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—That’s why it’s always worth having a few philosophers around the
place. One minute it’s all Is Truth Beauty and Is Beauty Truth, and
Does A Falling Tree in the Forest Make A Sound if There’s No one
There to Hear It, and then just when you think they’re going to start
dribbling one of ’em says, Incidentally, putting a thirty-foot parabolic
reflector on a high place to shoot the rays of the sun at an enemy’s
ships would be a very interesting demonstration of optical principles.

Terry Pratchett on the many and varied advantages of philosophy.
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Abstract

This thesis studies connections between two fields, lattice theory and circular
statistics. We focus on the estimation and theoretical analysis of polynomial
phase signals. These signals have a vast array of applications in science, in partic-
ular in astronomy, optics, biology, geology, geography and meteorology and also in
engineering, particularly in communications and radar. Despite this, we find that
the theoretical tools for analysing these signals are lacking. We discover a special
family of lattices, called V ∗n/m, that are particularly useful for studying polynomial
phase signals. Using these lattices we are able to close a number of the theoret-
ical gaps that exist in the literature, and also produce some remarkably accurate
estimators.

We firstly describe some new results in the field of lattice theory. The most
significant result is the discovery of a fast nearest point algorithm for the lattice
A∗n and also a related family of lattices called the Coxeter lattices. The new
algorithms all require a linear number of operations in the dimension of the lattice.
This is significantly faster than previous algorithms that require, in the worst case,
a quadratic number of operations. We then study the lattices V ∗n/m. We describe
a number of their properties and devise a nearest point algorithm that requires at
most a polynomial number of operations in the dimension of the lattice. This is
an improvement over the fastest nearest point algorithms for random lattices that
require an exponential number of operations.

We then consider polynomial phase signals and their estimation. For polynomial
phase signals of order zero the estimation problem is equivalent to a fundamental
problem in circular statistics, that of estimating the mean direction of a set of
circular data. A standard approach to mean direction estimation is to compute the
sample circular mean. In this thesis we consider an alternative estimator called
the angular least squares estimator, and we discover that it can be computed
rapidly by finding a nearest lattice point in the lattice A∗n, a problem we have solved.
In some scenarios the angular least squares estimator is statistically more accurate
and also computationally simpler than the sample circular mean. Therefore the
results of this thesis potentially have implications for the wide variety of fields in
science, engineering and statistics that currently use the sample circular mean.

For higher order polynomial phase signals the estimation problem is equivalent
to single frequency estimation (when the order is equal to one) and polyno-
mial phase estimation (when the order is greater than one). These problems are
common to radar, sonar, astronomy and telecommunications. We find that a very
accurate estimator results from computing a nearest point in the lattice V ∗n/m and
derive the asymptotic properties of this estimator. We show that the estimator is

vii
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strongly consistent and describe its central limit theorem. For polynomial phase
signals of order greater than one these theoretical results are the first of their kind.
While deriving these statistical results, we produce a number of new theorems that
describe the aliasing properties of polynomial phase signals. These results can be
viewed as higher order versions of the Nyquist sampling theorem. Lattice theory is
crucial in the description of these aliasing properties. These results will be of great
value to engineers, scientists and statisticians studying polynomial phase signals.

Keywords

Lattice theory, circular statistics, polynomial phase signal, mean direction estima-
tion, single frequency estimation, polynomial phase estimation, nearest lattice point
problem

Australian and New Zealand standard research classifications

100% 090609 Signal Processing
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—Many physical phenomena exhibit some form
of periodicity. From the ticking of a clock to the
quantisation of energy, they pervade the physi-
cal world. This thesis has been motivated by the
need to understand the interactions between pe-
riodic processes with differing periods and to es-
timate the periods of infrequently observed peri-
odic processes. That this should lead to the study
of integers is not surprising, for the purest repre-
sentation of a periodic process is the embedding
of the integers in the continuum.

I. Vaughan L. Clarkson 1
Introduction

This thesis studies two seemingly unrelated fields, lattice theory (a subset of the
theory of numbers) and the statistics of circular data, otherwise called circular
statistics. These fields have found substantial application in their own right. Lat-
tice theory has proved particularly useful in communications engineering, chemistry
and cryptography. Circular statistics has a vast array of applications in science,
particularly in astronomy, optics, biology, geology, geography and meteorology and
also in engineering, particularly in telecommunications and radar.

We will use lattice theory and circular statistics to study polynomial phase
signals and in particular we consider the problem of estimating the polynomial
coefficients of a polynomial phase signal. For polynomial phase signals of order
zero this problem is equivalent to that of estimating the mean direction of a
set of circular data. Mean direction estimation is of fundamental importance in
engineering and science. For example, if you listen to the weather report you are
often told (an estimate of) the direction of the wind. Obtaining an accurate estimate
requires a method for accurately estimating the mean wind direction from a number
of observations of the wind direction.

When the polynomial phase signal has order one, the problem is equivalent to
a well studied problem called frequency estimation and has application to, for
example, radar, sonar, telecommunications, astronomy and medicine [Quinn and
Hannan, 2001]. For higher order polynomial phase signals the problem is called
polynomial phase estimation. In radar and sonar applications these signals
occur when acquiring radial velocity and acceleration (and higher order motion
descriptors) of a target from a reflected signal and also in continuous wave and
low probability of intercept radar [Levanon and Mozeson, 2004; Wiley, 1982]. In
biology, polynomial phase signals can be used to describe the sounds emitted by
bats and dolphins for echo location [Suga et al., 1975; Thomas et al., 2005; Peleg
and Friedlander, 1995].

1
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Figure 1.1: A lattice in 2 dimensions. The lattice points extend indefinitely in the
plane so we have only drawn a subset of the lattice.

Lattice theory studies sets called lattices that consist of highly structured ar-
rangements of points. Figure 1.1 is a picture of a part of a lattice in two dimensions.
Common questions about a lattice are:

• What is the shortest distance between any two points in the lattice?

• What is the ‘density’ of the lattice points or equivalently how many lattice
points are there per unit volume?

• Given an arbitrary point not necessarily in the lattice, which lattice point is
nearest to this point?

The final dot point describes a fundamental problem in lattice theory called the
nearest lattice point problem that is of significant importance in this thesis.

The study of lattices was originally developed by Minkowski [1910] and Voronoi
[1908] as a part of another topic in number theory called quadratic forms. Modern
treatises on the subject are given by Conway and Sloane [1998] and Martinet [2003].
At least one reason why lattices are mathematically interesting is that they produce
excellent solutions to the sphere packing problem: the problem of packing as
many non-intersecting, equally sized, n-dimensional spheres into the smallest possi-
ble volume. Lattices also produce excellent solutions to the kissing number prob-
lem: the problem of placing as many non-intersecting, equally sized, n-dimensional
spheres so that they all just touch, or kiss, a central sphere placed at the origin.
From a more ‘practical’ point of view lattices have found substantial application in
the field of information theory where they can be used to produce excellent quantis-
ers and codes used for storing and transmitting information [Erez and Zamir, 2004;
Erez et al., 2005]. They are also extensively used in cryptography [Goldreich et al.,
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1997; Gentry, 2009a,b] and steganography [Cox et al., 2008]. In three dimensions
lattices play a central role in crystallography [Hammond, 2001; Belov, 1965]. More
recently lattices have found applications in communications systems featuring mul-
tiple antennas [Peel et al., 2005; Ryan et al., 2008]. Put simply, your mobile phone,
computer and the internet would not work as well without lattices (and this is only
considering the telecommunications applications!)

In this context any new results in the field of lattice theory are valuable in their
own right. This thesis contains a number of such results. A significant result is the
discovery of a fast algorithm to compute a nearest lattice point in a long studied and
important lattice called A∗n. The algorithm requires a linear number of operations
in the dimension of the lattice. It was not that long ago that the fastest nearest
point algorithm for this lattice required a quadratic number of operations [Conway
and Sloane, 1982]. We also find very fast algorithms for another family of lattices
called the Coxeter lattices. These algorithms also require a number of operations
that is linear in the dimension of the lattice.

We study a new family of lattices related to A∗n that we call V ∗n/m. We derive
some important properties of this family of lattices and also develop a nearest lattice
point algorithm that requires a number of operations that is polynomial in the
dimension of the lattice. This is an improvement over the fastest nearest point
algorithms for random lattices that require an exponential number of operations.
The motivation for studying both A∗n and V ∗n/m stems from the fact that these
lattices have application to polynomial phase signals and also circular statistics.

Circular statistics aims to describe the nature of data that is measured in angles
or 2-dimensional unit vectors or complex numbers on the unit circle. Practical ex-
amples of such data are wind direction as measured from a weather vane (commonly
used in meteorology) or the direction of flight taken by a bird (commonly used in
ornithology). A slightly more subtle example is the phase of a periodic signal as
commonly observed in radar, sonar, telecommunications, the global positioning sys-
tem and many other useful devices. Circular data is naturally displayed on a circle
as in Figure 1.2. The figure depicts a fundamental problem in circular statistics,
that of estimating the mean direction of a set of circular data. The figure contains
two plots of 100 circular data points. On the right is a plot of data that appears
uniformly distributed on the circle. On the left the data appears (roughly) clustered
around π/6. For example, the samples might represent 100 measurements of the di-
rection of the wind taken over the course of a day. If the measurements looked like
the plot on the left we would likely conclude that the wind blew in a north easterly
direction that day. What should we conclude if the measurements looked like the
plot on the right? We consider these problems in Chapters 5 and 6 and provide
two definitions of the mean direction, the circular mean, that is common in the
literature, and the unwrapped mean, that although uncommon, is of great utility
in this thesis. We find that both of these means, although not equal in general,
conform well with our intuitive notion of mean direction.

We describe methods for estimating these means from a set of circular data
and derive the statistical properties of the estimators. The circular mean can be
estimated by averaging a set of complex numbers, an approach that is common in
the literature. We find that the unwrapped mean can be estimated by computing
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Figure 1.2: Plots of 100 circular data points. On the right is a plot of data that appears
uniformly distributed on the circle. On the left the data appears (roughly) clustered around
π/6. For example, the samples might represent 100 measurements of the direction of the
wind taken over the course of a day. If the measurements looked like the plot on the left
we would likely conclude that the wind blew in a north easterly direction that day.

a nearest point in the lattice A∗n. As we found a fast algorithm to achieve this, the
unwrapped mean can be estimated very computationally efficiently.

The problem of estimating the mean direction is equivalent to estimating the
single coefficient of a polynomial phase signal of order zero. For higher order poly-
nomial phase signals an excellent estimator arises from finding a nearest point in the
lattice V ∗n/m. We call the resulting estimator the angular least squares estima-
tor. Any estimator of polynomial phase signals must take account of the effect of
aliasing that occurs when the signals are sampled uniformly. For polynomial phase
signals of order one the aliasing effect corresponds with the Nyquist sampling
theorem and is well understood. We completely describe these aliasing properties
for polynomial phase signals of any order. We find that a number of estimators in
the literature, particularly those based on polynomial phase transforms fail to
properly account for aliasing. This adversely affects their statistical performance.
However, the angular least squares estimator does not suffer from this. This is
shown, both by Monte-Carlo simulation, and by theoretically deriving the estima-
tors asymptotic statistical properties. For polynomial phase signals of order greater
than one these theoretical results are the first of their kind.

1.1 Organisation of this thesis

The thesis is divided into three parts. Part I concentrates on lattice theory, and
in particular, some important lattices called An, A∗n and Vn/m and V ∗n/m. Part II
concentrates on circular statistics, with a focus on the definition and estimation of
the mean direction of a set of circular data. Part III focuses on polynomial phase
signals.



1.1 Organisation of this thesis 5

In Chapter 2 we describe some introductory concepts from lattice theory. Most
of the material is derived from two books, Sphere Packings, Lattices and Groups
by Conway and Sloane [1998] and Perfect Lattices in Euclidean Spaces by Mar-
tinet [2003]. Our focus is on tessellating regions, the Voronoi cell, the nearest
lattice point problem, dual lattices, sublattices, quotient groups and also
the properties of lattices generated by intersection with or projection into a sub-
space. These will be the most useful concepts for describing the lattices An, A∗n,
Vn/m and V ∗n/m. This focus is different from Sphere Packings, Lattices and Groups
which largely focuses on the packing and covering properties of lattices, and is
also different from Perfect Lattices in Euclidean Spaces which focuses on a lattice
property called perfection.

In Chapter 3 we consider the lattices An, A∗n and also a related family called the
Coxeter lattices. We describe a number of properties of these lattices and then
develop fast nearest lattice point algorithms. The algorithms require only a linear
number of operations in the dimension of the lattice n and exploit some peculiar
properties of the Voronoi cell of these lattices. These new algorithms are the fastest
known and, up to order, fastest possible.

In Chapter 4 we describe some of the properties of the Vn/m and V ∗n/m lattices. We
find that Vn/m can be constructed by taking the intersection of the integer lattice
with a subspace of dimension m + 1 and that the lattice V ∗n/m can be constructed
by projecting the integer lattice into this subspace. We provide a convenient way to
enumerate the elements in a special finite group called the dual quotient group
and this leads to a nearest lattice point algorithm for V ∗n/m that requires a number
of operations that is polynomial in the dimension n. This is an improvement over
the fastest nearest point algorithms for random lattices that require an exponential
number of operations.

In Chapter 5 we give a brief overview of circular statistics. We describe circular
random variables and their probability density functions. We show how the
standard definition of the mean in terms of the expected value does not map well to
our intuitive notion of mean direction and to solve this we consider two different
definitions, the circular mean and the unwrapped mean. We find that both of
these means map well to our intuitive notion of mean direction. The circular mean
and the unwrapped mean are not always equal and, in fact for some probability
distributions they do not even exist, but for many useful distributions they always
exist and are equal. We call such distributions unimean and we describe a set of
criteria that guarantee a distribution is unimean. We then consider a number of
popular circular distributions from the literature, the von Mises distribution, the
wrapped normal distribution, the wrapped uniform distribution and the projected
normal distribution and we describe some conditions under which these are unimean.
These distributions are used for modeling noise processes in Chapters 6, 9 and 10.

In Chapter 6 we consider approaches to estimating the mean direction from a
number, say N , of observations of a circular random variable. This problem is of
fundamental importance in circular statistics and estimates of the mean direction
are used in a wide variety of applications in engineering and science. The first esti-
mator we describe is the sample circular mean that is common in the literature.
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Following the work of Quinn [2010] we describe how the sample circular mean con-
verges to the circular mean of a random variable as the number of observations
increases. The sample circular mean can be computed efficiently by averaging N
complex numbers. We then describe an alternative estimator called the angular
least squares estimator and we show that it converges to the unwrapped mean
of a circular random variable as the number of observations increases. The angular
least squares estimator can be computed very efficiently by finding a nearest point
in the lattice A∗n, a problem we solve in Chapter 3. In the remainder of the chap-
ter we compare the performance of the sample circular mean and the angular least
squares estimators for a number of problems in signal processing and communica-
tions engineering, these being phase estimation, noncoherent detection and
delay estimation. We find that in some scenarios the sample circular mean is
more accurate, and in other scenarios angular least squares is more accurate. Both
estimators require a linear number of operations in the number of observations N ,
however, a potentially large computational advantage of the angular least squares
estimator is that it can avoid performing trigonometric operations and we discuss
this in Section 6.7.

Estimating the mean direction of a circular random variable is equivalent to es-
timating the phase of a polynomial phase signal of order zero, otherwise called a
constant phase signal. In Chapters 7, 8, 9 and 10 we generalise this concept to
polynomial phase signals of arbitrary order. Before we describe methods for esti-
mating polynomial phase signals we consider some interesting phenomena that occur
when polynomial phase signals are sampled in Chapters 7. It turns out that two (or
more) distinct polynomial phase signals can sometimes take exactly the same values
when they are sampled. We call such signals aliases and we completely describe
how the aliasing occurs using some ideas from lattice theory. For polynomial phase
signals of order one, this aliasing effect it equivalent to the Nyquist criterion. Ängeby
[2000a] and Abatzoglou [1986] have described the effect of this aliasing for polyno-
mial phase signals of order two, but here we describe the effect for polynomial phase
signal of any order. In practice, we typically want to estimate the coefficients of a
polynomial phase signal from a set of observations and an understanding of these
aliasing properties is required to ensure the identifiability of any estimator of the
coefficients. We describe a convenient method of ensuring identifiability by restrict-
ing the polynomial coefficients to a tessellating region of particular lattice. We call
the chosen region the identifiable region. We show how aliasing can be resolved
by computing a nearest point in this lattice.

We then consider the problem of estimating the coefficients of a polynomial phase
signal from a number, say N , of observations. In Chapter 8 we consider a direct
analogue of the angular least squares estimator that we used for mean direction
estimation. We show how this estimator can be computed by finding a nearest
lattice point in the lattice V ∗n/m. Using the nearest point algorithm we described
in Chapter 4 we find that the angular least squares estimator can be computed in
a number of operations that is polynomial in N . We then derive the statistical
asymptotic properties of this estimator showing that it is strongly consistent and
that it obeys a central limit theorem. For polynomial phase signals of order
larger than one, these are the first results of their kind.
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In Chapter 9 we consider the special case of estimating the two coefficients of a
polynomial signal of order one. This is equivalent to a well studied problem called
frequency estimation and has application to, for example, radar, sonar, telecom-
munications, astronomy and medicine [Quinn and Hannan, 2001]. We consider three
estimators that exist in the literature, the periodogram estimator, the Quinn-
Fernandes estimator and Kay’s unwrapping estimator. We also discuss the
angular least squares estimator that can be computed by finding a nearest point
in the lattice V ∗N−1/1. We could use the exact nearest point algorithm described in
Chapter 4 but we find that it is quite slow. Instead we describe a simple approxi-
mate nearest point algorithm that is much faster, and for frequency estimation, has
almost identical statistical performance to the exact nearest point algorithm. We
compare the estimators by Monte-Carlo simulation and it is found that the angular
least squares estimator is very accurate, but is computationally more expensive than
the other estimators.

In Chapter 10 we consider estimating the m+1 coefficients of a polynomial phase
signal of order m. We first consider the standard least squares estimator and
describe a practical method for its computation. The least squares estimator is very
computationally intensive and for this reason many authors have considered meth-
ods to reduce the computational complexity. We consider two such estimators from
the literature, the discrete polynomial phase transform [Peleg and Friedlander,
1995] and Kitchen’s unwrapping estimator [Kitchen, 1994]. It turns out that
both of these estimators only work correctly for coefficients in a subset of the identi-
fiable region. The problem is particularly acute with the discrete polynomial phase
transform that only works for coefficients in a very small subset of the identifiable
region, and moreover, the subset shrinks rapidly as the number of observations N
increases. We consider how this problem might be overcome by increasing the rate
at which observations are acquired (the sample rate), but we show that increasing
the sample rate comes with inevitable statistical penalties.

We also consider the angular least squares estimator of the polynomial coeffi-
cients. We could use the exact nearest point algorithm for the lattice V ∗n/m that we
described in Chapter 4 to compute the estimator in a number of operations that is
polynomial in N but, we find that this is very slow in practice. We instead consider
alternative algorithms, the sphere decoder, the K-best algorithm and Babai’s
nearest plane algorithm, to compute or approximate the nearest point. We find
these approaches are feasible, but they are still computationally more expensive
than the discrete polynomial phase transform and Kitchen’s unwrapping estimator.

In Section 10.5 we use Monte-Carlo simulation to compare the performance of
the estimators in practice. We find that the angular least squares estimators and
the least squares estimators are both very accurate. Both of these estimators work
correctly for polynomial coefficients anywhere in the identifiable region. Kitchen’s
unwrapping estimator and the DPT are less accurate. The DPT suffers from the
fact that it operates very poorly on a large range of coefficients inside the identifiable
region. We also discuss some computational properties of the various estimators.
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1.2 Who should read this thesis and how

This thesis is written with two audiences in mind. Firstly, number theorists who are
interested in lattice theory, in particular the lattice A∗n, and secondly, engineers and
statisticians who are interested in circular statistics, particularly regarding mean
direction estimation, frequency estimation and polynomial phase estimation.

To accommodate both audiences the thesis is separated into three parts, the
first part introduces lattice theory (Chapter 2), the lattices An and A∗n (Chapter 3),
and the related lattices Vn/m and V ∗n/m (Chapter 4). In these chapters we make
little reference to circular statistics and polynomial phase signals so that the reader
more interested in lattice theory can read these chapters unhindered. In the second
and third parts we consider the statistical problems of mean direction estimation,
frequency estimation and polynomial phase estimation. Here, it is sometimes neces-
sary to refer to the material on lattice theory from the previous chapters. We have
taken care to reference the required material in such a way that the reader interested
only in circular statistics and polynomial phase signals can begin reading at Part II
(page 67) and need refer to the lattice theory material only sparingly.

This thesis assumes that the reader has no knowledge of lattice theory and we will
provide all of the required preliminary results about lattices in Chapter 2. However,
in Parts II and III some knowledge of statistics and in particular estimation theory
is assumed. For example, familiarity is assumed with the concept of a random
variable, the Cràmer Rao lower bound and also the various forms of statistical
convergence, i.e., convergence in distribution, convergence in probability
and convergence almost surely. For an introduction to these topics the reader is
referred to an introductory text on estimation theory, for example Sage and Melsa
[1971] or van der Vaart [1998].

1.3 Original contributions

The major original contributions can be summarised as follows:

• In Chapter 3 we derive linear-time nearest point algorithms for A∗n and the
Coxeter lattices Amn . These are the fastest known nearest point algorithms for
these lattices and also, up to order of complexity, the fastest possible. These
results are also available in McKilliam et al. [2008a,b, 2010c].

• In Chapter 4 we explore the Vn/m and V ∗n/m lattices. These lattices do not
appear elsewhere in the literature and we describe a number of their properties
in Chapter 4. We find nearest point algorithms for V ∗n/m that require at most
a polynomial number of operations in the dimension of the lattice n.

• In Chapter 6 we describe the angular least squares estimator of the mean
direction of a circular random variable. Using the fast nearest lattice point
algorithm for the lattice A∗n this estimator can be computed in linear-time.
We have applied this estimator to the problem of noncoherent detection of
phase-shift-keyed digital communications symbols and also delay estimation
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from sparse, noisy timing data. Related work was presented in McKilliam
et al. [2009b] and McKilliam and Clarkson [2008].

• A complete description of the effect of aliasing that occurs in polynomial phase
signals is described in Chapter 7. This material is published in McKilliam and
Clarkson [2009] but the presentation here is more thorough. Ängeby [2000a]
and Abatzoglou [1986] have independently described the effect of this aliasing
for polynomial phase signals of order two, but here we describe the effect for
polynomial phase signal of any order.

• In Chapter 8 we describe a new approach to polynomial phase estimation,
the angular least squares estimator, that is based on finding a nearest lattice
point in V ∗n/m. We also provide a thorough analysis of the statistical proper-
ties of this estimator. For the case of polynomial phase signals of order one
(frequency estimation), this material has been published in McKilliam et al.
[2010a]. We extend these results to polynomial phase signals of arbitrary order
in Chapter 8.

1.4 Notation

We write vectors and matrices in bold, with vectors in lower case and matrices in
upper case. So, x is a vector and X is a matrix. The ith element in a vector is
denoted by a subscript, as in xi, and the element in the ith row and jth column of
a matrix, say X is given by xi,j. The transpose or Hermitian transpose of a vector
or matrix is indicated by superscript †, i.e. x†. We denote by 1 a column vector of
ones, by 0 a column vector of zeros and by ei a column vector of zeros with a one
in the ith position. The inner (or scalar) product of the vectors x and y is denoted
by x · y and the mean of a vector is denote by a bar, that is ȳ = y·1

1·1 denotes the
mean of the elements in y. The determinant of a matrix M is denoted det(M).

We use bxc to denote the largest integer less than or equal to x (the floor of x)
and dxe to denote the smallest integer greater than or equal to x (the ceiling of x),
and we use d·c to denote rounding to the nearest integer. The direction of rounding
for half-integers is not important so long as it’s consistent. In this thesis we have
chosen to round up half-integers. Also, 〈x〉 = x−dxc denotes the centered fractional
part of x. For a vector x the functions bxc, dxe, dxc and 〈x〉 all operate element
wise.

We use capital letters such as X, Y , or Z to denote random variables. When
describing estimators we use a tilde, as in µ̃ to denote the true value of a parameter
and a hat, as in µ̂, to denote the estimate of µ̃. A common notation in the statistics
literature is to use a subscript 0, as in µ0, to denote the true value of a parameter,
but we do not use this notation because it is too easily confused with the zeroth
element in the vector µ.

