice theory. This includes the Voronoi region and the nearest
lattice point problem. In Section III we describe the identifiable
region. We show that the identifiable region is the Voronoi region
of a lattice. In Section IV we describe how to resolve aliasing in
polynomial-phase parameters. We also show how to calculate the
square error between two parameters and how to generate parameters
that are uniformly distributed in the identifiable region. Finally, we
discuss the consequences of these results on a popular existing
estimator based on the discrete polynomial-phase transform (DPPT)
[1, 3]. It is shown that the range of parameters suitable for the DPPT
estimator is very small compared to the identifiable region.



2 ROBBY G. MCKILLIAM AND I. VAUGHAN L. CLARKSON, IDENTIFIABILITY AND A LIASING IN POLYNOMIAL-PHASE SIGNALS

II. L ATTICE THEORY

A lattice, L, is a set of points inRn such that

L = {x ∈ R
n | x = Bw,w ∈ Z

n}

whereB is called thegeneratoror basismatrix [16]. TheVoronoi
region or nearest-neighbor region, Vor(L), for a lattice L is the
subset ofRn such that, with respect to a given norm, all points in
Vor(L) are nearer to the origin than to any other point inL. The
Voronoi region is ann dimensional polytope [16]. Given some lattice
point x ∈ L we will write Vor(L) + x to denote the Voronoi region
centered around the lattice pointx. It follows thatVor(L)+x is the
subset ofRn that is nearer tox than any other lattice point inL.
Figure 1 is an example of a lattice and its Voronoi region inR

2. This
lattice has basis matrix

B =

(

1 1/5

1/5 1

)

Fig. 1. A lattice inR
2. The shaded region is the Voronoi region.

A fundamental problem in lattice theory is thenearest lattice point
problem. The nearest lattice point problem is, giveny ∈ R

n and some
lattice L whose lattice points lie inRn, to find a lattice pointx ∈ L
such that, with respect to a given norm, the distance betweeny and
x is minimized. We will use the notationNearestPt(y, L) to denote
the nearest point inL to y. Clearly1

x = NearestPt(y, L) ⇔ y ∈ Vor(L) + x.

The nearest lattice point problem is known to be NP-hard under
certain conditions when the lattice itself, or rather a basis thereof,
is considered as an additional input parameter [17, 18]. Nevertheless,
algorithms exist that can compute the nearest lattice point in rea-
sonable time if the dimension is small [19–21]. One such algorithm
introduced by Pohst [21] in 1981 was popularized in signal processing
and communications fields by Viterbo and Boutros [20] and has since
been called thesphere decoder.

III. T HE IDENTIFIABLE REGION

In this section we show that the identifiable region of (1) is the
Voronoi region of a lattice inRm+1. The lattice points are given
by the coefficients of a set of polynomials called the integer-valued

1There is a slight technical deficiency here. We actually require to define
half of the faces ofVor(L) to be closed and half to be open. Ties in
NearestPt(y, L) can then be broken accordingly.

polynomials. Assume that the parametersp andp+v are ambiguous.
Then

A[n] exp

(

2πj
m
∑

k=0

pknk

)

= A[n] exp

(

2πj

m
∑

k=0

(pk + vk)nk

)

= A[n] exp

(

2πj

m
∑

k=0

pknk

)

exp

(

2πj

m
∑

k=0

vknk

)

and therefore

exp

(

2πj
m
∑

k=0

vknk

)

= 1

which occurs if and only if
m
∑

k=0

vknk ∈ Z.

for all n ∈ Z. We consider the set of all suchv

L =

{

v ∈ R
m+1 |

m
∑

k=0

vknk ∈ Z, n ∈ Z

}

.

Let Intm[Z] denote the set of polynomials of orderm that are
integer valued when evaluated at integers. Given a polynomialP of
order at mostm, defineCoef(P ) to be the column vector of length
m + 1 containing the coefficients ofP . If P is of orderk < m then
the lastm − k elements ofCoef(P ) are zero. Then

L = {v = Coef(P ) | P ∈ Intm[Z]} . (3)

Define the polynomials

Pk[n] =
n(n + 1)(n + 2) . . . (n + k − 1)

k!

and defineP0[n] = 1. We will often drop the[n] and writePk[n] as
Pk. These polynomials are known as theinteger-valued polynomials
and have been extensively studied [13]. The following lemma and
proof is adapted from Cahen and Chabert [13, p. 2]

Lemma 1. The Pk, for k = 0, 1, . . . , m, are an integer basis for
Intm[Z]. That is, every element ofIntm[Z] can be uniquely written
as

c0P0 + c1P1 + · · · + cmPm (4)

where theci ∈ Z.

Proof: Note thatn(n+1)(n+2) . . . (n+k−1) is divisible by all
integers1, 2, . . . , k and soPk takes integer values for alln ∈ Z. Then
any polynomial generated as in (4) is an element inIntm[Z]. The
proof proceeds by induction. Consider any polynomialf ∈ Intm[Z].
Let d < n and assume thatci ∈ Z for all i ≤ d. Let g be the
polynomial

g = f −
d
∑

k=0

ckPk

and note thatg ∈ Intm[Z]. Then

g = cd+1Pd+1 + · · · + cmPm. (5)

Now Pd+1[−d−1] = ±1 andPk[−d−1] = 0 for all k > d+1. Then
g[−d−1] = cd+1Pd+1[−d−1] and thereforecd+1 = ±g[−d−1] ∈
Z. The proof follows by induction becausef [0] = c0 ∈ Z.