We use order notation O(·) and o(·) is the standard way and we use OP (·) and
oP (·) to denote convergence in probability. For example, XN = op(N

−1) means that
for any ε > 0 the probability Prob(|NXN | > ε) converges to zero as N → ∞ and
XN = Op(N

−1) means that NXN converges in distribution as N →∞.
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Finally, we denote sets using a capital and the number of elements in the set S
(the cardinality) is denoted by |S|.



Part I

Lattice theory

11





—Lattices are everywhere.

Ram Zamir

2
An introduction to lattice theory

This chapter introduces lattice theory. The primary purpose of this chapter is to
give sufficient background so that the properties of the particular lattices A∗n, An and
Amn and the lattices V ∗n/m, Vn/m and V ⊥n/m can be investigated in Chapters 3 and 4.
We will use these lattice to estimate and analyse polynomial phase signals in Parts II
and III of this thesis.

We begin by defining some fundamental properties of a lattice such as the gen-
erator matrix and the fundamental parallelepiped in Section 2.1. Lattices
naturally give rise to tessellations of n-dimensional space and we consider this in
Section 2.2. We consider a simple type of rectangular tessellation that exists for
all lattices. We will have use of these rectangular tessellations when describing the
aliasing of polynomial phase signals in Chapters 7.

In Section 2.3 we consider a particularly important tessellation called the Voronoi
cell that describes the region of space that is closest to a lattice point. We then
consider some traditional problems of lattice theory that are related to the Voronoi
cell: the problems of packing, covering and the kissing number. In Section 2.4
we consider the properties of sublattices (lattices that are a subset of another lat-
tice) and in Section 2.5 we consider an important lattice called the dual lattice.
The lattice A∗n is the dual lattice of An and the lattice V ∗n/m is the dual lattice of
Vn/m so the properties of dual lattices will be very important in later chapters.

In Section 2.6 we consider lattices that are generated by intersection with a sub-
space and projection into a subspace. We find that lattices generated by intersection
and projection have some intriguing relationships with dual lattices and also with
sublattices. These relationships will be useful for describing the properties of the
lattices A∗n, An and Amn and the lattices V ∗n/m, Vn/m and V ⊥n/m in Chapters 3 and 4.

In the final section of this chapter we consider a fundamental problem in lattice
theory called the nearest lattice point problem. This problem has found sub-
stantial application in information theory, integer programming, cryptography and
a host of other problems. We give a brief account of these applications and also

13
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consider some of the standard algorithms that exist for computing a nearest lattice
point. In Chapter 5 we discover very fast algorithms for finding a nearest lattice
point in A∗n, An and Amn . These algorithms make use of some special properties of
the Voronoi cell of A∗n, An and Amn . In Chapter 4 we will describe an algorithm
that can find a nearest point in the lattice V ∗n/m. This algorithm makes use of some
general properties of dual lattices and also some results about lattices generated
by intersections and projections that we describe in Section 2.6. We will use these
nearest point algorithms to solve estimation problems involving polynomial phase
signals in Parts II and III.

The material in this chapter is mostly derived from two books, Sphere packings,
lattices and groups by Conway and Sloane [1998] and Perfect lattices in Euclidean
spaces by Martinet [2003]. Some material is also taken from the book Lattice points
by Erdös et al. [1989]. Although almost all of the material from this introduction
can be found in these books, this introduction approaches lattice theory from a
somewhat different angle and with a different purpose. Sphere packings, lattices and
groups is probably the most thorough account of lattice theory available, but, as the
title suggests, it places much emphasis on the packing properties of lattices and
also on traditional problems such as the covering problem and the kissing number
problem. On the other hand Perfect lattices in Euclidean spaces places significant
emphasis on a lattice property called perfection which we will not talk about in this
thesis. This thesis has little use for many of these traditional problems and therefore
this introduction will only touch on these briefly. Instead we are more interested in
the properties of sublattices, dual lattices, the nearest lattice point problem and also
the properties of lattices generated by intersections and projections. Because these
topics are our primary concern this allows our introduction to be substantially more
focused than these books are. This chapter is not claimed to contain any original
material. All of the results presented here are known. However, in many places we
have found it easier to rederive the simple results we need, rather than map them
to a specific (and likely less well fitting) result in the literature.

Another property of the books is a general assumption that the reader is rea-
sonably well versed in group theory. This is not surprising as lattices are infinite
discrete abelian groups and many concepts from lattice theory are naturally and
elegantly described by concepts well known to group theorists. However, for the
reader not knowledgeable in group theory these book can sometimes be difficult to
read. Because at least some of the intended audience of this thesis is engineers and
statisticians we have made no assumption about the readers familiarity with group
theory and all of the concepts needed will be described in an elementary fashion.
We do make use of a number of ideas from group theory in this thesis, particularly
when describing sublattices in Section 2.4, but we have attempted to introduce these
concepts in a gentle manner and to give intuitive and visual representations as much
as possible. It is hoped that this effort has been worthwhile and that even the reader
with no prior knowledge of groups will leave this introduction with an intuitive un-
derstanding of the few simple concepts from group theory that we require in this
thesis.
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2.1 Basic properties of lattices

A lattice, Λ, is a set of points in Rn such that

Λ = {x = Bu | u ∈ Zn}

where B is an m×n matrix of rank n called the generator matrix or basis matrix
or simply generator or basis. If the generator is square, i.e. m = n, then the lattice
points span Rn and we say that the lattice is full rank. If B has more rows than
columns, i.e. m > n, then the lattice points lie in a n-dimensional subspace of Rm.
The set of integers Zn is also a lattice (a generator is the identity matrix) and we
call this the integer lattice. We will often abbreviate the definition of a lattice
above to

Λ = BZn

meaning that the lattice Λ contains the points from the integer lattice transformed
by the generator matrix B.

The generator matrix for a lattice is not unique. Let M be an n × n matrix
with integer elements such that det M = ±1. Then both B and BM are generator
matrices for Λ and M is called a unimodular matrix. Lattices are considered
equivalent under scaling, rotation and reflection so a lattice Λ and a lattice Λ̂ are
called equivalent, or isomorphic, if and only if

Λ = αRΛ̂

where α > 0 is real and R is an orthogonal matrix. We write Λ ' Λ̂ to denote lattice
isomorphism. If a generator matrix B is not square then we can always find a square
matrix that generates an isomorphic lattice to BZn that is full rank. On a number
of occasions in this chapter it will be convenient to assume that the generator matrix
is square and it is important to realise that this can be done without any loss of
generality.

The column vectors of a generator matrix are called basis vectors for the lattice.
A fundamental parallelepiped of the lattice is the parallelepiped constructed
from any set of basis vectors. As the generator matrix is not unique, neither is
the fundamental parallelepiped. Two examples of fundamental parallelepiped for a
lattice in R2 with generator matrix[

1 0.2
0.2 1

]
(2.1.1)

are shown in Figure 2.1. We will use this lattice for many of the examples throughout
this chapter.

Given a lattice Λ with generator matrix B the matrix

A = B†B (2.1.2)

is called the Gram matrix, where B† denotes the transpose of B. The deter-
minant of Λ, denoted det Λ, is defined as the determinant of the Gram matrix.
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Figure 2.1: Two examples of fundamental parallelepiped (shaded region) for a lattice
with generator matrix from (2.1.1). For the left plot the basis vectors are [1, 0.2]† and
[0.2, 1]†. For the right plot the basis vectors are [1.2, 1.2]† and [1.4, 2.2]†. The edges
marked by the black arrows are closed, and the other edges are open.

The fundamental parallelepiped of an n-dimensional lattice is n-dimensional and
has n-volume given by √

det A =
√

det Λ. (2.1.3)

A lattice is called integral if and only if the inner products of its lattice points
are integers. That is, a lattice is integral if the inner product x · y is an integer
for every pair of lattice points x and y from Λ. Equivalently, a lattice is integral
if its Gram matrix is integral (i.e. the matrix has only integer entries). A lattice
is called unimodular if its Gram matrix is unimodular. A unimodular lattice has
determinant 1 and the volume of its fundamental parallelepiped is also 1. It is easy
to see that the integer lattice Zn is unimodular.

2.2 Tessellating regions

Given some subset S ⊂ Rm and some point x ∈ Rm and a transformation T : Rm 7→
Rm we will use the notation TS + x to denote the set of points {Ts + x | s ∈ S}.
We say that the set R tessellates on the lattice Λ if and only if the intersection of
two copies of R translated by distinct lattice points is empty, and also the union of
R translated over all lattice points is all of Rm. That is,

(R + x) ∩ (R + y) = ∅ ∀x,y ∈ Λ, x 6= y (2.2.1)

⋃
x∈Λ

(R + x) = Rm. (2.2.2)

We call a set that tessellates on the lattice a tessellating region. Two examples of
tessellating regions are given in Figures 2.2 and 2.3. Figure 2.2 shows a disconnected
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tessellating region constructed using two triangles. Figure 2.3 shows a connected
tessellating region constructed using a rectangle. Rectangular tessellating regions
are particularly useful in this thesis and we will describe them in Proposition 2.1.

We desire a fundamental parallelepiped to tessellate on Λ. To ensure this we
require to define half of the faces of the parallelepiped to be closed and half to be
open. There are many ways to do this, but here we will define the faces that intersect
with the origin to be closed and the remaining faces to be open (see Figure 2.1). If
the lattice has full rank then the volume of the tesselating region is equal to that of
the fundamental parallelepiped, i.e.

√
det Λ. If the lattice is not full rank, but is of

dimension n < m, then the tesselating regions have infinite volume, but if we take
the intersection of the tessellating region with the n-dimensional subspace spanned
by the lattice then the n-volume of this intersection is also

√
det Λ.

Theorem 2.1. Let the set R tesselate on the lattice Λ. Then there is precisely one
lattice point from Λ in R.

Proof. There is at least one lattice point in R, otherwise {R+ x | x ∈ Λ} would not
contain any points from L, violating (2.2.2). If there is more than one lattice point
in R, say x and y, then (R + x) ∩ (R + y) 6= ∅, violating (2.2.1).

In view of this theorem we see that
√

det Λ is the average number of lattice
points per unit volume in Rn. An interesting account of the following corollary in
the context of structural chemistry is given by Belov [1965].

Corollary 2.1. No lattice point lies in the interior of a fundamental parallelepiped.

Proof. Let F be a fundamental parallelepiped. The lattice point at the origin lies
on the boundary of F and is contained in F . Due to Theorem 2.1 there can be no
other lattice point in F and therefore no lattice point lies in the interior of F .

Tessellating regions can have very complicated structures in general, far more
complicated than a fundamental parallelepiped. They do not have to be polytopes
and they do not even need to be connected (see for example Figure 2.2). In the next
section we consider a very important tessellating region called the Voronoi cell that,
for some lattices, has a very complicated structure. However, before we describe the
Voronoi cell we will describe a particularly simple rectangular tessellating region that
exists for any lattice. In fact each basis for a lattice describes such a rectangular
tessellating region as we shall see in the next proposition.

Proposition 2.1. Let Λ be an n dimensional lattice and B be a generator matrix for
Λ. Let B = QR where Q is orthonormal and R is upper triangular with elements
ri,j. Then the rectangular prism QP where

P =
n∏
k=1

[
−rk,k

2
,
rk,k
2

)
tessellates on Λ.
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Figure 2.2: A disconnected tessellating region where Λ has generator matrix from
(2.1.1).

Proof. Let L be the lattice generated by R. It is sufficient to show that P tessellates
on L as this clearly implies that QP tessellates on Λ = QL. We need to prove that
(2.2.1) and (2.2.2) hold for the region P and lattice L. We will prove (2.2.1) first.
Let x and y be distinct points in L. We may write

xi =
n∑
j=i

ri,juj and yi =
n∑
j=i

ri,jvj

where ui and vi are integers and ui 6= vi for at least one i. Let k be the largest
integer such that uk 6= vk and let

t =
n∑

j=k+1

rk,juj =
n∑

j=k+1

rk,jvj.

Then ([
−rk,k

2
,
rk,k
2

)
+ rk,kuk + t

)
∩
([
−rk,k

2
,
rk,k
2

)
+ rk,kvk + t

)
= ∅

because |uk − vk| ≥ 1 and (2.2.1) follows immediately.
We prove (2.2.2) by contradiction. Assume that (2.2.2) is false. Then there

exists a point z ∈ Rn such that z /∈ (P + x) for all x ∈ L. Then for some element
of z, say zk, it is true that

zk /∈
[
−rk,k

2
,
rk,k
2

)
+ rk,kuk + t

for any integer uk where t =
∑n

j=k+1 rj,kuj is a real number. However, setting uk =
d(xk − t)/rk,kc immediately yields zk ∈ [−rk,k/2, rk,k/2)+rk,kuk + t, a contradiction.
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Figure 2.3: Rectangular tessellating region constructed according to Proposition 2.1
where Λ has generator matrix from (2.1.1).

2.3 The Voronoi cell

The (open) Voronoi cell, denoted Vor(Λ), of a lattice Λ in Rn is the subset of Rn

containing all points nearer, with respect to a given norm, the lattice point at the
origin than any other lattice point. The Voronoi cell is an n-dimensional convex
polytope that is symmetric about the origin. In this thesis we will always assume
the Euclidean norm (or 2-norm), and therefore Vor(Λ) contains those points nearest
in Euclidean distance to the origin. If x ∈ Λ it follows that Vor(Λ) + x is the subset
of Rn that is nearer to x than any other lattice point in Λ. Figure 2.4 is an example
of the Voronoi cell.

Equivalently the Voronoi cell can be defined as the intersection of the half spaces

Hv = {x ∈ Rn | x · v < 1
2
v · v}

for all v ∈ Λ\{0}. It is not necessary to consider all v. The minimal set of
lattice vectors R such that Vor(Λ) = ∩v∈RHv is called the set of Voronoi relevant
vectors or simply relevant vectors [Voronoi, 1908]. Figure 2.4 depicts the relevant
vectors of the lattice with generator given by (2.1.1). A lattice point in R is called
relevant.

So far we have assumed that the faces of the Voronoi cell are open. It is conve-
nient to modify the definition of the Voronoi cell slightly so that it tessellates on the
lattice. To ensure this we require that if a face of Vor(Λ) is open, then we define its
opposing face to be closed. Specifically, if x ∈ Vor(Λ) is on the boundary of Vor(Λ)
then −x /∈ Vor(Λ). We wont specifically define which opposing face is open and
which is closed. The results in this thesis hold for any choice of open and closed
opposing faces. When the lattice has full rank the volume of Vor(Λ) is equal to the
volume of a fundamental parallelepiped, i.e. vol(Vor(Λ)) =

√
det Λ. If the lattice

is not fuull rank then the intersection of Vor Λ with the n-dimensional subspace
spanned by the lattice has n-volume equal to

√
det Λ.
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Figure 2.4: (Left) The Voronoi cells Vor(Λ) and Vor(Λ) + [2.4, 2.4]† (shaded) where
Λ has generator matrix from (2.1.1). (Right) The Voronoi cell and relevant vectors. The
relevant vectors are indicated by arrows.

Remark 2.1. . Let v be a point in the lattice Λ other than the origin. If y ∈ Vor(Λ)
then

y · v ≤ 1
2
v · v.

Packing and covering

Two interesting properties of a lattice are its inradius, denoted ρ, and its sphere
packing density, denoted ∆. Imagine a sphere placed around every lattice point
such that no two spheres intersect. This is depicted in Figure 2.5. The radius of the
spheres is called the inradius or the packing radius of the lattice. The inradius
is half the length of the shortest vector in the lattice. The squared Euclidean norm
of this vector is generally called the norm of the lattice, so the norm of a lattice
is twice the inradius squared. The sphere packing density is the ratio between the
volume of all the spheres and the volume of the entire space. This is equivalent to
the ratio between the volume of one sphere and the volume of the Voronoi cell. That
is,

∆ =
ρnSn√
det Λ

(2.3.1)

where

Sn =
πn/2

Γ(n/2 + 1)

is the volume of the n-dimensional sphere with unit radius and Γ(·) is the gamma
function. A large portion of lattice theory focuses on finding lattices that yield very
dense packings. This is called the sphere packing problem.

Another important property of a lattice is its covering radius, denoted R. Here
we wish to place the smallest possible sphere around each lattice point so that all of
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ρ
R

Figure 2.5: A sphere packing and the inradius ρ (left) and a sphere covering and
covering radius R (right) for the lattice with generator matrix from (2.1.1).

the space is covered. The radius of the sphere is the covering radius of the lattice.
This is depicted in Figure 2.5. The covering radius is the distance to the vertex of
the Voronoi cell that is furthest from the origin. A lattice property related to the
covering radius is the thickness, denoted Θ. This is the ratio between the volume
of the covering sphere and the volume of the Voronoi cell

Θ =
RnSn√
det Λ

. (2.3.2)

A lattice with a small value of Θ is referred to as thin.

Minimal vectors and the kissing number

The minimal vectors of a lattice are all those lattice points with length equal to
twice the inradius. The minimal vectors are sometimes also called short vectors.
The number of minimal vectors is called the kissing number. It is not hard to
see that the angle between any two minimal vectors from a lattice must be greater
than π

3
(otherwise there would exist a lattice point of shorter length than twice the

inradius).

2.4 Sublattices and quotient groups

Let Λ be a lattice. A sublattice of Λ, denoted Λ′ ⊆ Λ, is a subset of points from Λ
that also forms a lattice. A simple example of a sublattice is kΛ for any integer k.
More complicated examples exist where Λ and Λ′ are not isomorphic. For example
consider the rectangular lattice with basis vectors [1, 0]† and [0, 2]† which is clearly
a sublattice of Z2. If Λ′ ⊆ Λ then an obvious property of their Voronoi cells is

Vor(Λ) ⊆ Vor(Λ′). (2.4.1)
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A lattice Λ can be considered as a discrete abelian group1 and a sublattice Λ′

can be considered as a (normal) subgroup of Λ. We may then define the quotient
group Λ/Λ′ which operates on the cosets given by translates of the lattice Λ′ by
lattice points in Λ. Figure 2.6 is a pictographic depiction of the cosets. In the figure
the lattice is given by the dots and the sublattice is given by the circles. There
are five coset, each depicted by the five different shapes, the circle, triangle, square,
hexagon and star. For example, one coset is all of the hexagons and another coset
is all of the triangles.

Let C be a set, of smallest possible size, containing points from Λ such that the
union of translates of the sublattice Λ′ by the points in C is equal to the superlattice
Λ, that is,

Λ =
⋃
x∈C

x + Λ′. (2.4.2)

The elements in C are called coset representatives. For example, from Figure 2.6,
any set containing one lattice point of each shape is a set of coset representatives.
The number of lattice points from Λ per unit volume is given by

√
det Λ and the

number of lattice points from Λ′ per unit volume is
√

det Λ′ so the number of elements
in C, i.e. the number of coset representatives, is

|C| =
√

det Λ′

det Λ
. (2.4.3)

This number is called the order of Λ/Λ′ and is denoted |Λ/Λ′|. As |C| is an integer
then

√
det Λ′ is always a multiple of

√
det Λ.

The set C of coset representatives is not unique as we can replace any element in
C with itself plus a lattice point from Λ′. This is clearly evident from consideration of
the shapes in Figure 2.6 as any set of distinct shapes is a set of coset representatives.
Another way to see this is to take a tessellating region, R, for Λ′, then a set of coset
representatives is given by intersecting Λ with R (see Figure 2.7). That is, we can
choose,

C = {x ∈ Λ | x ∈ R} = Λ ∩R.

It is common in the literature to assume that the coset representatives are given
by the points from Λ contained in the Voronoi cell of Λ′, but we will not make
this assumption here. Two example sets of coset representatives are depicted in
Figure 2.7. It is easy to verify the following remark.

Remark 2.2. A set C is a set of coset representatives for the quotient Λ/Λ′ if and
only if |C| = |Λ/Λ′| and for every pair c1, c2 ∈ C the difference c1 − c2 is not a
point in Λ′.

1A lattice is closed under vector addition of its points and it always contains the origin (identity).
If x is a lattice point then −x is also a lattice point (inverse) and vector addition is associative
and commutative.



2.4 Sublattices and quotient groups 23

Figure 2.6: Lattice Λ with generator given by (2.1.1) (dots) and a sublattice Λ′ with
basis vectors [1.8,−0.6]† and [1.4, 2.2]† (circles). The cosets are given by the different
shapes. On the right is the group table for the quotient group Λ/Λ′ acting on the cosets.
This figure is inspired by one given by Conway [1997, page 63].

Figure 2.7: Two examples of the coset representatives for the quotient group Λ/Λ′ of
the lattices from Figure 2.6. The representatives are marked using the shapes. On the
left the representatives are chosen to be those points from Λ′ that intersect a fundamental
parallelepiped of Λ′. On the right the coset representatives are chosen to be those points
from Λ that intersect the rectangular tessellating region constructed using Proposition 2.1.
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2.4.1 Enumerating coset representatives

It will be important in later sections that we are able to enumerate a set of coset
representatives for a quotient Λ/Λ′. For this we make use of the Hermite decom-
position of an integral matrix (a matrix with integer elements) [Cohen, 1993, page
69]. Given a n× n integral matrix M the Hermite decomposition of M is given by
M = UR where U is unimodular and R is an upper triangular integral matrix2. In
a sense, the Hermite decomposition is an integer analogue of the QR-decomposition
from linear algebra. The Hermite decomposition always exists when the columns of
M are independent and it is also possible to compute the decomposition when M
is not square, but we will not have use of this here. Numerous algorithms exist to
compute the Hermite decomposition and the fastest require only a polynomial num-
ber of operations in n. See, for example [Cohen, 1993, Algorithm 2.4.5] or [Kannan
and Bachem, 1979] or [Micciancio and Warinschi, 2001].

Let A be a generator for Λ and B be a generator for the sublattice Λ′ then we
can always find a square integral matrix M so that

B = AM.

We can compute M as M = A−1B if A is square and M = A+B if A is rectangular
where A+ = (A†A)−1A† is the pseudoinverse of A. It is also straightforward to
see that the determinant of M is equal to the order of the quotient group |Λ/Λ′|
because

det M =

√
det(B†B)

det(A†A)
=

√
det Λ′

det Λ
= |Λ/Λ′|.

Because M is integral we can compute its Hermite decomposition and we will use
this to compute a set of coset representatives for the quotient Λ/Λ′. The process is
explained in the next proposition.

Proposition 2.2. Let A be a generator for the n-dimensional lattice Λ and let
B be a generator for the sublattice Λ′. Let M be the integral matrix such that
B = AM and let M = UR be the Hermite decomposition of M. A set of coset
representatives for the quotient Λ/Λ′ is given by AUt for all vectors t with elements
ti = 0, 1, 2, . . . , ri,i − 1 where ri,i is the ith diagonal of R.

Proof. It will be convenient to define the set T to contain all vectors t with ele-
ments ti = 0, 1, 2, . . . , ri,i − 1. Notice that because R is upper triangular and U
is unimodular then the number of such vectors t is precisely det M = |Λ/Λ′| so
the proposition does define the correct number of coset representatives. Following
Remark 2.2 it is now sufficient to show that for no two distinct vectors t, t′ ∈ T do
we have AU(t − t′) being a lattice point in Λ. The proof is now by contradiction.

2Cohen [1993] actually defines the Hermite decomposition by M = RU with the unimodular
matrix on the right. We find it more convenient to put the unimodular matrix on the left here.
The existence of both the left and right version is guaranteed. In fact, the Smith decomposition
guarantees the existence of two unimodular matrices U and V and a diagonal integral matrix D
such that M = UDV [Cohen, 1993, page 75].
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Assume that AU(t− t′) ∈ Λ then we can write AU(t− t′) = Bw for some w ∈ Zn.
Multiplying both sides by the inverse (or psuedoinverse) of AU we obtain

t− t′ = Rw.

Notice from the definition of the t that the elements must satisfy

|ti − t′i| < rk,k

and as t and t′ are distinct we can let k be the largest integer such that tk− t′k 6= 0.
Now because ti − ti = 0 for all i > k then wi = 0 for all i > k and therefore

tk − t′k = rk,kwk

because R is upper triangular. But this is impossible because 0 < |ti − t′i| < rk,k
and wk is an integer, hence the proposition is true by contradiction.

To make the process of coset enumeration completely clear we will give the
following example using the lattices from Figure 2.6 with generators

A =

[
1 0.2

0.2 1

]
and B =

[
1.8 1.4
−0.6 2.2

]
.

The quotient AZ2/BZ2 has order det B/ det A = 5. In order to compute the coset
representatives we first compute the integral matrix

M = A−1B =

[
2 1
−1 2

]
and compute its Hermite decomposition

M = UR =

[
0 −1
1 2

] [
1 −2
0 5

]
.

The coset representatives are then given as

C =

{
AU

[
0
t

]
| t = 0, 1, 2, 3, 4

}
.

In Chapter 4 we will be interested in enumerating a set of coset representatives
involving the particular lattices Vn/m and V ∗n/m both of dimension n. For these

special lattices, it is actually possible to enumerate the cosets in a (significantly)
lower dimensional space than the lattice and this leads to some computational gains.
We will explain this technique in a general setting in Section 2.6.

2.5 The dual lattice

Let Λ be a lattice. Its dual lattice, denoted Λ∗, contains those points that have
integral inner product with all points from Λ, that is

Λ∗ = {x | ∀y ∈ Λ , x · y ∈ Z}.
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It is not hard to show that if B is a square generator for Λ then (B−1)† is a square
generator for the dual lattice Λ∗. Similarly if B is a rectangular generator for Λ then
(B+)† is a rectangular generator for Λ∗. It is also easy to show that if A is a Gram
matrix for Λ then A−1 is a Gram matrix for Λ∗ and it follows that the determinants
of a lattice and its dual are reciprocals, that is

det Λ =
1

det Λ∗
. (2.5.1)

These results can be found in, for example, Conway and Sloane [1998, p. 10].
The dual lattice has special properties if Λ is integral. This is because (as we

shall see in the next proposition) an integral lattice is a sublattice of its dual and
we can therefore define a quotient group. Such a quotient group is given the special
name dual quotient group.

Proposition 2.3. If Λ is an integral lattice of dimension n then:

1. Λ is a sublattice of its dual lattice, i.e. Λ ⊆ Λ∗.

2. The dual quotient group Λ∗/Λ has order equal to det Λ.

3. Λ is self-dual (i.e. Λ = Λ∗) if and only if Λ is unimodular.

Proof. Statement (1) follows by letting x ∈ Λ and noticing that x · y ∈ Z for any
point y ∈ Λ and therefore x ∈ Λ∗. Statement (2) follows from (2.5.1) and (2.4.3).
Statement (3) is true because if Λ is unimodular then det Λ = 1 and therefore
|Λ∗/Λ| = 1 which occurs if and only if Λ = Λ∗. The argument in reverse shows that
if Λ is self-dual then it is also unimodular.

2.6 Lattices generated by intersections and pro-

jections

We will have extensive use of the following results, much of which can be found in
Martinet [2003, Section 1.3]. In this section we let H be an r dimensional subspace
of Rn and let H⊥ denote the n − r dimensional subspace orthogonal to H (the
complementary space). We denote by p the orthogonal projection into H and by
p⊥ the orthogonal projection into H⊥. For suitable choices of H it is the case that
Λ ∩H is an r dimensional sublattice of Λ. This sublattice and its dual have some
interesting properties.

Proposition 2.4. [Martinet, 2003] Let Λ be an n dimensional lattice. Then Λ ∩H
is an r dimensional lattice if and only if Λ∗ ∩ H⊥ is an n − r dimensional lattice.
Furthermore if Λ ∩H is an r dimensional lattice then:

1. The dual of Λ ∩H is the orthogonal projection of Λ∗ onto H. That is

(Λ ∩H)∗ = pΛ∗



2.6 Lattices generated by intersections and projections 27

Figure 2.8: (Left) The lattice with generator matrix (2.1.1) (dots) and it’s dual lattice
(circles). (Right) The hexagonal lattice A2 (dots) and it’s dual A∗2 (circles). A2 is an
integral lattice and therefore A2 is a sublattice of A∗2. Notice that in this case A2 is
isomorphic to A∗2, but this is not in general true for integral lattices and their duals.

2. The determinants of Λ, Λ ∩H and Λ∗ ∩H⊥ are related by

det(Λ) det(Λ∗ ∩H⊥) = det(Λ ∩H).

Proof. The proofs are given by Martinet [2003, Section 1.3]. The basic approach is
to consider a basis matrix B for Λ such that the first r columns of B are in H and
therefore are a basis for Λ ∩H. Projecting the columns of B by p and by p⊥ leads
to the proofs.

The next lemma relates the Voronoi cell of a lattice with the Voronoi cell of a
lattice generated by an intersection. We will have particular use of this lemma when
considering some properties of the Voronoi cell of the lattice An in Chapter 3.

Lemma 2.1. Let Λ be an n dimensional lattice. If Λ∩H is an r dimensional lattice
then the projection of the Voronoi cell of Λ into H is a subset of intersection of the
Voronoi cell of Λ ∩H with H. That is

pVor(Λ) ⊆ H ∩ Vor(Λ ∩H).

Proof. Let y ∈ Vor(Λ). Decompose y into orthogonal components so that y = t+py
for some t ∈ H⊥. Then py ∈ pVor(Λ). Assume that py /∈ H ∩ Vor(Λ ∩H). Then
there exists some x ∈ Λ ∩H such that

‖x− py‖2 < ‖0− py‖2 ⇒ ‖x− y + t‖2 < ‖y − t‖2

⇒ ‖x− y‖2 + 2x · t < ‖y‖2.

By definition x · t = 0 and so ‖x− y‖2 < ‖y‖2. This violates that y ∈ Vor(Λ) and
hence py ∈ H ∩ Vor(Λ ∩H).
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We will be particularly interested in the case when Λ is unimodular and we
will make this assumption for the remainder of this section. Recall that unimod-
ular lattices have determinant 1 and are integral and self dual, i.e. Λ = Λ∗ (see
Proposition 2.3). Applying this to Proposition 2.4 we obtain the following corollary.

Corollary 2.2. Let Λ be an n dimensional unimodular lattice. Then Λ∩H is an r
dimensional lattice if and only if Λ ∩H⊥ is an n− r dimensional lattice and:

1. The lattice pΛ is the dual of Λ∩H and the lattice p⊥Λ is the dual of Λ∩H⊥.
That is

pΛ = (Λ ∩H)∗ and p⊥Λ = (Λ ∩H⊥)∗.

2. The determinants of Λ ∩H and Λ ∩H⊥ are equal. That is

det(Λ ∩H) = det(Λ ∩H⊥).

Clearly Λ ∩H and Λ ∩H⊥ are integral lattices because they are subsets of the
integral lattice Λ. So from Proposition 2.3 we can define the dual quotient groups
pΛ/Λ ∩H and p⊥Λ/Λ ∩H⊥. It follows from the above corollary that the order of
these quotient groups is the same and is given by

|pΛ/Λ ∩H| = det(Λ ∩H) = det(Λ ∩H⊥) = |p⊥Λ/Λ ∩H⊥|.

It turns out that the groups pΛ/Λ ∩H and p⊥Λ/Λ ∩H⊥ are isomorphic groups.
This means that they are essentially the same group, but they operate on different
elements. We will not prove this (although the proof is quite easy) firstly because
it is not the intention of this thesis to involve too much group theory and secondly
because we only have use of the following related result connecting a set of coset
representatives of pΛ/Λ ∩ H to a set of coset representatives of p⊥Λ/Λ ∩ H⊥. We
present this result in Theorem 2.2 but we first require the following simple lemma.

Lemma 2.2. Let x be a lattice point in Λ. Then px is a lattice point in Λ ∩ H if
and only if p⊥x is a lattice point in Λ ∩H⊥.

Proof. Notice that x = px + p⊥x so clearly px is a lattice point in Λ if and only if
p⊥x is a lattice point in Λ. The proof follows because px ∈ H and p⊥x ∈ H⊥.

Theorem 2.2. Let K be a set of vectors from Λ and denote by pK and p⊥K sets
containing the points from K projected into H and H⊥ repectively. Then pK is
a set of coset representatives for pΛ/Λ ∩ H if and only if p⊥K is a set of coset
representatives for p⊥Λ/Λ ∩H⊥.

Proof. If pK is a set of coset representatives for pΛ/Λ ∩ H then from Remark 2.2
it follows that for all pairs k1,k2 ∈ K then p(k1 − k2) is not a lattice point in
Λ∩H. From Lemma 2.2 it follows that p⊥(k1−k2) is not a lattice point in Λ∩H⊥
and, because |K| = |p⊥Λ/Λ ∩ H⊥|, then p⊥K is a set of coset representatives for
p⊥Λ/Λ ∩H⊥. The converse follows using a similar argument.
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The utility of Theorem 2.2 is that we can obtain a set of coset representatives
for both pΛ/Λ ∩H and p⊥Λ/Λ ∩H⊥ by enumerating a set of coset representatives
for just one of them. Notice that the dimension of Λ ∩ H is r and the dimension
of Λ ∩H⊥ is s. In some situations s is much smaller than r (or the opposite) and
it is computationally easier to enumerate the coset representatives for p⊥Λ/Λ∩H⊥
than it is for pΛ/Λ ∩H (or the opposite). This result is useful in Chapter 4 when
enumerating a set of coset representatives for the quotient V ∗n/m/Vn/m. In this case

r is often very large (hundreds or even thousands) whereas s is usually quite small
(we will not consider s larger than 4). Enumerating a set of coset representatives
requires computing the Hermite decomposition (see Section 2.4) and for high di-
mensional matrices (when r > 100) this can be burdensome. It is convenient to
instead enumerate the coset representatives in the low dimensional (i.e. s < 4) lat-
tice. Moreover when s is sufficiently small we will be able to manipulate the Hermite
decomposition by hand and this will lead to closed-form expressions for the coset
representatives in a number of cases.

2.7 The nearest lattice point problem

Given a point y ∈ Rn and a lattice Λ contained in Rn, the nearest lattice point
problem is to find the point x ∈ Λ such that the distance, with respect to a given
norm, between y and x is minimised. Here, unless otherwise stated, the Euclidean
norm will be assumed. We use the notation NearestPt(y,Λ) to denote the nearest
point to y in the lattice Λ. It follows from the definition of the Voronoi cell that

x = NearestPt(y,Λ)⇔ y ∈ Vor(Λ) + x.

Solutions to the nearest lattice point problem have numerous applications. For
example, if a lattice is used as a quantiser then the nearest lattice point corresponds
to the minimum distortion point. If the lattice is used as a code for a Gaussian chan-
nel, then the nearest lattice point corresponds to what is called lattice decoding
and has been shown to yield arbitrarily good codes by Erez and Zamir [2004]. In
communications systems featuring multiple antennas (MIMO) the problems of min-
imum mean square error decoding [El Gamal et al., 2004], vector perturbation [Peel
et al., 2005; Hochwald et al., 2005; Ryan et al., 2008] and limited feedback beamform-
ing [Ryan et al., 2007b; Love et al., 2004] all involve solving the nearest lattice point
problem. The unwrapping of phase data for location estimation can also be posed as
a nearest lattice point problem and this has been applied by Teunissen [1995, 2006]
and Hassibi and Boyd [1998] to the global positioning system. Numerous crypto-
graphic schemes also require solving the nearest lattice point problem [Goldreich
et al., 1997; Gentry, 2009a,b].

The nearest lattice point problem is known to be NP-hard under certain condi-
tions when the lattice itself, or rather a basis thereof, is considered as an additional
input parameter [Micciancio, 2001; Ajtai, 1998; Dinur et al., 2003; Jalden and Ot-
tersten, 2005]. Nevertheless, algorithms exist that can compute the nearest lattice
point in reasonable time if the dimension is small. One such algorithm introduced by
Pohst [1981] was popularised in the signal processing and communications fields by
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Viterbo and Boutros [1999] and has since been called the sphere decoder. Kannan
[1987] suggested a different approach that is known to be asymptotically faster than
the sphere decoder. A good overview of these techniques is given by Agrell et al.
[2002].

Approximate algorithms for computing the nearest point have also been stud-
ied. A classic example is Babai’s nearest plane algorithm [Babai, 1986], which
requires O(n4) arithmetic operations in the worst case where n is the dimension of
the lattice and only O(n2) if the lattice basis is Lovász reduced [Lenstra et al.,
1982]. Recently, various approximate techniques for solving the nearest lattice point
problem have been motivated by applications to MIMO communications. An ex-
ample is the K-best algorithm [Guo and Nilsson, 2006] that works similarly to
the sequential M -algorithm [Anderson and Mohan, 1984] used in coding theory. Yet
another example is the fixed sphere decoder [Jalden et al., 2009; Barbero and
Thompson, 2008]. In this thesis we will make use of Babai’s nearest plane algorithm,
the sphere decoder and the K-best algorithm. We will not detail the workings of
these algorithms as excellent descriptions already exist in the literature cited above.

Fast nearest point algorithms are known for specific lattices where the generator
matrix is known a priory [Conway and Sloane, 1982, 1986; Clarkson, 1999a; McKil-
liam et al., 2008a,b, 2010c; Vardy and Be’ery, 1993]. In Chapter 3 we derive fast
algorithms to find the nearest point in the lattice A∗n and the related lattices An and
Amn . In Chapter 5 we show how this algorithm can be used to estimate the mean
direction of circular data. In Chapter 7 we show how the problem of polynomial
phase estimation can be represented as a nearest lattice point problem in the lattice
V ∗n/m and in Chapter 4 we derive nearest point algorithms for V ∗n/m that require a
number of operations that is polynomial in the dimension of the lattice.

2.7.1 The nearest point in a superlattice

The following general approach can be useful to find the nearest point in a super-
lattice. We will use this approach later in Sections 3.5.4 and 4.3. Assume we have a
lattice Λ and a sublattice Λ′ ⊂ Λ and that a nearest point algorithm for Λ′ is known.
That is, we assume it is easy to compute NearestPt(y,Λ′). Then a simple nearest
point algorithm for Λ can be constructed by iterating the nearest point algorithm
Λ′ for each of the coset representatives of the quotient Λ/Λ′. Pseudocode is given
in Algorithm 2.1. This type of algorithm has previously been suggested by Conway
and Sloane [1982]. The number of operations required is dependent on the order
of the quotient group. In some cases the order can be large and this type of algo-
rithm is not very efficient. We will use a similar approach to this in Chapter 4 to
construct a polynomial time nearest point algorithm for V ∗n/m using the the coset

representatives of V ∗n/m/Vn/m.

2.7.2 Decoding into a rectangular tessellating region

Recall that in Proposition 2.1 we described how a lattice has a rectangular tessel-
lating region (in fact there are many). It will be useful in later chapters to be able
compute the lattice point that lies at the centre of a particular rectangular region.
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Input: y ∈ Rn

D =∞1

C = a set of coset representatives for V ∗n/m/Vn/m2

foreach g ∈ C do3

x = NearestPt(y − g,Λ′)4

if ‖x− y‖ < D then5

xNP = x + g6

D = ‖x− y‖7

return xNP8

Algorithm 2.1: Computing the nearest point in a superlattice using coset representa-
tives of the quotient group Λ/Λ′ given by the set C.

That is, given a point y ∈ Rn and an n-dimensional lattice Λ with generator matrix
B and its associated rectangular tessellating region, we want to compute the lattice
point x ∈ Λ that is at the centre of the rectangular region that contains y. In ef-
fect we have replaced the Voronoi cell in the standard nearest lattice point problem
with the rectangular tessellating region. Algorithm 2.2 describes how to achieve
this. The algorithm requires O(n3) operations due to the QR-decomposition. If the
QR-decomposition can be computed in advance then the remainder of the algorithm
requires only O(n2) operations. If the generator matrix B is Lovász reduced then
this algorithm is equivalent to Babai’s nearest plane algorithm and can be used as
an approximation to the nearest lattice point. We will make use of Babai’s nearest
plane algorithm for estimating polynomial phase signals in Chapter 10.

Input: y ∈ Rm,B ∈ Rm×n

[Q,R] = QR(B)1

y∗ = QTy2

for k = n to 1 do3

r =
∑n

i=k+1 rk,iui4

uk = d(y∗k − r)/rk,kc5

return Bu6

Algorithm 2.2: Decoding into a rectangular tessellating region. If the basis matrix
is Lovász reduced then this algorithm is equivalent to Babai’s nearest plane algorithm
which can be used as an approximation to the nearest lattice point.

2.8 Summary

In this chapter we have given a brief overview of lattice theory. We showed how a
lattice is generated by multiplying the integer lattice Zn by a matrix called a gen-
erator matrix and defined a fundamental parallelepiped as the parallelepiped
constructed from the columns of a generator matrix. We also defined the determi-
nant of a lattice as the square of the n-volume of the fundamental parallelepiped
or equivalently as the determinant of the Gram matrix.
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In Section 2.2 we showed how a fundamental parallelepiped tessellates on the
lattice and we also considered another rectangular tessellating region that exists for
any lattice (Proposition 2.1). We will find that the rectangular tessellating regions
are very useful in Chapter 7 when we describe some of the aliasing properties of
polynomial phase signals. In Section 2.3 we described a special tessellation called
the Voronoi cell that describes the region of space nearest to a lattice point. The
Voronoi cell is of crucial importance when considering the nearest lattice point
problem.

In Section 2.4 we introduced sublattices, the quotient group and the associ-
ated cosets and coset representatives. We described how a set of coset rep-
resentatives can be computed using the Hermite decomposition. This will be
useful in Chapter 4 when we derive an algorithm to compute a nearest lattice point
in the lattice V ∗n/m. We also discussed dual lattices in Section 2.5 and considered
some of the special properties of the dual of an integral lattice. We defined the
dual quotient group and derived some of its properties.

In Section 2.6 we considered lattices that are generated by projection and inter-
section with a subspace of Rn. Elegant relationships emerge when we consider the
projection and intersection of a unimodular lattice. The projected lattice is then
the dual of the intersected lattice and some interesting properties exist relating the
corresponding dual quotient groups. These results were summarised in Theorem 2.2.

In the next chapter we will show that the lattice An is an intersection of the
integer lattice Zn+1 with a hyperplane and that the dual lattice A∗n is the projection
of the integer lattice into to the hyperplane. This leads to some very interesting
geometric properties regarding An and A∗n and inspires some very fast nearest lattice
point algorithms. In Chapter 4 it turns out that the lattice Vn/m is the intersection
of the integer lattice with a subspace of dimension m+ 1 and V ∗n/m is the projection
of the integer lattice into the subspace. Corollary 2.2 asserts that these lattices are
dual and leads to convenient formula for the determinant and also to descriptions
of generator matrices for these lattices. By applying Theorem 2.2 we obtain simple
methods for enumerating a set of coset representatives for the dual quotient group
V ∗n/m/Vn/m. This leads to the discovery of a nearest point algorithm for V ∗n/m that
requires a polynomial number of operations in the dimension of the lattice n.

Finally, in Section 2.7, we discussed the nearest lattice point problem. In
general the problem is known to be NP-hard. We described some standard ap-
proaches to computing or approximating a nearest point in any lattice. These are
the sphere decoder, Babai’s nearest plane algorithm and the K-best algo-
rithm. We will consider using these algorithms for the estimation of polynomial
phase signals in Chapter 10. The specific algorithms we discover for A∗n, An and Amn
in the next chapter are much faster than these general purpose algorithms.



—Science is what we understand well enough to explain
to a computer. Art is everything else we do.

Donald Knuth

3
The lattices An, A

∗
n and Amn

In this chapter we introduce the lattice An and its dual, the important lattice A∗n.
We also introduce the related lattices Coxeter lattices, Amn , that lie between An
and A∗n. In Chapter 6 we will show that an excellent estimator for the mean direction
of a circular random variable can be computed by finding a nearest lattice point in
the lattice A∗n. For this reason the primary goal of this chapter is to derive fast
algorithms for computing a nearest lattice point in the lattice A∗n. As a by product
we also find fast nearest point algorithms for the related lattices An and Amn . The
algorithm we describe for An has appeared previously in the literature due to A. M.
Odlyzko (see Conway and Sloane [1998, page 448]) but the algorithms we describe
for A∗n and for Amn are new and are the fastest known (and up to order the fastest
possible).

In order to describe these algorithms we require an overview of some of the
interesting properties of these lattices and in the first section we define An and A∗n
using intersections and projections of the integer lattice Zn+1. We can then use the
results derived in Section 2.6 to easily find the determinant of An and A∗n. Sections
3.2, 3.3 and 3.4 describe some more specific properties of the individual lattices
An, A∗n and Amn , the majority of which can be found in Conway and Sloane [1998,
pp. 108-117] and Martinet [2003, Section 4.2 and 5.2]. In Section 3.5 we derive a
number of nearest point algorithms for these lattices, the fastest of which require
only a linear number of operations in the dimension of the lattice.

The algorithms for An and Amn do not feature again in this thesis and the reader
more interested in circular statistics could skip Sections 3.4 and 3.5.3. That said,
the derivation of the nearest point algorithms for each lattice are so neatly related
that it is appropriate to include all of them. It is hoped that the fast nearest point
algorithms for the Amn lattices will find their own applications in the future.

33
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3.1 Definition of An and A∗n

Let H be the hyperplane orthogonal to the all ones vector of length n+ 1, denoted
by 1, that is

1 =
[

1 1 · · · 1
]†
.

Any vector in H has the property that the sum (and therefore the mean) of its
elements is zero and for this reason H is often referred to as the zero-sum plane
or the zero-mean plane. Let H⊥ be the subspace spanned by 1, i.e the subspace
orthogonal to H. We define the lattice An to be the intersection of the integer lattice
Zn+1 with H, that is

An = Zn+1 ∩H =
{
x ∈ Zn+1 | x · 1 = 0

}
. (3.1.1)

Equivalently, An consists of all of those points in Zn+1 with coordinate sum equal
to zero. Let Q be the orthogonal projection into H then, because Zn+1 is self-dual,
it follows from Corollary 2.2 that the lattice constructed by projecting Zn+1 into H
is the dual lattice of An, that is

A∗n = QZn+1 =
{
x− x̄1 | x ∈ Zn+1

}
where x̄ = 1

n+1
x · 1 is the mean of the elements of x. Corollary 2.2 also shows that

the determinants are given by

det(An) = det(A∗n)−1 = det(Zn+1 ∩H⊥) = n+ 1

where Zn+1 ∩H⊥ is the lattice of points {c1 | c ∈ Z} which clearly has determinant
1 · 1 = n+ 1.

3.2 Properties of An

A generator matrix for An is the (n+ 1)× n matrix

1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1
0 0 0 · · · 0 −1


.

The lattice has kissing number τ = n(n+ 1), packing radius ρ = 1/
√

2, norm 2 and
covering radius

R =

√
a(n+ 1− a)

n+ 1

where a = b(n+ 1)/2c. The minimal vectors are given by ei − ej where i, j ∈
{1, 2, . . . , n+1} and i 6= j. The minimal vectors are also the relevant vectors [Conway
and Sloane, 1998, p. 108]. The Voronoi cell of An is closely related to the n + 1
dimensional hypercube Vor(Zn+1) as we shall show in the next theorem.
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Theorem 3.1. The projection of Vor(Zn+1) into H is equal to H ∩ Vor(An). That
is

H ∩ Vor(An) = Q Vor(Zn+1).

Proof. The n-volume of H ∩Vor(An) is given by the square root of the determinant
of An, that is √

detAn =
√
n+ 1.

From Burger et al. [1996] we find that the n-volume of the projected hypercube
Q Vor(Zn+1) is equal to

√
n+ 1 also. It follows from Lemma 2.1 that Q Vor(Zn+1) ⊆

H ∩Vor(An), so, because the volumes are the same, and because H ∩VorH(An) and
Q Vor(Zn+1) are polytopes, we have H ∩ Vor(An) = Q Vor(Zn+1).

3.3 Properties of A∗n

The generator matrix for A∗n is any n rows of the (n+ 1)× (n+ 1) projection matrix

Q = I− 11†

n+ 1
=

1

n+ 1


n −1 −1 −1 · · · −1 −1
−1 n −1 −1 · · · −1 −1
−1 −1 n −1 · · · −1 −1

...
...

...
...

. . .
...

...
−1 −1 −1 −1 · · · −1 n

 (3.3.1)

where I is the (n + 1) × (n + 1) identity matrix. The lattice A∗n has determinant
(n + 1)−1, kissing number τ = 2 when n = 1 and τ = 2n + 2 when n ≥ 2, norm
n/(n+ 1) and packing radius and covering radius given by

ρ =
1

2

√
n

n+ 1
R = ρ

√
n+ 2

3

[Conway and Sloane, 1998, p. 115].
An interesting property of A∗n is that it gives the thinnest known covering in

dimensions 2 through to 5. Until recently A∗n was the thinnest known lattice covering
in dimensions 2 to 23. Recent advances in computational geometry have enabled
the discovery of thinner coverings in dimensions above 6 [Sikiric̀ et al., 2008]. It
turns out that many of the better coverings are given by the Coxeter lattices Amn
that we discuss in the next section. The lattice A∗n has also found application in a
number of estimation problems including period and delay estimation from sparse
timing data [Clarkson, 2008; McKilliam and Clarkson, 2008], frequency estimation
[Clarkson, 1999b; McKilliam et al., 2010a] and phase estimation [Quinn, 2007]. We
will discuss a number of these applications and more in Chapters 6.