Theorem 1. Construct the(m + 1)× (m + 1) matrix with columns
Coef(Pk) for k = 0, 1, . . . , m, i.e.

B = [Coef(P0) Coef(P1) . . . Coef(Pm)].
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Then

L =
{

v = Bw | w ∈ Z
m+1}

and it is clear thatL is a lattice inR
m+1 with basis matrixB.

Proof: The proof follows directly from consideration of (3) and
Lemma 1.

The lattice points inL are the parameters that are ambiguous with
the origin (p = 0). The identifiable region is the Voronoi region of
L2. As an example, consider whenm = 3,

P0 = 1

P1 = n

P2 =
n2

2
+

n

2

P3 =
n3

6
+

n2

2
+

n

3
.

The basis matrix forL is








1 0 0 0
0 1 1/2 1/3

0 0 1/2 1/2

0 0 0 1/6









and the identifiable region isVor(L).

IV. RESOLVING ALIASING, COMPUTING ERROR AND

GENERATING PARAMETERS

In this section we show how, given some polynomial-phase pa-
rameter not necessarily in the identifiable region, we can find the
equivalent parameter in the identifiable region. For evaluating the
performance of estimators it is usually necessary to calculate the
square error between the true and estimated parameters. We show how
the square error can be calculated unambiguously. Finally we show
how to generate polynomial-phase parameters that are uniformly
distributed in the identifiable region. This is useful if we wish to
evaluate the performance of an estimator over the entire identifiable
region. These procedures are facilitated by solving the nearest point
problem for the latticeL. In practicem is typically small and the
nearest point can be efficiently computed by sphere decoding [19–
21].

Given some parameterx the equivalent parameter within the
identifiable region is

p = x − NearestPt(x, L).

When estimating the parameters of polynomial-phase signals we
usually have some true parametersp and the estimated parameters
p̂. We often wish to compute the square error between the true and
estimated parameters. Some difficulties arise due to aliasing. For
example, consider whenm = 0. It may be that the true parameter
p0 = 0.49 and the estimated parameterp̂0 = −0.49. Naively we
might compute the square error as(p0 − p̂0)

2 = 0.982. Intuitively
this is wrong becauseπp0 andπp̂0 are phases that are close together,
but lie on either side of the branch on the unit circle. We can correctly
compute the square error as

(p̂0 − p0 − ⌊p̂0 − p0⌉)2 = 0.022

2Note we may choose other regions that tessellate the space. For example, a
fundamental parallelepiped of the lattice or them+1 dimensional rectangular
prism

∏

m

k=0 [−0.5/k!, 0.5/k!). However, the Voronoi region is the most natural
choice.

where⌊·⌉ denotes rounding to the nearest integer3. Analogously, to
compute the square error for anym ≥ 0 we first compute

g = p̂ − p − NearestPt(p̂ − p, L).

where NearestPt(·) is computed with respect to the2-norm. The
square error of thekth parameter is theng2

k.
A parameter uniformly distributed in the identifiable region can be

generated as
p = NearestPt(Bu, L)

whereB is the basis matrix forL andu is a vector whose elements
are independent and uniformly distributed on[0, 1).

V. CONSEQUENCES FOR SOME EXISTING ESTIMATORS

A popular estimator for polynomial-phase parameters is based
on the discrete polynomial-phase transform (DPPT) first introduced
by Peleg and Porat [1]. The transform enables each parameter to
be be estimated iteratively using the Fast Fourier transform in a
way analogous to the frequency estimator of Rife and Boorstyn
[22, 23]. The DPPT estimator is characterized by good statistical
performance and computational efficiency. Variants of the DPPT have
been suggested by numerous authors. These include Golden and
Friedlander [24] and O’Shea [8]. These variants typically make trade
offs between computational efficiency and statistical accuracy.

One property of the DPPT estimator is that it only functions when
the parameters satisfy

2|pk| ≤
1

k!τk−1

for k ≥ 2 and |pk| ≤ 0.5 for k = 0, 1 and whereτ is a ‘lag’
parameter that is free to be selected. Peleg and Porat suggest using
τ = N/m when m < 4 and τ = N/(m+2) for m ≥ 4 whereN is
the number of samples of data available. The functional region of the
DPPT estimator is then anm + 1 dimensional rectangular prism of
volume

VDPPT =
√

τm(1−m)

m
∏

k=0

1

k!
(6)

The volume of the identifiable region is the volume ofVor(L)
which is given by

VL =
√

det(B′B) =

m
∏

k=0

1

k!

wheredet(·) indicates the matrix determinant [16]. Note thatVor(L)
depends only onm and notN and so the aliasing of polynomial phase
signals is not dependent onN . By contrast the functional region of
the DPPT estimator shrinks with increasingN because the parameter
τ must be chosen to increase withN in order for the DPPT estimator
to provide good estimation. Figure 2 shows the ratioVL/VDP P T as
N increases from10 to 100 and whenm = 3. ClearlyVDPPT <<
VL for large N and therefore the range of parameters suitable for
the DPPT estimator is only a small fraction of what is theoretically
possible.