The dual quotient group A∗n/An has order det(An) = n+ 1 and the coset repre-
sentatives are given by Conway and Sloane [1998, p. 109] as

Q
[

1, 1 . . . , 1︸ ︷︷ ︸
i times

, 0, 0, . . . , 0
]†

(3.3.2)
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for all i ∈ {0, . . . , n}. An alternative definition is

iQe1 = i

(
e1 −

1

n+ 1

)
(3.3.3)

for all i ∈ {0, . . . , n}. Both of these definitions can be justified using Theorem 2.2,
but we wont detail this here as it will become apparent when we discuss the coset
representatives in more detail in the next chapter. An alternative generator matrix
for A∗n follows from (3.3.3) and (2.4.2) as

np 0 0 · · · 0 0
−p 1 0 · · · 0 0
−p −1 1 · · · 0 0
−p 0 −1 · · · 0 0

...
...

...
. . .

...
...

−p 0 0 · · · −1 1
−p 0 0 · · · 0 −1


(3.3.4)

where p = 1/(n+ 1).

Theorem 3.2. The relevant vectors of A∗n are given by the Qu where

u =
∑
i∈I

ei

and where I ⊂ {1, 2, . . . , n+ 1}.

This result has been known since Voronoi [1908] and we wont provide a proof
here. Perhaps the most accessible derivation is given by Conway and Sloane [1992]
who make use of the concept of an obtuse superbasis. We will have use of the
following trivial corollary when deriving a linear time nearest point algorithm for
A∗n in Section 3.5.2.

Corollary 3.1. The lattice points Qei ∈ A∗n for i = 1, 2, . . . n+1 are relevant vectors
in A∗n.

3.4 Properties of the Coxeter lattices Am
n

The lattices Amn are a family first described by Coxeter [1951]. The family is typically
referred to as the Coxeter lattices [Martinet, 2003] and defined as

Amn =
{
Qx | x ∈ Zn+1, x · 1 ≡ 0 mod m

}
. (3.4.1)

That is, Amn consists of all those points from Zn+1 that have coordinate sum equal
to zero modulo m. If m does not divide n+ 1 then Amn = A1

n. Hence, in the sequel,
we assume that m divides n+ 1. The Coxeter lattices are closely related to An and
A∗n because, when m = 1

A1
n = A∗n = {Qx | x ∈ Zn+1}, (3.4.2)
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and when m = n+ 1

An+1
n = An =

{
x ∈ Zn+1 | x · 1 = 0

}
. (3.4.3)

It is also easy to see that An ⊆ Amn ⊂ Akn ⊆ A∗n whenever k < m and therefore

Vor(A∗n) ⊆ Vor(Akn) ⊂ Vor(Amn ) ⊆ Vor(An). (3.4.4)

The quotient group Amn /A
k
n has order k/m. In particular the quotient group Amn /An

has order q = (n + 1)/m and it follows from (2.4.3) that the determinant of Amn is
given by

det(Amn ) = q2 det(An) =
m2

n+ 1
.

The coset representatives are given by

imQe1 = im

(
e1 −

1

n+ 1

)
where i ∈ {0, 1, . . . , q−1}. A generator matrix for Amn follows immediately as (3.3.4)
where p = m/(n + 1). The next corollary describes how the Voronoi cell of Amn is
related to the n+ 1 dimensional hypercube.

Corollary 3.2. The projection of Vor(Zn+1) into H is a superset of H ∩ Vor(Amn ).
That is

H ∩ Vor(Amn ) ⊆ Q Vor(Zn+1).

Proof. Follows directly from Theorem 3.1 and (3.4.4).

3.5 Computing the nearest point

In this section we derive nearest point algorithms for An, A∗n and Amn . We find
that linear-time algorithms exist for all of these lattices. We will make use of the
following definitions. Given two sets A and B we let A+B be their Minkowski sum.
That is, x ∈ A + B if and only if x = a + b where a ∈ A and b ∈ B. We will also
write 1R to denote the line of points 1r for all r ∈ R. Then H ∩ Vor(Amn ) + 1R is
an infinite cylinder with cross-section H ∩Vor(Amn ). Because Amn is contained in the
subspace orthogonal to 1 we see that

H ∩ Vor(Amn ) + 1R = Vor(Amn ).

Lemma 3.1. If x = Qk is a closest point in Amn to y ∈ Rn+1 then there exists some
λ ∈ R for which k is a closest point in Zn+1 to y + λ1.

Proof. As Qk is the nearest point to y then y ∈ Vor(Amn ) + Qk, so for all µ ∈ R

y + 1µ ∈ Vor(Amn ) + Qk = H ∩ Vor(Amn ) + k + 1R.

From Corollary 3.2 we have H ∩ Vor(Amn ) ⊆ Q Vor(Zn+1) so

H ∩ Vor(Amn ) + k + 1R ⊆ Q Vor(Zn+1) + k + 1R.
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Then y + 1µ ∈ Q Vor(Zn+1) + k + 1R and for some λ ∈ R

y + 1λ ∈ Vor(Zn+1) + k.

The proof now follows from the definition of the Voronoi cell.

Now consider the function f : R 7→ Zn+1 defined so that

f(λ) = by + λ1e (3.5.1)

That is, f(λ) gives a nearest point in Zn+1 to y + λ1 as a function of λ. Observe
that f(λ+ 1) = f(λ) + 1. Hence,

Qf(λ+ 1) = Qf(λ). (3.5.2)

Lemma 3.1 implies there exists some λ ∈ R such that x = Qf(λ) is a closest point
in Amn to y. Furthermore, we see from (3.5.2) that λ can be found within an interval
of length 1. Hence, if we define the set

S = {f(λ) | λ ∈ [0, 1)}

then the set QS contains a closest point in Amn to y. By setting m = 1 and m = n+1
it is clear that QS also contains a nearest point in A∗n and An to y. The principle of
all of the algorithms discussed here, with the exception of Section 3.5.4, is to search
the set QS for the nearest point. In order to evaluate the elements in S we require
the following function.

Definition 3.1. (sort indices)
We define the function

s = sortindices(z)

to take a vector z of length n+ 1 and return a vector s of indices such that

zs1 ≥ zs2 ≥ zs3 ≥ · · · ≥ zsn+1 .

Computing sortindices(z) for a vector of length n requires O(n log n) arithmetic
operations [Knuth, 1998]. Let

s = sortindices(〈y〉)

where 〈g〉 = g − dgc denotes the centered fractional part of g ∈ R and we define 〈·〉
to operate on vectors by taking the centered fractional part of each element in the
vector. Observe that S contains at most n+ 2 vectors, i.e.,

S ⊆
{
dyc , dyc+ es1 , dyc+ es1 + es2 , . . . , dyc+ es1 + · · ·+ esn+1

}
. (3.5.3)

It can be seen that the last vector listed in the set is simply dyc + 1 and so, once
multiplied by Q, the first and the last vectors are identical.
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3.5.1 Algorithms for An

From the previous discussion we see that the nearest point in An to y is contained
in QS. Noting that An may be defined as

An = An/n+1 = {Qx | x ∈ Zn+1,x · 1 ≡ 0 mod n+ 1}

we see that only those elements Qx, x ∈ S that satisfy x · 1 ≡ 0 mod n+ 1 are
candidates for the nearest point. Moreover, it is clear that there is exactly one
element in QS that satisfies this criterion, this element being

Q (dyc+ e1 + e2 + . . . eγ)

where γ = (n + 1− dyc · 1) rem(n + 1) where a rem b indicates the remainder after
division of a by b. Algorithm 3.1 follows.

Input: y ∈ Rn+1

γ = (n+ 1− dyc · 1) rem(n+ 1)1

s = sortindices(〈y〉)2

u = dyc3

foreach i = 1 to γ do4

usi = usi + 15

x = Qu6

return x7

Algorithm 3.1: Algorithm to find a nearest lattice point in An to y ∈ Rn that requires
O(n log n) operations.

The operations on lines 1 and 3 and the loop on line 4 all require at most O(n)
operations. The matrix operation on line 6 can be computed in O(n) operations by
projecting x orthogonal to 1, that is Qx = x − x · 1/(n + 1). The most compu-
tationally intensive operation is the sortindices(·) function that requires O(n log n)
operations. Notice that the order in which the loop on line 4 iterates over the si for
i = 1, 2, . . . , γ is unimportant. We can exploit this and improve the algorithm to
require only O(n) operations. We require the following function.

Definition 3.2. (quick partition)
We define the function

b = quickpartition(z, c)

to take a vector z of length n+ 1 and integer c = 1, . . . , n+ 1 and return a vector b
of indices such that for i = 1, . . . , c− 1 and t = c+ 1, . . . , n+ 1

zbi ≥ zbc ≥ zbt .

Note that quickpartition(z, c) locates the cth largest element in z. Somewhat
surprisingly quickpartition(z, c) can be implemented such that the required number
of operations is O(n). This is facilitated by the Rivest-Tarjan selection algo-
rithm [Blum et al., 1973; Floyd and Rivest, 1975a,b; Knuth, 1997]. A linear-time al-
gorithm for An can be constructed from Algorithm 3.1 by replacing the sortindices(·)
function with quickpartition(·) (see Algorithm 3.2). This algorithm has previously
been suggested by A. M. Odlyzko [Conway and Sloane, 1998, page 448].
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Input: y ∈ Rn+1

γ = (n+ 1− dyc · 1) rem(n+ 1)1

b = quickpartition(〈y〉 , γ)2

u = dyc3

for i = 1 to γ do4

ubi = ubi + 15

x = Qu6

return x7

Algorithm 3.2: Algorithm to find a nearest lattice point in An to y ∈ Rn that requires
O(n) operations.

3.5.2 Algorithms for A∗n

From Lemma 3.1 and the subsequent discussion we know that the nearest point in
A∗n to y is contained in QS. We desire to find the point x ∈ S such that ‖Qx−y‖2

is minimised. That is, the nearest point in A∗n to y is given by Qx where

x = arg min
x∈S
‖Qx− y‖2.

We can compute the elements in S using the sortindices(·) function. A naive ap-
proach would be to compute the distance ‖Qx − y‖2 for each x ∈ S individually.
This would require O(n2) operations. It is possible to compute each distance effi-
ciently. Label the elements of S according to the order given in (3.5.3). That is, set
u0 = dyc and, for i = 1, . . . , n, we can consecutively compute the elements in S as

ui = ui−1 + esi . (3.5.4)

Let zi = y − ui. Clearly, z0 = 〈y〉. Decompose y into orthogonal components Qy
and t1 for some t ∈ R. The squared distance between Qui and y is

‖y −Qui‖2 = di + t2(n+ 1) (3.5.5)

where di is defined as

di = ‖Qzi‖2 =

∥∥∥∥zi − zi · 1
n+ 1

1

∥∥∥∥2

= zi · zi −
(zi · 1)2

n+ 1
= βi −

α2
i

n+ 1
. (3.5.6)

We know that the nearest point to y is that Qui which minimises (3.5.5). Since
the term t2(n + 1) is independent of the index i, it can be ignored. That is, it is
sufficient to minimise di, i = 0, . . . , n. The di can be calculated inexpensively using
the following recursion. From (3.5.4),

αi = zi · 1 = (zi−1 − esi) · 1 = αi−1 − 1 (3.5.7)

and
βi = zi · zi = (zi−1 − esi) · (zi−1 − esi) = βi−1 − 2zsi + 1. (3.5.8)

Algorithm 3.3 now follows. The main loop beginning at line 7 calculates the αi
and βi recursively. There is no need to retain their previous values, so the subscripts
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are dropped. The variable D maintains the minimum value of the (implicitly cal-
culated values of) di so far encountered, and k the corresponding index. Each line
of the main loop requires O(1) arithmetic computations so the loop (and that on
line 13) requires O(n) in total. The vector operations on lines 2–4, 1 and 15 all
require O(n) operations. The computational cost of the algorithm is dominated by
the sortindices function and is therefore O(n log n).

Input: y ∈ Rn+1

u = dyc1

z = y − u2

α = z · 13

β = z · z4

s = sortindices(z)5

D =∞6

for i = 1 to n+ 1 do7

if β − α2

n+1
< D then8

D = β − α2

n+19

k = i− 110

α = α− 111

β = β − 2zsi + 112

for i = 1 to k do13

usi = usi + 114

x = Qu15

return x16

Algorithm 3.3: Algorithm to find a nearest lattice point in A∗n to y ∈ Rn+1 that
requires O(n log n) arithmetic operations.

The linear-time algorithm

It is possible to improve this algorithm so that only O(n) operations are required.
We will show in Theorem 3.3 that only some of the vectors in QS are candidates
for the nearest point. This fact allows us to avoid using the sortindices(·) function.
Instead a partial sorting operation called a bucket sort can be used [Cormen et al.,
2001].

Lemma 3.2. Let Qf(λ0) be the closest point in A∗n to y ∈ Rn+1. If I is defined as
the interval containing λ0 on which f(λ) is constant then the length of the interval
is not less than 1/(n+ 1).

Proof. Observe that f(λ) is piecewise constant, by virtue of the rounding operation.
I will be open at one end and closed at the other. Which end is open and which
is closed depends on the direction that half-integers are rounded. Let the endpoints
of the interval be λmin ≤ λmax.

Consider λ ∈ I . For all such λ, f(λ) is constant. Let its value be k and let
x = Qk. It is clear that y ∈ Vor(A∗n) + x and so y + λ1 ∈ Vor(A∗n) + k. Also,
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y+λ1 ∈ Vor(Zn+1)+k. With z = y−k, it follows that z+λ1 ∈ Vor(A∗n)∩Vor(Zn+1).
The fact that z + λ1 ∈ Vor(A∗n) does not immediately yield any information on the
length of the interval I since this Voronoi cell is an infinite cylinder whose central
axis is in the direction of the vector 1. On the other hand, z + λ1 ∈ Vor(Zn+1)
implies that |zi + λ| ≤ 1

2
. If we set ` = arg maxi zi and t = arg mini zi, it is clear

that λmax = 1
2
− z` and λmin = −1

2
− zt. Hence, the length of the interval is

λmax − λmin = 1− z` + zt. (3.5.9)

From Corollary 3.1 we see that both Qe` and Qet are relevant vectors of A∗n.
From Remark 2.1, it follows that

z · (Qe`) ≤
1

2
‖Qe`‖2

which implies that

z` − z̄ ≤
n

2(n+ 1)
(3.5.10)

where z̄ = 1 · z/(n+ 1). On the other hand, we must also have that

z · (−Qet) ≤
1

2
‖Qet‖2

which implies that

zt − z̄ ≥ −
n

2(n+ 1)
. (3.5.11)

Combining (3.5.9), (3.5.10) and (3.5.11), we find that the length of the interval I
conforms to the lower bound

λmax − λmin ≥
1

n+ 1
.

Theorem 3.3. If Qk is the nearest point in A∗n to y ∈ Rn+1 then

k = f

(
i− 1

n+ 1

)
for some i ∈ {1, · · · , n+ 1}.

Proof. Assume that the lemma is false. Then k = f(λ) for some λ ∈ [λmin, λmax]
such that

i− 1

n+ 1
< λ <

i

n+ 1

for some i ∈ {1, · · · , n+ 1}. However then

λmax − λmin <
i

n+ 1
− i− 1

n+ 1
=

1

n+ 1

contradicting Lemma 3.2.
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From Theorem 3.3 we see that only the lattice points

Qf

(
i− 1

n+ 1

)
for i ∈ {1, · · · , n+ 1} are candidates for the nearest point. We will show how these
points can be found in linear time. Define n+ 1 sets

Bi =

{
j | 0.5− 〈yj〉 ∈

(
i− 1

n+ 1
,

i

n+ 1

]}
for i ∈ {1, · · · , n+ 1}. Then it follows that

f

(
0

n+ 1

)
= dyc

f

(
1

n+ 1

)
= dyc+

∑
j∈B1

ej

f

(
2

n+ 1

)
= dyc+

∑
j∈B1

ej +
∑
j∈B2

ej

and in general

f

(
i

n+ 1

)
= f

(
i− 1

n+ 1

)
+
∑
j∈Bi

ej (3.5.12)

Let
k(i) = |B1|+ |B2|+ · · ·+ |Bi|.

Then

uk(i) = f

(
i

n+ 1

)
(3.5.13)

and
zk(i) = y − uk(i) (3.5.14)

The nearest point is now given by Quk(i) where

i = arg min
i=0,1,...,n

‖Quk(i) − y‖2.

We can again compute these distances efficiently in an identical manner to (3.5.5)
and (3.5.6) where the recursive formula for the dk(i) is

αk(i) = zk(i) · 1 =

(
zk(i−1) −

∑
j∈Bi

ej

)
· 1

= αk(i−1) − |Bi|

and

βk(i) = zk(i) · zk(i) =

∥∥∥∥∥zk(i−1) −
∑
j∈Bi

ej

∥∥∥∥∥
2

= βk(i−1) + |Bi| − 2
∑
j∈Bi

zsi .
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Algorithm 3.4 now follows. Lines 4–7 calculate the sets Bi. This is the bucket
sort operation [Cormen et al., 2001]. The remainder of the algorithm functions
similarly to Algorithm 3.3. The vector operations on lines 1–3 and 21 all require
O(n) operations. Provided that the set operations on lines 4, 7, 11 and 19 can be
performed in constant time the loops on lines 4, 5, 10 and 18 require only O(n)
operations. The overall computational complexity of the algorithm is then O(n).

Naive implementation of the set operations may lead to poor performance. For
this reason we have provided a second version of the pseudocode (Algorithm 3.6 on
page 51) that hides the set notation but demonstrates how to efficiently implement
the algorithm in practice. The sets, Bi, are replaced by two arrays bucket and link,
both of length n+ 1.

Input: y ∈ Rn+1

z = 〈y〉1

α = z · 12

β = z · z3

for i = 1 to n+ 1 do Bi = ∅4

for t = 1 to n+ 1 do5

i = n+ 1− (n+ 1) bzt + 0.5c6

Bi = Bi ∪ {t}7

D = β − α2

n+18

k = 09

for i = 1 to n+ 1 do10

forall t ∈ Bi do11

α = α− 112

β = β − 2zt + 113

if β − α2

n+1
< D then14

D = β − α2

n+115

k = i16

u = dyc17

for i = 1 to k do18

forall t ∈ Bi do19

ut = ut + 120

x = Qu21

return x22

Algorithm 3.4: Algorithm to find a nearest lattice point in A∗n to y ∈ Rn+1 that
requires O(n) arithmetic operations.

3.5.3 Algorithms for Am
n

Define the set W ⊆ S such that

W = {x ∈ S | x · 1 ≡ 0 mod m}. (3.5.15)
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It follows from Lemma 3.1 and the subsequent discussion that QW contains the
nearest point in Amn to y. Algorithm 3.5 is now easily derived from Algorithm 3.3.
The only difference being the variable γ used to ensure that the lattice points tested
are in Amn , i.e. Qw ∈ QS is tested if w · 1 ≡ 0 mod m. The number of operations
required is dominated by the sortindices(·) function and is therefore O(n log n).

Input: y ∈ Rn+1

u = dyc1

z = y − u2

α = z · 13

β = z · z4

γ = u · 1 remm5

s = sortindices(z)6

D =∞7

for i = 1 to n+ 1 do8

if β − α2

n+1
< D and γ = 0 then9

D = β − α2

n+110

k = i− 111

α = α− 112

β = β − 2zsi + 113

γ = (γ + 1) remm14

for i = 1 to k do15

usi = usi + 116

x = Qu17

return x18

Algorithm 3.5: Algorithm to find a nearest lattice point in Amn to y ∈ Rn+1 that
requires O(n log n) arithmetic operations.

The linear-time algorithm

We will show that some of the elements of QW can be immediately excluded from
consideration. This property leads to a nearest point algorithm that requires at
most O(n) arithmetic operations. The algorithm requires both a bucket sort and
the quickpartition(·) function (Definition 3.2). It is interesting to note the similar-
ities between the log-linear time algorithms for An, A∗n and Amn . All make similar
use of the sortindices(·) function which dominates the computational complexity.
For An the key to enable a linear-time algorithm is the quickpartition(·) function
implemented using the Rivest-Tarjan algorithm. For A∗n the key is the bucket sort.
It is somewhat satisfying that the linear-time algorithm for Amn should require both
of these techniques.

Lemma 3.3. Suppose, for some integers i,m > 0, k ≥ 2, that

〈ysi〉 −
〈
ysi+km

〉
≤ m

n+ 1
. (3.5.16)
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Then the minimum of the di+cm (3.5.6), over c = 0, . . . , k, occurs at c = 0 or c = k.

Proof. The proof proceeds by contradiction. Suppose, to the contrary, that

di+cm < di and di+cm < di+km.

Observe that

di+cm − di =
2αicm− (cm)2

n+ 1
+

cm∑
j=1

(1− 2
〈
ysi+j

〉
).

Now, since
〈
ysi+j

〉
≤ 〈ysi〉, it follows that

di+cm − di ≥
2αicm− (cm)2

n+ 1
+ cm(1− 2 〈ysi〉)

and with the assumption that di+cm − di < 0, we have that

2αi − cm
n+ 1

< 2 〈ysi〉 − 1. (3.5.17)

Similarly, observe that

di+km − di+cm =
2αi(k − c)m− (k2 − c2)m2

n+ 1
+

km∑
j=cm+1

(1− 2
〈
ysi+j

〉
).

Since
〈
ysi+j

〉
≥
〈
ysi+km

〉
, it follows that

di+km − di+cm ≤
2αi(k − c)m− (k2 − c2)m2

n+ 1
+ (k − c)m

(
1− 2

〈
ysi+km

〉)
and with the assumption that di+km − di+cm > 0, we have that

2αi − cm
n+ 1

>
km

n+ 1
− 1 + 2

〈
ysi+km

〉
. (3.5.18)

Equations (3.5.17) and (3.5.18) together imply that

〈ysi〉 −
〈
ysi+km

〉
>

km

2(n+ 1)
,

which contradicts (3.5.16) because k ≥ 2.

From S we can construct the following q = (n+ 1)/m subsets

Uj =

{
ui | 0.5− 〈ysi〉 ∈

(
m(j − 1)

n+ 1
,
mj

n+ 1

]}
(3.5.19)

where j = 1, · · · , q. Note that QS = Q
⋃q
j=1 Uj. We are interested in the ui ∈ Uj

such that ui · 1 ≡ 0 mod m, i.e., the elements in Uj ∩ W . Let g be the smallest
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integer such that ug ∈ Uj ∩W . Let p be the largest integer such that up ∈ Uj ∩W .
It follows that p = g + km for some k ∈ Z. Also, from (3.5.19)〈

ysg
〉
−
〈
ysp
〉
≤ m

n+ 1
.

It then follows from Lemma 3.3 that (3.5.5) is minimised either by ug or up and
not by any ui ∈ Uj ∩W where g < i < p. We see that for each set QUj there are
at most two elements that are candidates for the nearest point. An algorithm can
be constructed as follows: test the (at most two) candidates in each set QUj and
return the closest one to y. We will now show how this can be achieved in linear
time.

We construct q sets

Bi =

{
j | 0.5− 〈yj〉 ∈

(
m(i− 1)

n+ 1
,
mi

n+ 1

]}
. (3.5.20)

and let k(i) = |B1|+ |B2|+ · · ·+ |Bi|. It follows that

u0 = dyc

uk(1) = dyc+
∑
t∈B1

et

uk(2) = dyc+
∑
t∈B1

et +
∑
t∈B2

et

and in general

uk(i) = uk(i−1) +
∑
t∈Bi

et.

Let g be the smallest integer such that 1 ≤ g ≤ |Bi| and

1 · uk(i−1)+g ≡ 0 mod m

and let p be the largest integer such that 1 ≤ p ≤ |Bi| and

1 · uk(i−1)+p ≡ 0 mod m.

From the previous discussion the only candidates for the nearest point out of the
elements

Q
{
uk(i−1)+1, . . . ,uk(i−1)+|Bi|

}
= QUj

are Quk(i−1)+g and Quk(i−1)+p. We can compute these elements quickly using the
following function.

Definition 3.3. We define the function

b = quickpartition2(z, Bi, g, p)

to return the vector b containing integers from Bi so that for j = 1, . . . , g − 1 and
t = g + 1, . . . , p− 1 and c = p+ 1, . . . , |Bi|

zbj ≥ zbg ≥ zbt ≥ zbp ≥ zbc .
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Notice that quickpartition2(·) can be performed by two consecutive iterations
of the Rivest-Tarjan algorithm and therefore requires O(|Bi|) operations. We can
compute

b = quickpartition2(z, Bi, g, p), (3.5.21)

then the first candidate nearest point is

uk(i−1)+g = uk(i−1) +

g∑
t=1

ebt (3.5.22)

and the second candidate nearest point is

uk(i−1)+p = uk(i−1) +

p∑
t=1

ebt . (3.5.23)

Algorithm 3.7 stated on page 52 follows. Lines 2-5 construct the sets Bi using a
bucket sort similar to that in Algorithm 3.4. The main loop on line 12 then computes
the values of g and p for each Bi. The dk(i)+g and dk(i)+p are computed within the
loop on line 16 and the index of the nearest lattice point is stored using the variable
k∗. The concatenate(w,b) function on line 24 adds the elements of b to the end of
the array w. This can be performed in O(|Bi|) operations. Lines 25-27 recovers the
nearest lattice point using w and k∗.

In practice the Bi can be implemented as a list so that the set insertion operation
on line 5 can be performed in constant time. Then the loops on lines 2 and 3 require
O(n) arithmetic operations. The operations inside the main loop on line 12 require
O(|Bi|) operations. The complexity of these loops is then

(n+1)/m∑
i=1

O(|Bi|) = O(n)

The remaining lines require O(n) or less operations. The algorithm then requires
O(n) arithmetic operations in total.

3.5.4 Algorithms based on the quotient group Am
n /An

Given that a nearest point algorithm exists for the lattice An we can use the approach
suggested in Section 2.7 to construct a nearest point algorithm for Amn by using a
set of coset representatives for Amn /An. Recall from Section 3.4 and (3.3.3) that the
coset representatives are given by miQe1 where i = 1, 2, . . . , q and q = (n + 1)/m.
Algorithm 3.8 stated on page 52 follows. The running time depends on the order
of Amn /An which is equal to q. If q is constant then the algorithm requires O(n)
operations. However, q may grow with n. For example q = n + 1 in the case of
A1
n = A∗n and the algorithm requires O(n2) operations. This algorithm, applied to

the lattice A∗n, has previously been suggested by Conway and Sloane [1982].
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3.5.5 Run-time analysis

Here we tabulate some practical computation times attained with the nearest point
algorithms described in this chapter. The dimension of the lattices was set to n+1 =
16i + 4 for i = 1 to 33 and 105 trials were run for each value of n. The algorithms
were written in Java and the computer used is a 900 MHz Intel Celeron M. The
results are displayed in Figure 3.1. It is evident that the linear-time algorithms are
faster than the log-linear-time algorithms in practice, at least when n is sufficiently
large (approximately n > 40). Notice from Figure 3.1(d) how the algorithm based
on the quotient group is comparable to the other algorithms for Amn where m =
(n + 1)/4. This behaviour is expected as the order of the quotient group is only
q = m/(n+1) = 4 and therefore the complexity is O(n). Contrastingly the quotient
group algorithm is very slow for A4

n and A∗n, where it has quadratic complexity
(Figures 3.1(c) and 3.1(b)).

3.6 Summary

In this chapter we have derived linear time nearest point algorithms for the lattice
An, its dual A∗n and the family of Coxeter lattices Amn that lie between An and A∗n.
We showed how An can be constructed as the intersection of the integer lattice Zn+1

with the subspace, denoted H, that is orthogonal to the all ones vector 1, and how
A∗n can be constructed as the projection of Zn+1 into this subspace.

We discovered that the Voronoi cell of the lattice An is equivalent to the convex
polytope that results from projecting the n + 1 dimensional hypercube into H.
It follows that the Voronoi cell of the Coxeter lattices and A∗n is a subset of the
projected hypercube. We use this fact in Lemma 3.1 to show that a nearest lattice
point in An, A∗n or Amn is inside a particular set, the we denoted by S, that is of size
n+ 1.

Only one lattice point in S is also in An and therefore a nearest point in An
results from locating this single point. We derived two algorithms to locate this
point, Algorithms 3.1 and 3.2. The first algorithm requires sorting n + 1 elements
and therefore has complexity O(n log n). The second algorithm uses the Rivest-
Tarjan selection algorithm and requires at most a linear number of operations.

Every element in S is a lattice point in A∗n and we developed an efficient recursion
that can test each lattice point in S in order to find the nearest point. This results
in Algorithm 3.3 that requires O(n log n) arithmetic operations due to a sorting
operation. We show in Lemma 3.2 and Theorem 3.3 that only some of the points
in S can be nearest lattice points and that a full sort is not required, only a partial
bucket sort is required. This leads to Algorithms 3.4 and 3.6 that require at most
O(n) operations.

For the Coxeter lattices Amn we can again produce an algorithm that uses a sort
to compute a nearest point in O(n log n) operations. However, by employing both
the Rivest-Tarjan selection algorithm and a bucket sort we showed how a nearest
lattice point could be found in only O(n) operations.
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(a) The An algorithms.
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(c) The A4
n algorithms.
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(d) The Am
n with m = n+1

4 algorithms.

Figure 3.1: Computation time in seconds for 105 trials for the nearest point algorithms
for An, A∗n and Amn .
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Input: y ∈ Rn+1

z = 〈y〉1

α = z · 12

β = z · z3

bucket = 04

for t = 1 to n+ 1 do5

i = n+ 1− (n+ 1) bzt + 0.5c6

linkt = bucketi7

bucketi = t8

D = β − α2

n+19

k = 010

for i = 1 to n+ 1 do11

t = bucketi12

while t 6= 0 do13

α = α− 114

β = β − 2zt + 115

t = linkt16

if β − α2

n+1
< D then17

D = β − α2

n+118

k = i19

u = dyc20

for i = 1 to k do21

t = bucketi22

while t 6= 0 do23

ut = ut + 124

t = linkt25

x = Qu26

return x27

Algorithm 3.6: Algorithm to find a nearest lattice point in A∗n to y ∈ Rn+1 that
requires O(n) arithmetic operations. This pseudocode indicates how to implement the
algorithm in practice using two arrays.
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Input: y ∈ Rn+1

z = y − dyc1

for j = 1 to q do Bj = ∅2

for i = 1 to n+ 1 do3

j = q − bq(zi + 1/2)c4

Bj = Bj ∪ i5

u = dyc6

α = z · 17

β = z · z8

γ = u · 1 remm9

k = 110

D =∞11

for j = 1 to q do12

g = m− γ13

p = |Bj| − (|Bj|+ γ) remm14

b = quickpartition2(z, Bj, g, p)15

for i = 1 to |Bj| do16

α = α− 117

β = β − 2zbi + 118

γ = (γ + 1) remm19

if (i = g or i = p) and β − α2/n+1 < D then20

D = β − α2/(n+ 1)21

k∗ = k22

k = k + 123

concatenate(w,b)24

for i = 1 to k∗ do25

uwi = uwi + 126

x = Qu27

return x28

Algorithm 3.7: Algorithm to find a nearest lattice point in Amn to y ∈ Rn+1 that
requires O(n) arithmetic operations.

Input: y ∈ Rn

D =∞1

g = Qe12

for i = 0 to q − 1 do3

[x,u] = NearestPt(y − img, An) + img4

if ‖x− y‖ < D then5

xNP = x6

D = ‖x− y‖7

return xNP8

Algorithm 3.8: Nearest point algorithm for Amn using a set of coset representatives
for Amn /An.
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Douglas Hofstadter

4
The lattices Vn/m, V

∗
n/m

and V ⊥
n/m

In this chapter we describe the lattices Vn/m, V ∗n/m and V ⊥n/m. The lattice V ∗n/m will
be used in polynomial phase estimation in Chapters 7, 9 and 10. We find that an
excellent estimator for a polynomial phase signal of order m is given by finding a
nearest lattice point in V ∗n/m. Because of these applications the primary goal of this
chapter is to derive a nearest point algorithm for V ∗n/m.

Like An and A∗n the lattices Vn/m, V ∗n/m and V ⊥n/m can be described using projec-
tions and intersections of the integer lattice. The lattice Vn/m is the intersection of
the integer lattice with an m + 1 dimensional subspace and the dual lattice V ∗n/m
is the projection of the integer lattice into this subspace. The lattice V ⊥n/m is the
m + 1 dimensional lattice formed by intersecting the integer lattice with the or-
thogonal subspace (the complementary space) and for this reason we call V ⊥n/m the
complementary lattice of Vn/m.

After defining the lattices using projections and intersections we derive gener-
ator matrices for both V ⊥n/m and V ∗n/m in Section 4.2. These derivations are aided
by knowledge of two special families of discrete polynomials, the integer valued
polynomials and the discrete Legendre polynomials and we define these at
the start of the section. Using properties of these polynomials we find a closed form
formula for the determinant of V ⊥n/m, Vn/m and V ∗n/m and also the order of the quo-

tient group V ∗n/m/Vn/m. The integer valued polynomials will also play a key role in
Chapter 7 for describing the phenomenon of aliasing that occurs when polynomial
phase signals are sampled.

In Section 4.3 we consider how to compute a nearest point in V ∗n/m. We take an
approach similar to Algorithm 2.1, that is we compute a nearest point for each coset
in the quotient V ∗n/m/Vn/m and return the closest point found over all cosets. We show
how this yields a nearest point algorithm that requires a number of operations that
is polynomial in the dimension of the lattice n. This is a substantial improvement
over the fastest algorithms for random lattices, such as the sphere decoder, that
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require a number of operations that is exponential in the dimension of the lattice
(see in particular Jalden and Ottersten [2005] who show that even the expected
complexity of the sphere decoder is exponential in n). The algorithm requires a
method for enumerating a set of coset representatives for the quotient V ∗n/m/Vn/m
and we describe a convenient method that is based on Theorem 2.2 and also the
Hermite decomposition that was introduced in Section 2.4.

4.1 Definition of Vn/m, V ∗n/m and V ⊥n/m

We will make use of the following notation for mapping polynomials to vectors.
Given a polynomial g(x) = a0 + a1x + · · · + amx

m we use vec(g) to denote the
column vector generated by evaluating g(x) at the integers x = 1, 2, . . . , n+m+ 1.
That is,

vec(g) =
[
g(1) g(2) g(3) . . . g(N)

]†
where N = n+m+ 1. We use coef(g) to denote the column vector of length m+ 1
containing the coefficients of g, that is,

coef(g) =
[
a0 a1 a2 . . . am

]†
.

Let H⊥ be the subspace of dimension m + 1 spanned by the m + 1 vectors
vec(x0), vec(x1), . . . , vec(xm) and let H be the n-dimensional subspace orthogonal
to H⊥. The subspace H⊥ is sometimes called the (discrete) space of polynomials
because it describes the vector space spanned by the vec(·) of any set of m+1 linearly
independent polynomials of order m. We define the lattice V ⊥n/m as the intersection

of the N -dimensional integer lattice with H⊥, that is

V ⊥n/m = ZN ∩H⊥. (4.1.1)

Clearly V ⊥n/m is a lattice in m + 1 dimensions because each of the vec(xk) ∈ ZN .

Noticing that ZN is unimodular it follows from Corollary 2.2 that

Vn/m = ZN ∩H (4.1.2)

is an n dimensional lattice and that

detVn/m = detV ⊥n/m. (4.1.3)

Let p denote the orthogonal projection onto H, then projecting the integer lattice
orthogonally into H produces the n-dimensional lattice

V ∗n/m = pZN (4.1.4)

that is the dual of Vn/m and detV ∗n/m =
(
detVn/m

)−1
. When m = 0 we find that

these lattices are equal to Z, An and A∗n, that is

V ⊥n/0 = Z Vn/0 = An V ∗n/0 = A∗n. (4.1.5)

The Vn/m family of lattices can therefore be seen as an extension of the An lattices.



4.2 Generator matrices 55

4.2 Generator matrices

We will describe generator matrices for V ⊥n/m and V ∗n/m in this section. It is also
reasonably easy to find a generator for Vn/m but we do not require it in this thesis.
We will have use of two important families of discrete polynomials.

Definition 4.1. (Integer valued polynomials)
The integer valued polynomial of order k, denoted by pk, is given as

pk(x) =

(
x

k

)
=
x(x− 1)(x− 2) . . . (x− k + 1)

k!

where we define p0(x) = 1.

Definition 4.2. (Discrete Legendre polynomials)
The discrete Legendre polynomial of order k, denoted by lk, is given as

lk(x) =
k!(
2k
k

) k∑
s=0

(−1)s+k
(
s+ k

s

)(
N − s− 1

N − k − 1

)
ps(x− 1).

where ps is the integer valued polynomial of order s.

The discrete Legendre polynomials (as we have defined them) are monic, i.e. the
coefficient of the highest order term is equal to one, and the kth discrete Legendre
polynomial lk has order k. The lk are also orthogonal in the sense that

lk · lj =
N∑
x=1

lk(x)lj(x) =

{
0 , k 6= j

(k!)2
(

2k
k

)−1(N+k
2k+1

)
, k = j

(4.2.1)

where lk · lj = vec(lk) ·vec(lj) is the (discrete) polynomial inner product [Szego, 1975;
Eisinberg et al., 2001; Eisinberg and Fedele, 2007].

It is clear that the vec(xk), the vec(lk) and the vec(pk) for k = 0, 1, . . . ,m all
span the space of polynomials H⊥. Define the N × (m+ 1) matrices X, L and P to
be the matrices with column vectors given by the the vec(xk), the vec(lk) and the
vec(pk) respectively. For example X is the Vandermonde matrix

X =
[

vec(x0) vec(x1) . . . vec(xm)
]

=


1 1 1 · · · 1
1 2 4 · · · 2m

...
...

...
. . .

...
1 N N2 · · · Nm

 . (4.2.2)

Notice that the orthogonality of the discrete Legendre polynomials implies that the
columns of L are orthogonal.

Also define the (m + 1) × (m + 1) matrices X , L and P to be the matrices
with column vectors given by the coefficient vectors coef(xk), the coef(lk) and the
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coef(pk) respectively. For example X is the identity matrix. Also, when m = 3, the
first four integer valued polynomial are

p0 = 1

p1 = n

p2 =
x2

2
− x

2

p3 =
n3

6
− n2

2
+
n

3

and therefore the matrix

P =


1 0 0 0
0 1 −1/2 1/3

0 0 1/2 −1/2

0 0 0 1/6

 . (4.2.3)

It is easy to see that L and P are upper triangular. Because the discrete Legendre
polynomials are monic the diagonal elements of L are all 1 and det(L) = 1. The
diagonal elements of P are 1, 1, 1/2, 1/3!, . . . , 1/m! and therefore

det(P) =
m∏
k=0

1

k!
. (4.2.4)

It is also not hard to check that the following relationships between X, L and P
hold

P = XP (4.2.5)

L = XL (4.2.6)

P = LL−1P . (4.2.7)

4.2.1 A generator for V ⊥n/m

Let Z denote the set of polynomials of order at most m that are integer valued when
evaluated at integers. That is, Z contains all polynomials p, of order at most m,
such that p(x) is an integer whenever x is an integer. Then

V ⊥n/m = ZN ∩H⊥ = {vec(p) | p ∈ Z}. (4.2.8)

Lemma 4.1. [Cahen and Chabert, 1997, p. 2] The integer valued polynomials pk
for k = 0, 1, . . . ,m are an integer basis for Z. That is, every element of Z can be
uniquely written as

c0p0 + c1p1 + · · ·+ cmpm (4.2.9)

where the ci ∈ Z.
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Proof. Note that x(x− 1)(x− 2) . . . (x− k+ 1) is divisible by all integers 1, 2, . . . , k
and so pk takes integer values for all x ∈ Z. Then any polynomial generated as
in (4.2.9) is an element in Z. The proof proceeds by induction. Consider any
polynomial f ∈ Z. Let d < n and assume that ci ∈ Z for all i ≤ d. Let g be the
polynomial

g = f −
d∑

k=0

ckpk

and note that g ∈ Z. Then

g = cd+1pd+1 + · · ·+ cmpm. (4.2.10)

Now pd+1(d + 1) = 1 and pk(d + 1) = 0 for all k > d + 1. Then g(d + 1) =
cd+1pd+1(d + 1) and therefore cd+1 = g(d + 1) ∈ Z. The proof follows by induction
because f(0) = c0 ∈ Z.

From the above lemma and (4.2.8) we see that

V ⊥n/m = {vec(c0p0 + c1p1 + · · ·+ cmpm) | ci ∈ Z}
= {c0 vec(p0) + c1 vec(p1) + · · ·+ cm vec(pm) | ci ∈ Z}

and from the definition of the matrix P we have

V ⊥n/m = {Pc | c ∈ Zm+1}

and it follows that P is a generator matrix for V ⊥n/m. We can also find the following
formula for the determinant

det(V ⊥n/m) = det(P†P)

= det((LL−1P)†LL−1P)

= det(L†L)
m∏
k=0

1

(k!)2

=
m∏
k=0

(
2k

k

)−1(
N + k

2k + 1

)
. (4.2.11)

This follows from (4.2.7), (4.2.4) and the fact that the columns of L are orthogo-
nal. This immediately gives formula for the determinant of Vn/m and V ∗n/m because

detVn/m = detV ⊥n/m and detV ∗n/m = (detV ⊥n/m)−1. We also obtain a formula for

the order of the dual quotient group because |V ∗n/m/Vn/m| = detVn/m (see Proposi-

tion 2.3).

4.2.2 A generator for V ∗n/m

A generator matrix for V ∗n/m is easily derived as any n columns of the N × N
orthogonal projection matrix

Q = I−X(X†X)−1X†. (4.2.12)
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4.3 Computing the nearest point in V ∗n/m

When m = 0 a nearest point in V ∗n/0 = A∗n can be computed in O(n) operations using
the algorithm described in Chapter 3. When m = 1 a nearest point in V ∗n/1 can be

computed using a ‘line searching’ algorithm described in McKilliam et al. [2010a].
We will not describe this algorithm here and instead we describe an algorithm that
works for all m in a number of operations that is polynomial in the dimension of the
lattice n. The algorithm is a small modification of Algorithm 2.1 (page 31). That is,
we compute a nearest point for each coset in the quotient V ∗n/m/Vn/m and return the
overall closest point found. Direct application of Algorithm 2.1 requires a nearest
lattice point algorithm for Vn/m, something we do not have. However, we will show
that rather than computing a nearest point in Vn/m it is sufficient to instead compute
a nearest point in the lattice ZN , which is easily achieved by rounding each element
in a vector to its nearest integer.

Let C be a set of coset representatives for V ∗n/m/Vn/m. We will describe a con-
venient method for enumerating the set C in the next section. For now note that,
given C, we have

V ∗n/m =
⋃
g∈C

Vn/m + g = Vn/m + C

where Vn/m+C denotes the Minkowski sum of Vn/m and C, that is Vn/m+C contains
the elements x + y for all x ∈ Vn/m and y ∈ C. As Vn/m = ZN ∩H we can write

V ∗n/m = (ZN ∩H) + C = (ZN + C) ∩H. (4.3.1)

The set ZN + C is a lattice in N dimensions. Its intersection with H is the lattice
V ∗n/m and it is not hard to show that its intersection with H⊥ is the dual lattice of

V ⊥n/m. It is convenient to visualise ZN + C as being built up of layers of V ∗n/m that
lie in hyperplanes parallel to H. In this context it is not surprising that the nearest
point in V ∗n/m is closely related to the nearest point in ZN + C as the next theorem
will show.

Theorem 4.1. Let y ∈ RN be a point in H. The nearest point to y in ZN + C is
equal to the nearest point to y in V ∗n/m. That is,

NearestPt(y, V ∗n/m) = NearestPt(y,ZN + C).

Proof. From (4.3.1) we see that V ∗n/m contains all of those points from ZN +C that
are contained in H. Therefore, to prove the theorem, it is sufficient to show that
the nearest point to y in ZN + C is contained in H. Let x be the nearest point in
ZN + C to y and assume that x /∈ H. Let x′ = Qx be the orthogonal projection of
x into H. It follows from the definition of V ∗n/m and ZN +C that x′ is also a lattice

point in ZN + C. We can write x = x′ + t where t is a nonzero vector in H⊥ and
then

‖x− y‖2 = ‖x′ + t− y‖2 = ‖x′ − y‖2 + ‖t‖2.

because y and x′ are orthogonal to t. As t is nonzero then

‖x− y‖2 > ‖x′ − y‖2
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contradicting that x is a nearest point to y.

Algorithm 4.1 follows as a result of the previous theorem. The point y is pro-
jected orthogonally into H on line 1. The remainder of the algorithm operates
similarly to Algorithm 2.1 except for line 6 which computes a nearest point in ZN
rather that the lattice Vn/m. The number of cosets is

|C| = |V ∗n/m/Vn/m| = detVn/m =
m∏
k=0

(
2k

k

)−1(
N + k

2k + 1

)
= O

(
N (m+1)2

)
and the coset representatives can be computed in an amount of time that is pro-
portional to |C| as we will show in the next section. For each coset representative
O(N) operations are required so the algorithm requires O(N (m+1)2+1) operations in
total. Although polynomial in N , for large N this algorithm is very slow, even when
m is quite small. For this reason we will consider other, approximate, approaches
to computing the nearest point in Chapter 7.

Input: y ∈ RN

y′ = Qy1

D =∞2

foreach g ∈ C do3

x = dy′ − gc4

if ‖x− y′‖ < D then5

xNP = x + g6

D = ‖x− y′‖7

return xNP8

Algorithm 4.1: Computing the nearest point in V ∗n/m using a set of coset representa-

tives for the lattice V ∗n/m/Vn/m given by the set C.

4.4 Coset representatives for V ∗n/m/Vn/m

In this section we will describe some efficient methods for enumerating a set of coset
representatives for the dual quotient group V ∗n/m/Vn/m. We will have use of the dual

lattice of V ⊥n/m which we could denote by V ⊥∗n/m but to avoid the awkward super-

script we will simply denote it by D. We will make use of Theorem 2.2 (page 28)
that provides a connection between the dual quotient D/V ⊥n/m and the dual quo-

tient V ∗n/m/Vn/m. We first consider computing a set of coset representatives for

D/V ⊥n/m. We showed in Section 4.2.1 that a generator for V ⊥n/m is the N by m + 1
matrix P constructed using the integer valued polynomials. A generator for the
dual lattice D is then given by taking the transpose of the pseudoinverse of P, i.e.
(P+)† = P(P†P)−1 (see Section 2.5), and we will denote this matrix by D. Using
the approach suggested in Section 2.4.1 we can enumerate the coset representatives
by taking the Hermite decomposition of the m+ 1 by m+ 1 integral matrix

D+P =
(
P+)†

)+
P = P†P
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which is a Gram matrix for V ⊥n/m. In Proposition 2.2 we showed how the Hermite

decomposition can be used to compute a set K of vectors from Zm+1 such that DK
is a set of coset representatives for the quotient D/V ⊥n/m. Using Theorem 2.2 we
will show how this set of coset representatives can be converted into a set of coset
representatives for V ∗n/m/Vn/m.

At this stage it is not immediately clear how we apply Theorem 2.2 because
using this theorem requires a set of coset representatives that have been constructed
by projecting vectors from ZN into H⊥. We will show how the coset representatives
DK can be considered in this way. First consider the m + 1 by m + 1 matrix S
that consists of the first m + 1 columns of P†. Using the definition of the integer
valued polynomials it is easy to check that S is integral, upper triangular and with
diagonal elements all equal to 1. So det S = 1 and S is unimodular and its inverse
is therefore also integral and unimodular. Now construct the N by m+ 1 matrix B
by appending an n by m+ 1 matrix of zeros below the inverse of S, that is

B =

[
S−1

0n,m+1

]
(4.4.1)

where 0n,m+1 denotes the n by m + 1 matrix of zeros. Notice that because S−1 is
integral then B is integral.

It is easy to see that P†B is the m + 1 by m + 1 identity matrix and therefore
the sets

DK = DP†BK

are equal. So the set DP†BK is a set of coset representatives for D/V ⊥n/m. Now

observe that the matrix DP† = P(P†P)−1P† is an orthogonal projection into H⊥

and therefore we may write

DK = P(P†P)−1P†BK = p⊥BK

and it follows that p⊥BK is a set of coset representatives for D/V ⊥n/m. Because B is

integral the set BK contains vectors from ZN . We are now in a position to utilise
Theorem 2.2 from which it follows that projecting the set BK orthogonally into
the subspace H produces a set of coset representatives for the quotient V ∗n/m/Vn/m.
We will now summarise this process of enumerating the cosets representative of
V ∗n/m/Vn/m.

1. Compute the m + 1 by m + 1 integral Gram matrix P†P consisting of in-
ner products of the integer valued polynomials and also compute its Hermite
decomposition consisting of an upper triangular integral matrix R and uni-
modular matrix U. So we obtain

P†P =


p0 · p0 p0 · p1 · · · p0 · pm
p1 · p0 p1 · p1 · · · p1 · pm

...
...

. . .
...

pm · p0 pm · p1 · · · pm · pm

 = UR.
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2. Compute the set K of vectors from Zm+1 consisting of the points Ut for all t
with elements ti = 0, 1, . . . , ri,i− 1 where ri,i is the ith diagonal element of the
matrix R.