VI. CONCLUSION

Polynomial-phase signals have attracted significant interest due
to their applicability to radar, sonar, geophysics, and radio com-
munication. Despite this interest the aliasing of polynomial-phase
parameters had never been fully described. In this paper we describe
the identifiable region for the parameters. The region is found to
be the Voronoi region of a lattice with lattice points described

3The direction of rounding for half-integers is not important. However, the
authors have chosen to round up half-integers here.



4 ROBBY G. MCKILLIAM AND I. VAUGHAN L. CLARKSON, IDENTIFIABILITY AND A LIASING IN POLYNOMIAL-PHASE SIGNALS

20 40 60 80 100

50

100

200

500

1000

2000

5000

10
4

2×10
4

5×10
4

N

VL

VDP P T

Fig. 2. VL/VDP P T asN increase whenm = 3.

by the coefficients of the integer valued polynomials. By solving
the nearest lattice point problem we show how to resolve aliased
parameters, compute square error and generate parameters uniformly
in the identifiable region. Finally, we discuss the consequences of
these results on the popular DPPT estimator for polynomial-phase
signals [1, 3]. It is shown that the range of parameters suitable for
the DPPT estimator is very small compared to the identifiable region.
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[6] J. Ängeby, “Estimating signal parameters using the nonlinear
instantaneous least squares approach,”IEEE Trans. Signal Process.,
vol. 48, pp. 2721–2732, 2000.

[7] P. M. Djuric and S. M. Kay, “Parameter estimation of chirp signals,”
IEEE Trans. Acoust. Speech Signal Process., vol. 38, no. 12, pp.
2118–2126, Dec 1990.

[8] P. J. O’Shea, “An iterative algorithm for estimating the parameters
of polynomial phase signals,” inProc. Internat. Sympos. Signal
Process. Appl., 1996, vol. 2, pp. 730–731.

[9] S. Barbarossa and V. Petrone, “Analysis of polynomial-phase signals
by the integrated generalized ambiguity function,”IEEE Trans.
Signal Process., vol. 45, pp. 316–327, 1997.

[10] B.J. Slocumb and J. Kitchen, “A polynomial phase parameter
estimation phase unwrapping algorithm,”Proc. Internat. Conf.
Acoust. Speech Signal Process., vol. 4, pp. 129–132, Apr 1994.

[11] M. R. Morelande, “Circular regression using Bayesian unwrapping,”
Proc. Internat. Conf. Acoust. Speech Signal Process., pp. 3441–
3444, April 2008.

[12] J. Kitchen, “A method for estimating the coefficients of a polyno-
mial phase signal,”Signal Processing, vol. 37, no. 1, pp. 463–470,
Feb 1994.

[13] P. J. Cahen and J. L. Chabert,Integer-valued Polynomials, American
Mathematical Society, July 1997.

[14] J.A. Legg and J.A. Gray, “Performance bounds for polynomial
phase parameter estimation with nonuniform and random sampling

schemes,”IEEE Trans. Signal Process., vol. 48, no. 2, pp. 331–337,
Feb 2000.

[15] Tom M. Apostol, Modular Functions and Dirichlet Series in
Number Theory, Springer, 2nd edition, May 1997.

[16] J. H. Conway and N. J. A. Sloane,Sphere packings, lattices and
groups, Springer, 3rd edition, 1998.

[17] D. Micciancio, “The hardness of the closest vector problemwith
preprocessing,” IEEE Trans. Inform. Theory, vol. 47, no. 3, pp.
1212–1215, 2001.

[18] M. Ajtai, “The shortest vector problem inl2 is NP-hard for
randomized reductions,”in Proc. 30th ACM Symposium on Theory
of Computing, pp. 10–19, May 1998.

[19] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point
search in lattices,”IEEE Trans. Inform. Theory, vol. 48, no. 8, pp.
2201–2214, Aug. 2002.

[20] E. Viterbo and J. Boutros, “A universal lattice code decoder for
fading channels,”IEEE Trans. Inform. Theory, vol. 45, no. 5, pp.
1639–1642, Jul 1999.

[21] M. Pohst, “On the computation of lattice vectors of minimal length,
successive minima and reduced bases with applications,”SIGSAM
Bull., vol. 15, no. 1, pp. 37–44, 1981.

[22] D. C. Rife and R. R. Boorstyn, “Single-tone parameter estimation
from discrete-time observations,”IEEE Trans. Inform. Theory, vol.
20, pp. 591–598, Sep 1974.

[23] B. G. Quinn and E. J. Hannan,The Estimation and Tracking of
Frequency, Cambridge University Press, New York, 2001.

[24] S. Golden and B. Friedlander, “A modification of the discrete
polynomial transform,” IEEE Trans. Signal Process., vol. 46, no.
5, pp. 1452–1455, May 1998.