3. Compute the m+1 by m+1 submatrix S consisting of the first m+1 columns
of P† and then compute the N by m+ 1 matrix B by appending a matrix of
zeros to the inverse of S according to (4.4.1).

4. A set of coset representatives for V ∗n/m/Vn/m is now given by the projecting
the set BK orthogonally into H, i.e. the set pBK.

For the purpose of Algorithm 4.1 it is not necessary to store the entire set K
or the set of coset representatives pBK. It is only necessary to store the m + 1
by m + 1 matrices U and S−1 and the m + 1 diagonal elements of R. Each coset
representative can then be computed in turn using only O(N) operations from these
matrices. We will now consider a number of examples when m is small. Closed form
expressions can often be found for the matrices R and U and also the matrix S−1

for some small m and in effect this gives a closed form representation for the coset
representatives.

Coset representatives when m = 0

When m = 0 then lattice V ⊥n/0 = 1Z and the Gram matrix P†P is the 1× 1 matrix
with single element equal to N = n+ 1. The Hermite decomposition is trivial so by
Proposition 2.2 the coset representatives of D/V ⊥n/0 = Z/(n + 1)Z are the integers
0, 1, 2, . . . , n. The matrix B is the N by 1 vector with the first element equal to one
and remaining elements equal to zero, i.e. the vector e1. So the coset representatives
for V ∗n/0/Vn/0 = A∗n/An are the projections of 0e1, 1e1, 2e1, . . . , (n+1)e1 into the zero-
mean plane, i.e. projected orthogonally to the all ones vector 1. Explicitly the n+1
coset representatives are

k

(
e1 −

1

n+ 1

)
for k = 0, 1, . . . n. This is precisely the definition we gave in (3.3.3) when discussing
some of the properties of A∗n in Section 3.3.

Coset representatives when m = 1

When m = 1 we find that the Gram matrix of V ⊥n/1 is given by

P†P =

[
p0 · p0 p0 · p1

p1 · p0 p1 · p1

]
=

[
N 1

2
N(N − 1)

1
2
N(N − 1) 1

6
N(N + 1)(2N + 1)

]
.

In this case we can compute the Hermite decomposition by hand to obtain

P†P =

[
1 0

1
2
(N − 1) 1

] [
N 1

2
N(N − 1)

0 1
12
N(N2 − 1)

]
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when N is odd and

P†P =

[
2 1

N − 1 1
2
N

] [
1
2
N − 1

12
N(N2 + 9N + 2)

0 1
6
N(N2 + 12N − 1)

]
where N is even. The matrix S and its inverse are equal to

S =

[
1 1
0 1

]
S−1 =

[
1 −1
0 1

]
and the matrix B is constructed by appending an n× 2 matrix of zeros to S−1. The
coset representatives for V ∗n/1/Vn/1 can be computed readily from these matrices.

For larger m we can continue the hand calculation and obtain more closed form
expressions, but it is easier not too. The Hermite decompositions for any partic-
ular n and m are easily obtained by computer using one of the many available
algorithms, see for example [Cohen, 1993, Algorithm 2.4.5] or Kannan and Bachem
[1979] or Micciancio and Warinschi [2001]. Moreover because the matrices are only
m+ 1 by m+ 1 in size the computation is very fast.

4.5 Summary and discussion

In this chapter we have derived a number of properties of the lattices Vn/m, V ∗n/m and

V ⊥n/m. We showed how these lattices are generated by taking intersections and pro-

jections of the integer lattice Zn+m+1 and used the results we derived in Section 2.6
to derive some relationships between these lattices. In Section 4.2 we derived genera-
tor matrices for V ⊥n/m and V ∗n/m and found closed-form formulas for the determinants

and the order of the dual quotient group V ∗n/m/Vn/m.
In Part II we will find that an accurate estimator of the coefficients of a poly-

nomial phase signal of order m is given by computing a nearest point in the lattice
V ∗n/m. For this reason the primary focus of this chapter has been to derive an algo-
rithm to compute the nearest point in V ∗n/m. The algorithm we developed is based on

Algorithm 2.1 and requires a set of coset representatives for the quotient V ∗n/m/Vn/m.
Using ideas developed in Section 2.6 and in particular Theorem 2.2 we found a very
convenient way to describe the coset representatives using the Hermite decomposi-
tion of the m + 1 by m + 1 Gram matrix of the lattice V ⊥n/m. This greatly reduces
the complexity of enumerating the coset representatives when n is large and m is
small, which is the most common case for the estimation problems we consider later.
Moreover we obtained closed form representations for the coset representatives when
m = 0 and m = 1.

The nearest point algorithm requires O(n(m+1)2+1) operations in total which is
polynomial in the lattice dimension n but is exponential in the projection parameter
m. Unfortunately we will find that this algorithm is too slow for practical use
in the later chapters and will therefore consider some approximate approaches to
computing the nearest lattice point in Chapters 9 and 10. However, we think that the
construction of this exact polynomial-time nearest point algorithm is very important
because it proves that the problem of finding a nearest point in V ∗n/m is not in
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the complexity class NP-hard, which is the case for random lattices. In fact, for
many lattice families with known structure, for example the famous Barnes-Wall
lattices, the fastest known nearest point algorithms require a number of operations
that increases exponentially in the dimension. Our hope is that substantially faster
nearest point algorithms for V ∗n/m exist. As we shall see in the next chapters, even
fast approximate nearest point algorithms for V ∗n/m would prove exceedingly useful
for the estimation of polynomial phase signals.

Because the focus of this thesis is on circular statistics and polynomial phase
signals we have omitted a number of interesting results about the Vn/m and V ∗n/m
lattices that we will briefly mention now. It turns out that the lattices Vn/m are
sublattices of a known family called Craig’s difference lattices which produces
the densest known sphere packings in some dimensions (see Conway and Sloane
[1998, page 222] and also Martinet [2003, page 163]). The Vn/m lattices appear to
have inherited at least some of these density properties and it is possible to show
that the norm of Vn/m is at least 2(m + 1). This result follows quite readily from
consideration of a problem in number theory called the Prouchet-Tarry-Escott
problem. A good description of this problem is given by Hardy and Wright [2008,
p. 435] and also Borwein and Ingalls [1994].

Another result we have omitted is a description of the relevant vectors for the
lattice V ∗n/m. These can be described using the concept of an obtuse superbasis
similarly to how the relevant vectors for A∗n are described by Conway and Sloane
[1992]. It is possible that combining knowledge of the relevant vectors will lead to
lattice properties such as the covering radius or the inradius. It is also possible that
knowledge of the relevant vectors will help in the discovery of faster nearest lattice
point algorithms.
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—When in danger or in doubt, run in circles,
scream and shout.

Herman Wouk

5
Circular statistics

In Part II of this thesis we consider the problem of estimating the mean direction of
a set of circular data. We will find that an accurate estimator for the mean direction
is given by computing a nearest point in the lattice A∗n. In Part III we will extend
this idea and consider the estimation of polynomial phase signals. We will construct
accurate estimators for polynomial phase signals that work by computing a nearest
lattice point in V ∗n/m. However, before we begin to discuss any of these topics we
must understand some fundamental concepts from the field of circular statistics.

Circular statistics aims to describe the nature of data that is measured in angles
or 2-dimensional unit vectors or complex numbers on the unit circle. Such data
occur frequently in science, particularly in astronomy, biology, geology, geography
and meteorology and also in engineering, particularly in communications and radar.
A meteorological example is the direction of the wind, and a biological example is
the direction of flight taken by a bird. The field of circular statistics is in some sense
an ancient one, probably begun when mankind first started recording the motion
of the sun, the moon and the stars. A thorough historical account of the subject is
given by Fisher [1993, Chapter 1].

There are two seminal texts on the subject, Directional Statistics by Mardia and
Jupp [2000] and The Statistical Analysis of Circular Data by Fisher [1993]. The
reader wishing to a obtain a thorough background knowledge of this field is referred
to either of these books. That said, this chapter contains some differences, both in
presentation and content, to these books and therefore even the reader who is well
versed in the circular statistics literature should not be tempted to skip this chapter.

In Section 5.2 we define circular random variables and their associated prob-
ability density functions (pdf). We consider two different ways to plot the pdf
of a circular random variable, the unwrapped distribution plot and the circu-
lar distribution plot. We will make extensive use of these plots throughout this
chapter.

The intuitive notions of ‘mean’ and ‘variance’ is less rigidly defined for circular
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random variables than for random variables on the real line and we consider two
different definitions of the mean and variance in Section 5.2. The first are called the
circular mean and the circular variance. These are the most common definitions
used in the literature. The second definitions we call the unwrapped mean and
the unwrapped variance. These definitions are less common in the literature.
However, in this thesis we will find them just as, if not more, useful. In later
chapters the unwrapped mean and variance are used to describe the performance of
estimators for polynomial phase signals that are based on the lattices A∗n and V ∗n/m.

The circular mean and unwrapped mean are not equal in general. In fact, for
some circular distributions the means do not even exist, in a way we will define.
We consider these anomalies in Section 5.2.3 and we find that for a large class of
sufficiently symmetric distributions the circular mean and the unwrapped mean are
always defined and moreover, they are equal. We call these distributions unimean.
It so happens that many of the circular distributions considered in the literature are
unimean and that all of the circular distributions we will use in the later chapters
are also unimean.

In the remaining sections we describe a number of circular distribution functions
that are common in the literature. These are the von Mises distribution, the
projected normal distribution, the wrapped Gaussian distribution and the
wrapped uniform distribution. We describe some conditions under which these
distributions are unimean. In the later chapters we will use these distributions to
model noise processes.

5.1 Circular random variables and probability den-

sity functions

As the purpose of circular statistics is to describe the nature of angles it is common
in the literature to define a circular random variable to take values on [0, 2π) or
[−π, π). In this thesis we will find it more convenient to define circular random
variables to take values on the interval [−1/2, 1/2). So, when we refer to an angle
we mean a real number in the interval [−1/2, 1/2). This is a somewhat nonstandard
but it will allow us to use notation such as d·c for rounding and 〈·〉 for the centered
fractional part in a convenient way, and will also lead to close ties between circular
statistics and the lattices A∗n and V ∗n/m. We will typically write random variables
with a capital, such as Y , X and Z and we will write circular random variables
using the capital Greek letters Θ or Φ.

It is common in the literature to define a special circular probability density
function f to be periodic with period 1 (or 2π) so that f(θ + k) = f(θ) for any
integer k and the integral

∫
T
f(θ)dθ = 1 where T is any interval of length one. We

will not use this definition. In this thesis a circular random variable is just a random
variable with pdf that has support on [−1/2, 1/2). The utility of this is that we have
not separated circular random variables from regular random variables in any way.
Sometimes it will be convenient to think of a circular random variable as simply
a random variable that returns values in [−1/2, 1/2) and other times it will be more
natural to think of a circular random variable as describing angles wrapped around a
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circle. By not making any severe distinction between circular random variables and
regular random variables we are able to switch between these two mindsets freely
without any notational baggage. If we want to consider f as a periodic function we
will use f(〈x〉) that is clearly periodic with period one for x ∈ R.

So, a circular random variable comes with all the properties of a regular ran-
dom variable. For example, if Θ is a circular random variable with pdf f then its
expectation is given in the usual way by

E[Θ] =

∫ ∞
−∞

θf(θ)dθ =

∫ 1/2

−1/2

θf(θ)dθ

and the expected value of a function g(Θ) of Θ is given in the usual way by

E[g(Θ)] =

∫ ∞
−∞

g(θ)f(θ)dθ =

∫ 1/2

−1/2

g(θ)f(θ)dθ.

This leads to the usual definitions of mean and variance for a circular random
variable as

E[Θ] and var[Θ] = E[Θ2]− E[Θ]2.

A little thought must be given here. The mean E[Θ] does not necessarily correspond
to the mean direction of Θ in the sense the reader might expect. This is because
the mean E[Θ] ignores the fact that, for example, the angles −0.49 and 0.49 are
actually close to one another on the circle. In Section 5.2 and 5.2.2 we will consider
different quantities called the circular mean and the unwrapped mean that do
correspond with our intuitive notion of mean direction.

In this thesis we will quite often use the mean and variance of a circular random
variable i.e. E[Θ] and var[Θ]. When we want one of the other notions, i.e. the
circular mean and circular variance, or the unwrapped mean and unwrapped variance
we will always state these names in full. This is in contrast to much of the circular
statistics literature that uses the terms mean and variance to refer to the circular
mean and circular variance.

Plotting a circular probability density function

We will consider two ways of plotting the pdf of a circular random variable, one called
an unwrapped distribution plot and another called a circular distribution
plot. Both of these plots are displayed in Figure 5.1. On the left is the unwrapped
distribution plot. This is the usual way to plot a pdf on the real line. The value of
the pdf is displayed on the vertical axis and the pdf takes nonzero values only on
the interval [−1/2, 1/2). It is important to remember that −1/2 and 1/2 are connected
and this notion is lost in the unwrapped distribution plot. This problem is amended
by the circular distribution plot displayed on the right. Here the value of the pdf
is given by the distance of the curve from the origin. In both plots the two dotted
lines display the minimum and maximum values of the pdf.
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Figure 5.1: Two ways to plot a circular distribution. On the left is the unwrapped
distribution plot and on the right the circular distribution plot. The pdf in this figure is
bimodal.

5.2 The ‘mean’ and ‘variance’ of a circular ran-

dom variable

The intuitive notion of a ‘mean’ and a ‘variance’ for a circular random variable
is not as neatly defined as it is for regular random variables on the real line. To
see why this might be the case, consider Figure 5.2. Here we have plotted 100 data
points on a circle. The plot on the left has points bunched around 1/6 and we would
likely conclude that the average or mean direction of the data points is about 1/6.
However, the plot on the right shows points that are roughly uniformly spread around
the circle. What is the mean direction of these data points? Should we conclude that
these points have no mean? We will consider two different definitions, the circular
mean and the unwrapped mean that provide some answers to these questions.
We will also consider analogous notions of variance that measure the spread of the
data points, these are the circular variance and unwrapped variance.

5.2.1 The circular mean and circular variance

Given a circular random variable with pdf f(θ) the most common analogue of ‘mean’
and ‘variance’ in the literature is the circular mean given by

µcirc =
∠c
2π

and the circular variance given by

ν = 1− |c|

where c is a complex number given by the integral

c =

∫ 1/2

−1/2

e2πjθf(θ)dθ, (5.2.1)
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0−0.50

1/6

−0.5

Figure 5.2: Two plots of 100 data points on a circle. For the plot on the left the
points are bunched around 1/6 and we would likely conclude that the points have a mean
direction of 1/6. However, the points on the right the right appear roughly uniformly
spread and we would likely conclude that the points have no clear mean direction.

and j =
√
−1 and ∠c and |c| are respectively the complex argument and the magni-

tude of c. It is interesting to consider the case when c = 0. In this case the circular
variance is equal to 1 but the circular mean is not well defined because we are not
sure what the complex argument of zero should be. In this thesis we will simply say
that the distribution has no circular mean when c = 0.

For example, consider again the uniformly spaced data points displayed on the
right in Figure 5.2. These points have been generated using the circular uniform
distribution which has pdf as displayed in Figure 5.3. From the symmetry of this
distribution it can be seen that the value of c given by the integral from (5.2.1)
will be zero and we therefore conclude that this distribution has no circular mean.
This result conforms well with our intuition because we were hesitant to prescribe
a circular mean to the uniformly spread data points.

The circular uniform distribution is not the only case where the circular mean
is undefined. Consider, for example, the bimodal pdf displayed in Figure 5.4. The
symmetry of this bimodal pdf clearly ensures that c = 0. It is tempting to conclude
that this distribution has two circular means, and this definition is potentially pos-
sible. However, in this thesis we will say that this distribution has no circular mean.
To stress this point we make the following formal definition of the circular mean.

Definition 5.1. (Circular mean) Let Θ be a circular random variable with proba-
bility density function f and let c be given by the integral from (5.2.1). Then Θ has
circular mean equal to µcirc = ∠c

2π
if and only if c 6= 0. Otherwise, if c = 0, we say

that Θ has no circular mean.

5.2.2 The unwrapped mean and unwrapped variance

Alternatives to the circular mean and variance are the unwrapped mean and
unwrapped variance. Before we define these note that if Θ is a circular random
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Figure 5.3: The circular uniform distribution which has no circular mean and no
unwrapped mean.
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Figure 5.4: A bimodal distribution with no circular mean and no unwrapped mean.

variable then for some φ ∈ R the random variable given by 〈Θ + φ〉 is a rotated
version of Θ. That is, if f(θ) is the pdf of Θ then f(〈θ − φ〉) is the pdf of 〈Θ + φ〉
and if we displayed these pdfs using a circular distribution plot we would see that
f(θ − φ) is a rotated version of f(θ). As an example, consider Figure 5.5 which
displays the pdf of a random variable Θ and the rotated random variable 〈Θ + 1/4〉.

Let Θ be a circular random variable. The unwrapped mean of Θ is defined as
the angle µunwrap such that the rotated random variable 〈Θ− µunwrap〉 has minimum
variance (in the usual sense), that is, the unwrapped mean is defined as

µunwrap = arg min
µ∈[−1/2,1/2)

var 〈Θ− µ〉

= arg min
µ∈[−1/2,1/2)

∫ 1/2

−1/2

〈θ − µ〉2 f(θ)dθ. (5.2.2)
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Figure 5.5: The pdf of a circular random variable Θ (left) and the pdf of the rotated
random variable

〈
Θ + 1

4

〉
.

The unwrapped variance of Θ is the variance of 〈Θ− µunwrap〉, that is

σ2 = var 〈Θ− µunwrap〉 =

∫ 1/2

−1/2

〈θ − µunwrap〉2 f(θ)dθ.

Intuitively the unwrapped mean is such that the pdf of the rotated random variable
〈Θ− µunwrap〉 is mostly centered around zero.

For some circular distributions the minimisation that defines the unwrapped
mean might not be unique. For example, consider the bimodal probability density
function depicted in Figure 5.4 for which there would by two minima, one at 1/4 and
one at −1/4. In this case we say that the distribution has no unwrapped mean.

Definition 5.2. (Unwrapped mean) Let Θ be a circular random variable with
pdf f . Then Θ has unwrapped mean equal to µunwrap if and only if the minimisation
from (5.2.2) is unique. Otherwise Θ has no unwrapped mean.

A circular random variable, Θ, with zero unwrapped mean, i.e. µunwrap = 0, has
the special property that the unwrapped mean is equal to the mean, that is

µunwrap = E[Θ] = 0 (5.2.3)

and the unwrapped variance is equal to the variance, that is

σ2 = var[Θ]. (5.2.4)

The above properties will be quite useful in later chapters where will model noise
processes as circular random variables with zero unwrapped mean.

5.2.3 Relationships between the circular and unwrapped
mean

In general the unwrapped mean and the circular mean are different. In fact it is
reasonably easy to construct distributions which have a circular mean but do not
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have an unwrapped mean and other distributions which have an unwrapped mean
but do not have a circular mean. However, for some distributions both means
are defined and they are also equal. We call such distributions unimean. It is
potentially feasible to classify all unimean distributions, but such a task is beyond
the scope of this thesis. We do, however, find a particular class of useful circular
distributions that are unimean. These are described in the next theorem.

Theorem 5.1. Let Θ be a circular random variable with piecewise continuous pdf
f(θ) that attains its maximum at 0 with f(0) > 1 and f even and nondecreasing on
[−1/2, 0]. Then:

1. Θ is unimean with circular and unwrapped means equal to zero.

2. For every φ ∈ R the rotated random variable 〈Θ + φ〉 is unimean with circular
and unwrapped mean equal to φ.

Before we begin the proof, it is worth noting that this result is quite intuitively
obvious as the requirements placed on f force it to be bunched in a symmetric
manner about zero. Notice that because f is even and nondecreasing on [−1/2, 0]
then it is also non increasing on [0, 1/2). Combining this with the fact that f(0) > 1

immediately implies that f(−1/2) < 1 otherwise the integral
∫ 1/2

−1/2
f(θ)dθ would not

equal one.

Notice that the requirements automatically include distributions that are even
and unimodal and symmetric with mode at zero, but they also include distributions
with flat pieces. We have deliberately included flat pieces in order to allow for a
particular circular distribution called the wrapped uniform distribution that we
will describe in Section 5.5. Finally, notice that the requirements of the theorem
do not include the circular uniform distribution (Figure 5.3) because the circular
uniform distribution has f(0) equal to one but not greater than one.

In later chapters we will want to use circular random variables to model noise
processes and we find that the class of distributions described by this theorem covers
all of the types of distributions we need. We will now prove the theorem.

Proof. Statement (2) follows directly from statement (1) because if Θ has circular
mean µcirc and unwrapped mean µunwrap then the rotated circular random variable
〈Θ + φ〉 has circular mean 〈µcirc + φ〉 and unwrapped mean 〈µunwrap + φ〉. It remains
to prove statement (1).

We will first prove that the circular mean µcirc = ∠c
2π

is zero. It suffices to show
that the integral

c =

∫ 1/2

−1/2

e2πiθf(θ)dθ

is a positive real number. Breaking the integral into real and imaginary parts we
obtain

c =

∫ 1/2

−1/2

cos(2πθ)f(θ)dθ + j

∫ 1/2

−1/2

sin(2πθ)f(θ)dθ.
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Now, because f is even and sin(·) is odd then the imaginary part of c is zero. Also
because f is nondecreasing of [−1/2, 0] and f(−1/2) < 1 the integral∫ 0

−1/2

cos(2πθ)f(θ)dθ > 0

because cos(·) is increasing and odd about −1/4 on the interval [−1/2, 0]. Now as
cos(·) and f are even c is equal to twice the integral above and therefore c > 0 and
∠c = 0 and the circular mean is equal to zero.

We will now prove that the unwrapped mean is also zero. The approach we take
is similar to Lemma 1 from Quinn [2007] and also Lemma 3 from McKilliam et al.
[2010a]. We need to show that the integral

g(µ) =

∫ 1/2

−1/2

〈θ − µ〉2 f(θ)dθ

is uniquely minimised at µ = 0. Firstly note that because f is even and 〈−x〉 =
−〈x〉, i.e. the fractional part function is odd, we have

g(−µ) =

∫ 1/2

−1/2

〈θ + µ〉2 f(θ)dθ =

∫ 1/2

−1/2

〈−θ + µ〉2 f(θ)dθ = g(µ)

and therefore g is even. Now, if µ ≥ 0 then

〈θ − µ〉 =

{
θ − µ, if θ > −1/2 + µ

θ − µ+ 1, if θ < −1/2 + µ

and g is given by

g(µ) = g(−µ) =

∫ 1/2

−1/2+µ

(θ − µ)2f(θ)dθ +

∫ −1/2+µ

−1/2

(θ − µ+ 1)2f(θ)dθ

= g(0) + µ2 − µ
∫ 1/2

−1/2

θf(θ)dθ +

∫ −1/2+µ

−1/2

(1− 2µ+ 2θ)f(θ)dθ

= g(0) + µ2 +

∫ −1/2+µ

−1/2

(1− 2µ+ 2θ)f(θ)dθ

where the integral
∫ 1/2

−1/2
θf(θ)dθ is equal to zero because f is even. Now, when µ > 0,

by differentiating g with respect to µ we obtain

g′(µ) = 2µ− 2

∫ −1/2+µ

−1/2

f(θ)dθ (5.2.5)

= 2µ− 2F (µ− 1/2)

where F is the cumulative distribution function (cdf) of Θ. Since f is even and
non-decreasing on [−1/2, 0), F (−1/2) = 0, F (0) = 1/2 and F (µ − 1/2) is convex on
[0, 1/2). Also because f(−1/2) < 1 it follows that F is strictly convex on [0, 1/2). So g
is monotonically increasing on [0, 1/2) and, being even, is monotonically decreasing
on [−1/2, 0). Therefore g is uniquely minimised at zero and the unwrapped mean is
equal to zero.
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In the remaining sections we describe a number of circular distributions that are
common in the literature. We will find that under the right conditions, these distri-
butions are unimean. We start with perhaps the best known circular distribution,
the von Mises distribution.

5.3 The von Mises distribution

The von Mises distribution is probably the most commonly used distribution in the
circular statistics literature [Mardia and Jupp, 2000, page 36]. The distribution is
always unimodal and symmetric and therefore, by Theorem 5.1, it is also unimean.
We denote the von Mises distribution by VonMises(µ, κ) where the circular mean
and unwrapped mean is given by µ and κ is a concentration parameter that decreases
with increasing circular and unwrapped variance. The probability density function
is given by

f(θ) =
eκ cos(2π(θ−µ))

I0(κ)

were I0(·) is the zeroth order modified Bessel function and the circular variance is
given by

1− I1(κ)

I0(κ)
.

There does not appear to be a closed-form for the unwrapped variance, but it can
be computed numerically. The distribution approaches the normal distribution as
κ → ∞ and the circular uniform distribution as κ → 0. This effect is shown in
Figures 5.6 to 5.8.

5.4 The wrapped normal distribution

The wrapped normal distribution, denoted WrappedNormal(m,σ2
g), is constructed

by taking the normal distribution with mean m and variance σ2
g on the real line and

wrapping it around the circle [Mardia and Jupp, 2000, page 50]. The pdf is then

f(θ) =
∑
k∈Z

fg(x+ k)

where fg is the pdf of the normal distribution on the real line with mean m and
variance σ2

g . The wrapped normal is symmetric and unimodal for all m and σ2
g , so

it follows from Theorem 5.1 that it is also unimean for all m and σ2 [Stadje, 1984;
Wintner, 1947; Lévy, 1939]. The circular and unwrapped mean are given by 〈m〉 and
the circular variance is given by 1 − eσ2

g/2 [Fisher, 1993, page 47]. The unwrapped
variance is given by the infinite sum

1

12
+

1

π2

∞∑
k=1

(−1)k

k2
e−2π2σ2

gk
2

.

The coefficients in the sum converge quite quickly, so a close approximation can be
obtained by summing only the first few terms.
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Figure 5.6: von Mises pdf where µ = 0 and κ = 5
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Figure 5.7: von Mises pdf where µ = 0 and κ = 0.5
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Figure 5.8: von Mises pdf where µ = 0 and κ = 0.05
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The distribution converges to the normal with mean 〈m〉 as σ2
g → 0 and to the

circular uniform distribution as σ2
g →∞. This effect is shown in Figures 5.9 to 5.11.

5.5 The wrapped uniform distribution

The wrapped uniform distribution, denoted WrappedUniform(m,σ2
u), is constructed

by taking the uniform distribution with mean m and variance σ2
u on the real line

and wrapping it around the circle. The pdf is then

f(θ) =
∑
k∈Z

fU(x+ k)

where fU is the pdf of the uniform distribution on the real line with mean m and
variance σ2

u. In this thesis we will only have use of the case when m = 0 and
σ2
u < 1/12. In this case no wrapping occurs and the distribution looks like the uniform

distribution on the real line (Figure 5.13). Also, in this case, the distribution is
unimean with circular and unwrapped mean 0, unwrapped variance σ2

u and circular
variance given by

1− sin(2r)

2r

where r =
√

3πσu.

5.6 Projected circular distributions

A common way to construct a circular random variable is to take a complex random
variable and project it onto the unit circle. We call these projected circular dis-
tributions. If X is a complex random variable with pdf fC then the corresponding
projected circular random variable Θ is given by the complex argument of X divided
by 2π, that is

Θ = 1
2π
∠X.

The pdf of Θ is given by

f(θ) =

∫ ∞
0

rfC
(
re2πiθ

)
dr.

Projected circular distributions will be particularly useful in Chapter 9 and 10
when we consider frequency estimation and polynomial phase signals. In these
chapters we will be particularly interested in distributions that are unimean. The
next theorem describes a large class of unimean projected circular distributions. The
methodology behind this proof and the statement of the theorem is due to Barry
Quinn, but any mistake or omission is the author’s alone.

Theorem 5.2. Let X be the complex random variable given by

X = 1 + Ze2πjΦ
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Figure 5.9: Wrapped normal pdf where m = 0 and σ2
g = 0.02
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Figure 5.10: Wrapped normal pdf where m = 0 and σ2
g = 0.1
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Figure 5.11: Wrapped normal pdf where m = 0 and σ2
g = 0.2
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Figure 5.12: Wrapped uniform pdf with m = 0 and σ2
u = 0.15
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Figure 5.13: Wrapped uniform pdf with m = 0 and σ2
u = 0.04. No wrapping occurs

because σ2
u ≤ 1/12.

where Z and Φ are independent random variables. Let Z have pdf fZ(z) with support
on the positive reals such that z−1fZ(z) is non increasing and continuous and dif-
ferentiable in z. Let Φ be uniformly distributed on [−1/2, 1/2), i.e. Φ has the circular
uniform distribution and let Θ be the projected circular random variable

Θ =
1

2π
∠X.

Then Θ is symmetrically distributed about 0, and unimodal with mode at 0, and Θ
is unimean with circular and unwrapped means equal to 0.

Before we begin the proof note that the requirement for z−1fZ(z) to be non
increasing implies that the probability density function of Ze2πjΦ decreases as we
move away from the origin. That is, the pdf of Ze2πjΦ in rectangular coordinates is
given by z−1fZ(z), where z =

√
x2 + y2 and x and y denotes the real and imaginary

parts of Ze2πjΦ, and this pdf is non increasing with z. For example, the zero mean
complex Gaussian distribution with independent real and imaginary parts satisfies
this requirement.
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Proof. The fact that Θ is unimean will follow from Theorem 5.1 after we show that
Θ is symmetric and unimodal. The probability density function of Θ can be shown
to be

f(θ) =

∫ ∞
0

r√
r2 − 2r cos 2πθ + 1

fZ

(√
r2 − 2r cos 2πθ + 1

)
dr.

Note that f is continuous because fZ is continuous. Also f is even because cos(·) is
even and therefore f is symmetric about zero, so it only remains to show that f is
unimodal with mode at zero.

Let a = cos 2πθ, so a ∈ [−1, 1] and θ = 0 when a = 1 and as a decreases from
1 to −1 the magnitude |θ| increases. Let z =

√
r2 − 2ra+ 1 and note that z ≥ 0

with equality only when r = 1 and a = ±1 or a = 0. The term inside the integral
asymptotes when z is equal zero so is not differentiable at these points. For now
assume that a is not 0 or ±1 to avoid these asymptotes. Differentiating f with
respect to a we obtain

d

da
f =

∫ ∞
0

−r
2

z

d

dz

(
fZ(z)

z

)
dr.

Now because z−1fZ(z) is non increasing in z and because z and r are positive the
term inside the integral above is always positive. Therefore the integral is positive
and f is increasing with a. The magnitude |θ| increases as a decreases so z is
decreasing with |θ|. It remains to show that no jump discontinuities occur in z
when a = ±1 or a = 0, i.e. when θ = ±1/2 for θ = 0, but this is trivially the case
due to the continuity of f . Therefore, as f(θ) is decreasing with |θ| and f(θ) is
continuous we see that f(θ) is unimodal with mode at θ = 0.

It is easy to see that this theorem extends to the case where X = c+Ze2πjΦ and
c is any complex number. The circular random variable Θ = 1

2π
∠X will then be

unimodal and symmetric with mode 1
2π
∠c and from Theorem 5.1 we see that Θ will

also be unimean with circular and unwrapped means equal to 1
2π
∠c. We will now

consider a particularly important circular distribution that results from projecting
the complex normal distribution.

5.6.1 The projected normal distribution

The projected normal distribution, denoted ProjectedNormal(s,Σ), is the distribu-
tion of the complex argument (divided by 2π) of a complex normal random variable
with mean s ∈ C and covariance between real and imaginary parts given by the
2 × 2 matrix Σ. This distribution has been extensively studied by [Mardia and
Jupp, 2000, p. 46].

Consider the special case ProjectedNormal(1, σ2
NI) where I is the 2× 2 identity

matrix. It follows immediately from Theorem 5.2 that this distribution is symmetric
and unimodal and unimean with circular and unwrapped mean 0. The pdf is given
by Quinn [2007] as

f(θ) = e
− 1

2σ2
N + cos(2πθ)e

− sin2(2πθ)

2σ2
N

√
π

2σ2
N

(
1 + erf

(√
σ2
N

2
cos(2πθ)

))
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and the circular variance is given by

1−
√
πν

2
e2ν
(
I0 (ν) + I1 (ν)

)
where ν = (4σ2)−1. The unwrapped variance is required to be numerically evaluated.
It is straightforward to see that

ProjectedNormal(p,Σ) and ProjectedNormal(1, p−2Σ)

are equivalent for any p > 0. We will have use of this distribution in Chapters 6, 9
and 10 where it will be used for modeling noise processes.

5.7 Summary

In this chapter we have introduced the field of circular statistics that aims to describe
the nature of data that is measured in angles, or unit vectors. In Section 5.1 we
defined circular random variables as random variables that have a probability density
function with support on [−1/2, 1/2). We considered the usual mean of a circular
random variable and showed that it does not map well to our intuitive sense of
mean direction. To solve this problem we described the circular mean, that is
common in the literature, and the unwrapped mean that is less common. Both
the circular and unwrapped means have intuitively appealing definitions and both
map well to our intuitive sense of mean direction.

In Section 5.2.3 we considered some relationships between the unwrapped mean
and the circular mean. The two means are not in general equal and for some dis-
tributions they are not even defined. In Theorem 5.1 we described a large class of
circular distributions that have equal unwrapped and circular means and we called
such distributions unimean. We will have particular interest in unimean distribu-
tions in the following chapters where they will be used to model noise processes.

In Sections 5.3 and 5.4 we considered two popular unimean circular distributions,
the von Mises distribution and the wrapped normal distribution. In Sec-
tion 5.5 we consider the wrapped uniform distribution that is unimean under
certain assumptions about its unwrapped mean and variance.

In Section 5.6 we considered projected circular random variables. These are
the result of taking the complex argument (divided by 2π) of a random variable
in the complex plane. Projected circular distributions will be of particular interest
in Chapters 9 and 10 when we consider the problems of frequency estimation and
polynomial phase estimation. In Theorem 5.2 we described a large class of unimean
projected circular distributions and in Section 5.6.1 we described the projected
normal distribution that results from taking the complex argument of a complex
normal random variable. This distribution is probably the most common and useful
of all projected circular distributions. We find some conditions under which the
projected normal is unimean with zero unwrapped and circular means.

In the next chapter we consider methods for estimating the circular and un-
wrapped means of a circular random variable from a set of observations. We de-
scribe accurate and computationally efficient methods for estimating both means.
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The technique we describe for estimating the unwrapped mean is based on comput-
ing a nearest lattice point in the lattice A∗n.
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—Tell me, what is the practical use of all of this?

Kimberley Nunes

6
Estimating direction

One of the most fundamental tasks in statistics and estimation theory is estimating
the mean of a random variable given a set of observations. Accordingly two of the
most important results in statistics are the law of large numbers, that asserts
we can obtain an accurate estimate of the mean from a sufficiently large number
of observations, and the central limit theorem that describes how accurate this
estimate will be.

It is not surprising that one of the fundamental tasks in circular statistics is
estimating the mean direction of a circular random variable from a set of observa-
tions. This is the topic we consider in this chapter. Estimators of the mean direction
have a wide variety of applications in science and engineering. For example, if you
listen to the weather report you are often told (an estimate of) the direction of the
wind. Obtaining an accurate estimate requires a method for accurately estimating
the mean wind direction from a number of observations of the wind direction. This
task is not as straightforward as it might initially seem.

The notorious wrapping problem

Consider making N observations Θ1,Θ2, . . . ,ΘN of a circular random variable. We
would like to estimate the mean direction of the observations. A näıve approach
is to take the usual estimate of the mean, that is by taking the average over the
samples

1

N

N∑
n=1

Θn.

Obvious problems arise. Consider when N = 2 and Θ1 = 0.4 and Θ2 = −0.4. The
näıve approach would yield the estimate 0. Intuitively this is wrong and a more
reasonable estimate would be −0.5 (see Figure 6.1).

This is the notorious wrapping problem from meteorology [Fisher, 1993]. The

85
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−0.5 0

Θ1 = 0.4

Θ2 = −0.4

Figure 6.1: Care must be taken when calculating the mean direction. In the figure
there are two observations Θ1 and Θ2. Taking the näıve approach yields (Θ1 + Θ2)/2 = 0,
but clearly a better estimate of the mean direction is −0.5.

problem is that the average produces an estimate of the expected value, or mean
E[Θn], and, as discussed in the previous chapter, this mean does not conform well
with our intuitive notion of mean direction. What we want are estimators for the
circular mean or the unwrapped mean as these conform well with our intuitions.
We consider approaches to estimating the circular mean and unwrapped mean in
this chapter. We will show that for both circular and unwrapped means there are
estimators that satisfy an appropriate strong law of large numbers and a central
limit theorem. Moreover, the estimators are computationally very simple, requiring
a number of operations that is linear in the number of observations, N .

A simple estimator of the circular mean is the sample circular mean and we
describe this in Section 6.1. This is the most common estimator in the circular
statistics literature. If the circular random variable that describes the observations
does not have a circular mean, then this estimator cannot be applied. However, if
the circular mean does exist, then this estimator is strongly consistent (it converges
almost surely to the true circular mean as the number of observations increases)
and we can derive a central limit theorem that describes its accuracy. The estimator
involves summing N complex numbers and therefore requires a number of operations
that is linear in the number of observations, N .

In Section 5.2 we describe an alternative estimator that we call the angular
least squares estimator. This estimates the unwrapped mean of a circular ran-
dom variable and appears to have received little attention in the literature, with the
notable exception of Quinn [2007]. We show that the angular least squares estima-
tor is strongly consistent (it converges almost surely to the true unwrapped mean
whenever it exists) and derive a central limit theorem that describes its accuracy.

It is possible that the angular least squares estimator has been mostly ignored in
the literature due to the (mis)conception that it is difficult to compute. It turns out
that the angular least squares estimator can be computed very efficiently by finding
a nearest lattice point in the lattice A∗N−1. We discovered a linear-time algorithm
to find a nearest point in A∗N−1 in Chapter 3 and it follows that, like the sample
circular mean, computing the angular least squares estimator requires a number of
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operations that is linear in the number of observations, N . One advantage of this
algorithm is that it largely avoids trigonometric operations. Particularly on small
computing devices this is likely to lead to significant computational savings. We
consider some computational differences between the angular least squares estimator
and the sample circular mean in Section 6.7.

In Sections 6.4, 6.5 and 6.6 we consider a number of problems from signal pro-
cessing and communications engineering that can be solved very efficiently and ac-
curately by estimating the circular mean or the unwrapped mean. The first problem
we consider is phase estimation, for which it is rather intuitively obvious that the
sample circular mean or the angular least squares estimators can be applied. Phase
estimation is equivalent to the problem of estimating the single coefficient of a poly-
nomial phase signal of order zero. Therefore this section serves as an introduction to
the more difficult problems of frequency estimation and polynomial phase estimation
that we consider in Chapters 9 and 10.

In Sections 6.5 and 6.6 we consider two problems, the noncoherent detection
of phase-shift-keyed digital signals and delay estimation from incomplete data.
For these problems it is not immediately obvious that circular statistics are required.
However, we show how these problems can be solved very accurately and efficiently
using either the sample circular mean or the angular least square estimators.

6.1 The sample circular mean

To compute the sample circular mean of the observations Θ1, . . . ,ΘN we first convert
the observations to the complex numbers e2πjΘn and take the average

C̄ =
1

N

N∑
n=1

e2πjΘn . (6.1.1)

The sample circular mean estimator is given by

µ̂ =
∠C̄
2π

. (6.1.2)

This estimator has received significant attention in the circular statistics literature.
It is known that the sample circular mean is the maximum likelihood estimator of
the circular mean when the Θn are independent and identically distributed with the
von Mises distribution [Mardia and Jupp, 2000; Fisher, 1993]. The next theorem,
due to Quinn [2010], precisely describes the asymptotic behaviour of this estimator
under some assumptions about the distribution of the Θn.

Theorem 6.1. [Quinn, 2010] Let Θ1,Θ2, · · · ,ΘN be N consequitive observations of
the form

Θn = 〈Φn + µ̃〉

where Φ1, . . . ,ΦN are independent and identical circular random variables with zero
circular mean, circular variance ν and pdf f . Let µ̂ be the sample circular mean
estimator of the Θn. Then:
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1. (Strong consistency) The fractional part 〈µ̂− µ̃〉 → 0 almost surely as the
number of observations N →∞.

2. (Central limit theorem) The distribution of
√
N 〈µ̂− µ̃〉 approaches the normal

with zero mean and variance

σ2
s

4π2(1− ν)2

where

σ2
s =

∫ 1/2

−1/2

sin2(2πθ)f(θ)dθ.

Before we give the proof note that the theorem places conditions on the frac-
tional part of the difference, i.e. 〈µ̂− µ̃〉, between the true circular mean µ̃ and the
estimated circular mean µ̂ rather than directly on the difference µ̂− µ̃. This makes
intuitive sense because the angles µ̃ and µ̃+ k are equivalent for any integer k (see
Figure 6.1). We will find that a similar condition must be imposed for the purpose
of polynomial phase estimation in Chapter 8. The theorem guarantees that 〈µ̂− µ̃〉
converges whenever the circular mean is defined.

Computing the asymptotic variance given by the theorem requires calculating
σ2
s . In general this can be numerically evaluated, but for some circular distributions

reasonably simple expressions can be found. It has been shown by Quinn [2010] that
when Φn has the VonMises(0, κ) distribution

σ2
s

(1− ν)2
=

I0(κ)

κI1(κ)

and when Φn has the ProjectedNormal(1, σ2I) distribution

σ2
s

(1− ν)2
=

8σ4 (e2ν − 1)

π (I0 (ν) + I1 (ν))2

where ν = (4σ2)−1. It is also straightforward to show that when Φn has the
WrappedUniform(0, σ2) distribution, where σ2 < 1/12, then

σ2
s

(1− ν)2
=

4r2 − r sin(4r)

2 sin2(2r)
,

where r =
√

3πσ. A closed-form expression for the wrapped normal distribution
does not appear to exist and in this case we resort to numerical evaluation. We will
now prove the theorem.

Proof. From (6.1.1) and (6.1.2) we obtain

µ̂ =
1

2π
∠

(
N−1

N∑
n=1

e2πj〈µ̃+Φn〉

)

=
1

2π
∠

(
e2πjµ̃N−1

N∑
n=1

e2πjΦn

)
.
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Subtracting µ̃ from both sides and taking fractional parts

〈µ̂− µ̃〉 =
1

2π
∠

(
N−1

N∑
n=1

e2πjΦn

)
.

The Φn have zero circular mean so the expectation E[e2πjΦn ] = 1 − ν is a positive
real. By the strong law of large numbers

N−1

N∑
n=1

e2πjΦn → E[e2πjΦn ] = 1− ν

almost surely as N goes to infinity, and because ∠(1−ν) = 0 then 〈µ̂− µ̃〉 converges
almost surely to zero as N goes to infinity. This completes the proof of strong
consistency.

To prove the central limit theorem let

1− ν +X = N−1

N∑
n=1

cos(2πΦn) and Y = N−1

N∑
n=1

sin(2πΦn)

denote the real and imaginary parts of N−1
∑N

n=1 e
2πjΦn . We will use OP and oP

to denote variables that converge in probability as N → ∞. Then both X and Y
are OP (N−1/2) and

√
NY converges to the normal with zero mean and variance σ2

s .
Now,

√
N 〈µ̂− µ̃〉 =

√
N

2π
∠

(
1 +

X + jY

1− ν

)
=

√
N

2π

(
Y

1− ν
+OP (N−1)

)
=

√
NY

2π(1− ν)
+OP (N−1/2)

follows by taking a first order approximation of the arctangent function. So,
√
N 〈µ̂− µ̃〉

converges in probability to
√
N

2π
Y

1−ν and therefore converges in distribution to the nor-

mal with zero mean and variance σ2
s

4π2(1−ν)2
.

6.2 Angular least squares

We now describe the angular least squares estimator of the unwrapped mean. We
define the sum of squares function

SS(µ) =
N∑
n=1

〈Θn − µ〉2.

The angular least squares estimator is defined as the minimiser of SS(µ). Intuitively
this estimator chooses the angle µ̂ such that the rotated random variables 〈Θn − µ̂〉
are closest to zero.
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The angular least squares estimator can be computed very quickly by finding a
nearest point in the lattice A∗N−1. To see this write the sum of squares function SS
as

SS(µ) =
N∑
n=1

(Θn − µ−Wn)2

where Wn are integers given by dΘn − µc. The Wn are called wrapping variables
because they describe how the Θn − µ wrap around the circle. If we consider the
Wn as nuisance parameters to be estimated then we may write SS as a function
of both µ and the Wn. The angular least squares estimator can then be found by
minimising over both µ and the Wn. It may at first appear that we have just made
this problem very hard for ourselves. There was only one variable, µ, to minimise
over and now there are N + 1 variables, µ and all of the W1, . . . ,WN . However,
we will show how this joint minimisation problem can be solved very efficiently by
computing a nearest point in the lattice A∗N−1. Write SS as a function of µ and the
Wn using vectors as

SS(µ,w) = ‖θ − µ1−w‖2

where θ = [Θ1, . . . ,ΘN ]† and w = [W1, . . . ,WN ]† and where 1 is the all ones vector1.
Fixing w and minimising with respect to µ gives

µ̂ =
(θ −w) · 1

1 · 1
. (6.2.1)

Substituting this into SS(µ,w) gives SS(µ,w) conditioned on minimisation with
respect to µ as

min
µ
SS(µ,w) = SS(w) = ‖Qθ −Qw‖2

where Q is the orthogonal projection matrix into the space orthogonal to the all ones
vector 1. We saw in Section 3.3.1 how this projection matrix is related to a generator
for A∗N−1. It follows that Qw is a lattice point in A∗N−1 and that minimising SS(w)
is equivalent to finding the nearest lattice point in A∗N−1 to Qθ. We may use any
of the algorithms described in Section 3.5.2 to compute the nearest point, which
we denote Qŵ. Once ŵ has been found, the estimate µ̂ is given by substituting ŵ
for w in (6.2.1). Noting that the nearest point can be found in O(N) operations
this estimator can thus be computed in linear-time. The next theorem describes the
asymptotic behaviour of this estimator.

Theorem 6.2. Let Θ1,Θ2, · · · ,ΘN be N consequitive observations of the form

Θn = 〈Φn + µ̃〉

where Φ1, . . . ,ΦN are independent and identical circular random variables with zero
unwrapped mean, unwrapped variance σ2 and pdf f . Let µ̂ denote angular least
squares estimator of the Θn. Then:

1We have slightly abused notation here by reusing SS. This should not cause any confusion as
SS(µ) and SS(µ,w) are easily told apart by their inputs.
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1. (Strong consistency) The fractional part 〈µ̂− µ̃〉 → 0 almost surely as the
number of observations N →∞.

2. (Central limit theorem) If the periodic function f(〈x〉) is continuous at x =
−1/2 and f(−1/2) 6= 1 then the distribution of

√
N 〈µ̂− µ̃〉 approaches the

normal with zero mean and variance

σ2(
1− f(−1/2)

)2 . (6.2.2)

Proof. This theorem follows as a special case of Theorem 8.1 that we will prove in
Chapter 8. An alternative proof is also given by Quinn [2007].

This theorem asserts that the fractional part 〈µ̂− µ̃〉 converges whenever the
unwrapped mean is defined. For the central limit theorem we require some extra
assumptions about the pdf f of the Φn. The formula given for the asymptotic
variance only holds when the periodic function f(〈x〉) is continuous at x = −1/2

and if f(−1/2) 6= 1. If these conditions are not met then other expressions for the
asymptotic variance can be found, but this comes at a rather substantial increase
in complexity, so we have opted to omit them. Circular distributions that do not
satisfy these requirements are somewhat pathological and it is highly unlikely that
they would be needed in practice. For all of the distributions considered in this
thesis these requirements hold.

6.3 Comparing the two estimators

In this section we compare the angular least squares and the sample circular mean
estimators. It is important to realise that, in general, these are estimators of different
quantities. Angular least squares estimates the unwrapped mean, while the sample
circular mean estimates the circular mean. For circular distributions that have
different circular and unwrapped means, this would make a comparison somewhat
meaningless. However, comparisons can be made for circular distributions with
equal circular and unwrapped means, i.e. unimean distributions.

The unimean distributions that we will consider are the von Mises, projected
normal, wrapped Gaussian and wrapped uniform distributions that were described
in Chapter 5. As a general rule of thumb we find that the sample circular mean
is slightly more accurate when the distribution is ‘von Mises-like’ and the angular
least squares estimator is more accurate when the distribution is ‘uniform-like’.

Figures 6.2 and 6.3 display the sample mean square error (MSE) of the estima-
tors when the number of observations is N = 1, 4, 16, 64, 256, 1024 and 4096. The
quantity displayed on the horizontal axis is the unwrapped variance of the random
variable being estimated. For each value of unwrapped variance T = 4000 trials were
run to obtain T separate estimates µ̂1, . . . , µ̂T . The sample MSE is then computed
by averaging the squared fractional parts according to

1

T

T∑
t=1

〈µ̂t − µ̃〉2 .
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Figure 6.2 displays the MSE when the observations are sampled from the von
Mises distribution. The sample circular mean performs slightly better in this case.
This is perhaps not surprising as it is known that the sample circular mean is
the maximum likelihood estimator of the circular mean (and hence the unwrapped
mean) of the von Mises distribution Mardia and Jupp [2000]. Figure 6.3 displays
the MSE when observations are sampled from the wrapped uniform distribution.
For this distribution, angular least squares is more accurate. Both figures display
the asymptotic variances predicted in Theorems 6.1 and 6.2. The predictions are re-
markably accurate for both the von Mises and the uniform distribution, particularly
when N is large.

In the next sections we will consider some practical signal processing problems
to which these estimators can be applied. These are phase estimation, detection
of phase-shift-keyed digital signals and delay estimation. These applications
will motivate the use of the projected normal and wrapped normal distributions.

6.4 Phase estimation

A problem closely related to estimating the circular mean is that of phase estima-
tion. Here, the model will motivate the use of the projected circular distribu-
tions that we introduced in Section 5.6. This section also serves as a introduction
to the more complicated problems of frequency estimation and polynomial phase
estimation that we consider in Chapters 9 and 10. Consider observing N complex
random variables Y1, Y2, . . . , YN of the form

Yn = ρe2πjµ̃ +Xn

where ρ > 0 is an unknown amplitude and X1, . . . , XN are zero mean, independent
and identically distributed complex random variables. We wish to estimate the
phase parameter µ̃. An obvious approach is the least squares estimator of µ̃ that is
given by ∠Ȳ /(2π) where Ȳ =

∑N
n=1 Yn is the mean of the Yn.

An alternative approach is to discard the magnitude of the Yn and consider only
the phases ∠Y1, . . . ,∠YN . Dividing the phases by 2π we obtain the circular random
variables

Θn =
∠Yn
2π

=
∠
(
ρe2πjµ̃ +Xn

)
2π

= 〈µ̃+ Φn〉 (6.4.1)

where the Φ1, · · ·ΦN are circular random variables related to the Xn by

Φn =
∠(ρ+Xn)

2π
.

The Φn are projected circular random variables and if the ρ+Xn satisfy the require-
ments of Theorem 5.2 then the Φn will be unimean with zero circular and unwrapped
means. That is, if the Xn are zero mean complex random variables with pdf that is
non increasing with the magnitude |Xn| and is independent of the argument ∠Xn

then the Φn are unimean with zero circular and unwrapped means. Under these
assumptions we see that µ̃ can be estimated as either the circular or the unwrapped
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Figure 6.2: MSE versus unwrapped variance when f(x) is the von Mises distribution.
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Figure 6.3: MSE versus unwrapped variance when f(x) is the wrapped uniform dis-
tribution.
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mean of the Θn. We can use either the sample circular mean or the angular least
squares estimator.

In Figure 6.4 we plot the MSE of both the least squares estimator, the sample cir-
cular mean estimator and the angular least squares estimator forN = 1, 4, 16, 64, 256, 1024
and 4096. For this simulation we have set the amplitude ρ = 1 and the Xn are in-
dependent and identical with zero mean complex Gaussian random variable with
independent real and imaginary parts having variance σ2

c . Under this assumption
the least squares estimator, given by ∠Ȳ /(2π), is also the maximum likelihood (ML)
estimator and the Cramer Rao lower bound (CRB) is given by

σ2
c

4ρ2π2N
. (6.4.2)

Also, the Φn take the ProjectedNormal(1, σ2
cΣ) distribution. It is clear from Fig-

ure 6.4 that the maximum likelihood estimator gives the best performance, closely
followed by the sample circular mean and then the angular least squares estima-
tor. We have plotted the asymptotic variance as predicted by Theorems 6.1 and 6.2
which can be seen to closely model the behaviour of the sample circular mean and
the angular least squares estimators, particularly when N is large. The CRB (6.4.2)
is also plotted and it can be seen that the maximum likelihood estimator gives a
mean square error very close to the CRB.

It may seem that discarding the amplitudes and estimating the circular (or
unwrapped) mean is somewhat contrived in this case, particularly in view of the
fact that the least squares estimator performs so well and is simple to compute.
In practice we recommend using the least squares estimator for phase estimation.
However, in Chapter 10 when we consider polynomial phase signals, the equivalent
least squares estimator will be hopelessly computationally expensive. In this case,
discarding the amplitudes can lead to estimators that are significantly less computa-
tionally expensive. In Section 10.4 we will consider using an analogue of the angular
least squares estimator for polynomial phase signals and we find that it produces
remarkably accurate results in only a fraction of the time it takes to compute the
least squares estimator.

6.5 Noncoherent detection of PSK

In this section we will apply the angular least square estimator and the sample
circular mean estimator to the problem of noncoherent detection of data signals
that arise in communications engineering. We will find that the angular least squares
estimator and the sample circular mean are computationally less expensive than
existing techniques and produce virtually identical detection performance.

Consider the transmission of digital signals in an unknown transmission channel
that varies over time. In order to correctly decode a transmitted signal the receiver
must obtain an estimate of the channel. A standard technique for channel estimation
is for the transmitter to send a known signal, called a pilot signal, that can be used
to estimate the channel at the receiver. This is called pilot assisted transmission
and is in regular use in many communications systems. In situations where the
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c for phase estimation in complex Gaussian noise.
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Figure 6.5: The 4 PSK constellation (left) and the 8 PSK constellation (right)

channel varies over time, pilot signals must be transmitted regularly, at a suitable
interval, so that the estimate of the channel remains valid. This suitable interval is
called the coherence interval.

Alternatively, noncoherent detection attempts to estimate the channel and the
data simultaneously, without the need for pilot signals. Noncoherent detection is
particularly applicable to systems with small coherence intervals where the frequent
transmission of pilot signals is wasteful. Such situations typically occur in mobile
communications. Moreover, pilot assisted transmission is, in a sense, inherently
suboptimal because it only uses the energy of a small number of pilot signals for
channel estimation, rather than also exploiting the (typically larger) energy in the
unknown data signals [Chen et al., 2003]. In this section we consider noncoherent
transmission schemes for a particular symbol constellation called M-ary phase-
shift-keying (M -PSK) and when the channel adheres to a model called the block
fading channel model.

The M -PSK constellation contains symbols of the form e2πju/M where u ∈
{0, 1, · · · ,M − 1}. Figure 6.5 is a picture of the 4-PSK constellation and the 8-PSK
constellation in the complex plane. The 4-PSK constellation is often also called the
quadrature-phase-shift-keying (QPSK) or 4-QAM constellation.

The block fading channel model

We consider receiving N symbols from the M -PSK constellation transmitted though
a noisy block fading channel. The received symbols, Y1, Y2, . . . , YN , take the form

Yn = h̃e2πjw̃n/M +Xn (6.5.1)

where h̃ is a complex scalar representing the channel, the X1, . . . , XN are zero mean
complex random variables and the w̃n ∈ {0, 1, . . . ,M − 1} represent the data trans-
mitted. The aim is to estimate the data w̃1, w̃2, . . . , w̃N .
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A number of algorithms have been devised for this purpose. Wilson et al. [1989]
and Makrakis and Feher [1990] both propose algorithms of complexity O(eN). Liu
et al. [1991] describe a suboptimal algorithm that requires O(N2) arithmetic opera-
tions. Warrier and Madhow [2002] describe an approximate least squares algorithm
that they claim to require O(N) operations. It was shown by Sweldens [2001] that
the algorithm actually requires O(N2) operations in order for the approximation to
remain valid as N increases2. Mackenthun [1994] proposed a least squares algorithm
that required O(N logN) arithmetic operations. Later, Sweldens [2001] rediscovered
the same algorithm. Here, we will describe two related algorithms that require only
O(N) arithmetic operations. We will firstly describe the least squares estimator
found by Mackenthun [1994] and Sweldens [2001].

We write the sum of squares function

SSc(h,w1, w2, · · · ) =
N∑
n=1

∣∣Yn − he2πiwn/M
∣∣2

and consider the estimator that returns the minimisers of SSc. Mackenthun [1994]
and Sweldens [2001] showed how the minimisers could be found efficiently. The
computational complexity of this algorithm is dominated by a sorting procedure
and therefore requires O(N logN) operations. It is interesting to note that the
algorithm bears a close resemblance to the log-linear time algorithm for the lattice
A∗n described in Section 3.5.2.

We will consider a different approach that is based on estimating the circular
mean. Let h̃ = ρ̃e2πiµ̃ and compute the complex arguments of the Yn to obtain

Θn =
∠Yn
2π

=

〈
µ̃+

w̃n
M

+ Φn

〉
where the Φn = 1

2π
∠ρ̃+Xn are projected circular random variables. Multiplying

both sides by M and taking fractional parts we obtain

〈MΘn〉 = 〈Mµ̃+MΦn〉 .

Now the Mµ̃ can be estimated as the circular or unwrapped mean of the 〈MΘn〉.
A word of caution here is that there is no guarantee that the 〈MΘn〉 is unimean or
even that the true circular or unwrapped mean is equal to Mµ̃. Worse still, we are
not even sure that 〈MΘn〉 has circular and unwrapped means! The problem is that
we have rewrapped the Θn by multiplying by M and taking the fractional part. It
is likely possible to devise conditions on the Xn such that the 〈MΘn〉 are unimean
with circular and unwrapped means equal to Mµ̃ but we will not consider this in
this thesis.

These somewhat theoretical considerations aside, we will find that, for the noise
distributions of interest for PSK, it appears that applying either the sample circular

2Sweldens [2001] was actually published before Warrier and Madhow [2002]. It appears that
Sweldens was working from a 1999 preprint of Warrier and Madhow [2002] that was available
online.
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mean or the angular least squares estimator to 〈MΘn〉 produces excellent results in
practice. Let Mµ̂ be the estimate obtained. Then the estimate of the data is

ŵn = dMΘn −Mµ̂c remM

where we recall that a rem b is the remainder of a/b.
An important property of noncoherent detection of M -PSK is the ambiguity

between the transmitted data w1, w2, . . . , wN and the transmitted data

(w1 + k) remM, (w2 + k) remM, . . . , (wn + k) remM

for some integer k. This is easily observed from SSc because

SSc(h,w1, w2, . . . ) = SSc(e
−2πk/Mh, (w1 + k) remM, (w2 + k) remM, . . . )

These ambiguities can be resolved by differential encoding and this is the approach
taken here [Weber, 1978; Mackenthun, 1994].

Simulations

Simulations were run to compare the bit error rate (BER) of the least squares esti-
mator, the sample circular mean estimator and the angular least squares estimator
for QPSK (i.e. M = 4) as the signal to noise ratio per bit (Eb/N0) was varied from
2 dB to 10 dB and the number of symbols N was set to 4 and 40. The channel, h̃,
was generated such that h̃ = e2πiµ where µ̃ is uniformly distributed in the range
[0, 1). The noise, Xn, is independent and identically distributed Gaussian complex
noise with independent real and imaginary parts having variance N0/2.

The results are plotted in Figure 6.6. It is evident that there is negligible dif-
ference in performance between the various estimators. All perform better than the
conventional 2-symbol differential detector. As N increases all estimators approach
the performance of differentially encoded 4-PSK when perfect channel knowledge is
available. These results are not surprising. Notice in Figure 6.4 that all of the esti-
mators produce equally good estimates of phase when σ2

c is small. For the signal to
noise ratios of interest in 4-PSK σ2

c is small and therefore the estimators obtain very
similar channel estimates, and therefore have similar BERs. The primary advantage
of the angular least squares and the sample circular mean estimators is that they
require only O(N) rather than O(N logN) operations.

6.6 Delay estimation from incomplete data

Consider sampling the time of arrival of N periodic events with known period T
and some unknown delay T µ̃ and assume that the sampling process is both noisy,
so that the recorded event times do not exactly match the ‘true’ event times, and
sparse, so that some of the events are missed. We may represent the N sample
times, Y1, Y2, . . . , YN , according to the model

Yn = Tw̃n + T µ̃+Xn (6.6.1)
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Figure 6.6: Bit Error Rate (BER) versus Eb/N0.

where T is the period, the w̃n are unknown integers that represent which events were
received and X1, . . . , XN are zero mean random variables. The aim is to estimate
the delay parameter µ̃. This model is depicted in Figure 6.7.

In the case that the w̃n are known a priori the least squares estimator is given
by

µ̂ =
1

N

N∑
n=1

Yn
T
− w̃n = µ̃+

1

NT

N∑
n=1

Xn. (6.6.2)

If the Xn are zero mean independent and identically distributed with variance σ2
g

then the estimator has variance

var (µ̂− µ̃) =
σ2
g

NT 2
. (6.6.3)

We are more interested in the case where the w̃n are unknown. This model occurs
in practice in bit-synchronisation in telecommunications devices [Fogel and Gavish,
1989] and also pulse-train estimation in electronic support [Wiley, 1982]. The model
is a simpler version of the more general problem of estimating both µ̃ and T where T
is assumed to be unknown [Fogel and Gavish, 1988; Clarkson et al., 1996; Clarkson,
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2008; McKilliam and Clarkson, 2008; Sidiropoulos et al., 2005]. This generalisation
is substantially more difficult to analyse and will not be addressed in this thesis.

Dividing (6.6.1) by T and taking fractional parts we obtain the circular random
variables

Θn =

〈
Yn
T

〉
=

〈
w̃n + µ̃+

Xn

T

〉
=

〈
µ̃+

〈
Xn

T

〉〉
= 〈µ̃+ Φn〉

where under appropriate assumptions concerning the Xn, the Φn are circular random
variables with zero circular and unwrapped means. For example if the Xn are
zero mean Gaussian random variables then the Φn are unimean wrapped normal
random variables with zero circular and unwrapped means. If the Xn are uniformly
distributed with zero mean and variance less than T 2

12
then the Φn are wrapped

uniform random variables with zero circular and unwrapped means. In either case
µ̃ can be estimated as the circular or unwrapped mean of the Θn. We can again use
either the angular least squares estimator or the sample circular mean estimator.

Figure 6.8 displays the performance of the estimators when the Xn are assumed
to be independent and identically distributed Gaussian random variables with vari-
ance Tσ2

g . In this case the circular noise terms Φn have the WrappedNormal(0, σ2
g)

distribution. The integer variables w̃n are chosen so that the differences w̃n − w̃n−1

are independent and Poisson distributed with mean 2 and the first integer w̃1 is also
Poisson distribution with mean 2. We see that the sample circular mean performs
slightly better when Tσ2

g is approximately greater than 0.05 and the angular least
squares estimator performs slightly better when Tσ2

c is approximately less than 0.05.
Theorems 6.1 and 6.2 are again excellent predictors for the performance of the esti-
mators. Also displayed is the asymptotic variance of the estimator in the case that
the ũn are known (6.6.3). When Tσ2

g is sufficiently small the estimators perform
very close to the performance attainable when the w̃n are known a priori and there
is little lost by having incomplete data. However, when Tσ2

g is large a significant
performance penalty is paid by having incomplete data.

It is informative to view the pdf of the wrapped normal variables Φn. Figures 5.9,
5.10 and 5.11 show the pdf when σ2

g = 0.02, 0.1 and 0.2. It is clear that f makes
a rather abrupt transition from ‘Gaussian looking’ to ‘uniform looking’ at around
σ2
g ≈ 0.1. It is obviously unreasonable to expect the estimators to perform well when
f is close to the circular uniform distribution and this gives an intuitive explanation
for the results observed in Figure 6.8.

6.7 Computational considerations

Both the sample circular mean and the angular least squares estimator require O(N)
operations to compute. However, we find that in practice the estimators differ some-
what in their computational complexity. The varying complexity depends highly on
the problem at hand and arises largely from the need (or lack of need) to perform
trigonometric operations. The disparity is likely to be more evident on small com-
puting devices where trigonometric operations are expensive.

Firstly, consider the problems of phase estimation and noncoherent detection
discussed in Sections 6.4 and 6.5. Here the N observations obtained are complex
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Figure 6.7: Delay estimation from incomplete data.

numbers. In order to use the angular least squares estimator we must first com-
pute the complex argument of the observations and this requires computing the
arctangent N times. For the sample circular mean we need only convert the com-
plex numbers to unit magnitude and this is typically less computationally expensive
than computing the arctangent. The sample circular mean does require a single
arctangent operation once the average of the unit complex numbers is computed.

On the other hand, consider applications where the angles are measured directly,
for example, when wind direction is measured N times over the course of the day. In
this case the sample circular mean requires converting these N angles into complex
numbers. This requires N cosine operations and N sine operations and also a single
arctangent operation to convert the complex mean back to an angle. This is 2N + 1
trigonometric operations in total. By contrast, the angular least squares estima-
tor requires no trigonometric operations at all. We need only compute a nearest
lattice point in the lattice A∗N−1. If Algorithm 3.6 is used then the vast majority
of operations are either memory operations or floating point addition, subtraction,
comparison. These operations are typically very fast. For this reason, the angular
least squares estimator is likely to be a better choice from a computational point of
view when the angles are measured directly.

6.8 Summary

In Chapter 5 we saw two notions of mean direction that both conform well with
intuition, these are the circular mean and the unwrapped mean. In this chapter
we have considered methods for estimating these means. Applications of these
estimators are widespread throughout science and engineering.

The first is the sample circular mean estimator of the circular mean. This
estimator has received significant attention in the literature. Theorem 6.1 showed
that the sample circular mean is strongly consistent and derived its central limit
theorem. The second estimator is the angular least squares estimator of the
unwrapped mean. We showed how this estimator can be rapidly computed by finding
a nearest point in the lattice A∗n. Theorem 6.2 showed that the angular least squares
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estimator is strongly consistent and satisfied a central limit theorem.
In Section 6.3 we considered the performance of these estimators for some unimean

distributions. We found that the angular least squares estimator tends to perform
better when the distribution is ‘uniform-like’ whereas the sample circular mean
tends to perform better when the distribution is ‘von Mises-like’. We also found
that the performance of the estimators is very accurately modeled by the central
limit theorems derived in Theorems 6.1 and 6.2.

In Sections 6.4, 6.5 and 6.6 we applied the estimators to the problems of phase
estimation, noncoherent detection, and delay estimation. For phase estima-
tion we found that it is probably better to simply use the standard least squares
estimator, but we hinted at how the angular least squares squares estimator will be
computationally a more feasible choice in Chapter 10 where, rather than constant
phase estimation, we consider polynomial phase estimation.

For noncoherent detection of PSK signals we found that highly accurate detection
could be performed in practice using the angular least squares or the sample circular
mean estimators. This approach is computationally attractive because it requires
only a linear number of operations in the block length, whereas existing least
squares approaches require a log-linear number of operations.

We also considered the problem of delay estimation from noisy and incomplete
data. This problem has applications to bit-synchronisation in telecommunications
devices [Fogel and Gavish, 1989] and also pulse-train estimation in electronic sup-
port [Wiley, 1982]. It was observed that the angular least square estimator or the
sample circular mean could be used to produce very accurate estimates of the delay
regardless of the amount of data that is missing. However, if the noise level is very
high, then a significant accuracy penalty is paid for having incomplete data.

Finally, in Section 6.7 we discussed some of the computational properties of the
two estimators. In particular we focused on the number of trigonometric operations
that are required. We found that if the N observations are complex numbers, such
as in the problem of phase estimation, then the sample circular mean requires only
a single arctangent operation, but the angular least squares estimator requires N
arctangent operations. On the other hand, if the angles are observed directly, as is
likely to be the case in meteorology and other applications, then the sample circu-
lar mean requires 2N + 1 trigonometric operations, but the angular least squares
estimator does not require any. If trigonometric operations are particularly expen-
sive, as is typically the case on small computing devices, then consideration of these
properties will likely lead to computational savings.
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—When you are a Bear of Very Little Brain, and
you Think of Things, you find sometimes that a
Thing which seemed very Thingish inside you is
quite different when it gets out into the open and
has other people looking at it.

A. A. Milne

7
The aliasing of polynomial phase signals

In Part III of this thesis we study polynomial phase signals. These signals have
substantial application in science, in particular in astronomy, optics and biology
and also in engineering, particularly in communications and radar. Of significant
practical importance is the estimation of a polynomial phase signal from a num-
ber of noisy observations, or samples and this estimation problem is the focus of
Chapters 8, 9 and 10. However, before we consider this estimation problem we must
understand the phenomenon of aliasing that occurs when polynomial phase signals
are sampled. This aliasing is the subject of this chapter.

In Chapter 5 we introduced circular statistics and gave two different definitions
for the mean direction, the unwrapped mean and the circular mean. In
Chapter 6 we considered methods for estimating these means from a number of
observations of a circular random variable. In these chapters we implicitly assumed
that angles were restricted to take values in the interval [−1/2, 1/2). This restriction
naturally occurred because angles are equivalent modulo one.

A similar phenomenon occurs for sampled polynomial phase signals. It turns out
that two (or more) distinct polynomial phase signals can sometimes take exactly the
same values when they are sampled. We call such signals aliases and in Section 7.1
we completely describe how the aliasing occurs using some ideas from lattice theory
and also the integer valued polynomials that we introduced in Chapter 4. These
aliasing results are also given by McKilliam and Clarkson [2009], but the presen-
tation here is more thorough. The results have also been independently discovered
by Abatzoglou [1986] and Ängeby [2000a] for polynomial phase signals of order 2,
but we generalise this to polynomial phase signals of any order.

In Chapters 8, 9 and 10 we will want to estimate the coefficients of a polynomial
phase signal from a number of noisy samples and understanding the nature of this
aliasing is of paramount importance. In Section 7.2 we show that in order to ensure
the identifiability of any estimator we must restrict the polynomial coefficients
to a particular region. We call this the identifiable region and we show how
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it can be represented as the tessellating region of a particular lattice. We also
describe how to resolve aliased coefficients, compute square error between coefficients
unambiguously and generate coefficients uniformly in the identifiable region.

7.1 Sampling polynomial phase signals

A polynomial phase signal of order m is a complex function of the form

s(t) = e2πjy(t)

where t is a real number, typically time, and

y(t) = µ0 + µ1t+ µ2t
2 + . . . µmt

m

is a polynomial of order m. We will often drop the (t) and just write the polynomial
as y and the polynomial phase signal as s whenever there is no chance of ambiguity.
In practice the signal obtained is typically sampled at discrete points in time, t. In
this thesis we only consider uniform sampling, that is, where the gap between
consecutive samples is a constant. In this case we can always consider the samples
to be taken at some set of consecutive integers and our sampled polynomial phase
signal looks like

s(n) = e2πjy(n)

where n is an integer. The phase of s(n) is described by the sampled polynomial

y(n) = µ0 + µ1n+ µ2n
2 + · · ·+ µmn

m.

Recall from Section 4.2 (page 55) that we defined Z to be the set of polynomials
of order at most m that take integer values when evaluated at integers. That is Z
contains all polynomials p such that p(n) is an integer whenever n is an integer. Let
y and z be two distinct polynomial such that z = y+ p for some polynomial p in Z.
The two polynomial phase signals

s(t) = e2πjy(t) and r(t) = e2πjz(t)

are distinct because y and z are distinct, but if we sample s and r at the integers
we get

s(n) = e2πjy(n) = e2πjy(n)e2πjp(n) = e2πj(y(n)+p(n)) = e2πjz(n) = r(n)

because p(n) is always an integer and therefore e2πjp(n) = 1 for all n ∈ Z. The
polynomial phase signals s and r are equal at the integers, and although they are
distinct, they are indistinguishable from their samples. We call such polynomial
phase signals aliases and immediately obtain the following theorem and corollary.

Theorem 7.1. Two polynomial phase signals s(t) = e2πjy(t) and r(t) = e2πjz(t) are
aliases if and only if the polynomials that define their phase, y and z, differ by a
polynomial from the set Z, that is, y − z ∈ Z.
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Corollary 7.1. The polynomial phase signals s(t) and r(t) are aliases if and only
if s(t) = r(t)e2πjp(t) where p is a polynomial from Z.

It may be helpful to observe Figures 7.1, 7.2, 7.3 and 7.4. In these the phase
(divided by 2π) of two distinct polynomial phase signals is plotted on the left, and
on the right the principal component of the phase is plotted (given by taking the
fractional part of the polynomials on the left). The circles display the samples at
the integers. Note that the samples of the principal components intersect and the
corresponding polynomial phase signals will be aliases.

We can derive an analogue of the theorem above in terms of the coefficients
of the polynomials y and z. This will be useful when we consider estimating the
coefficients in Chapters 8, 9 and 10. We will make use of the coef(·) notation for
converting polynomials to vectors that was introduced on page 54, that is, for y
a polynomial of order m, coef(y) is the column vector of length m + 1 containing
the coefficients of y. If y and z differ by a polynomial from Z then we can write
y = z + p where p ∈ Z and then also coef(y) = coef(z) + coef(p)1. Consider the set
of vectors coef(p) for all polynomials p ∈ Z, that is

Lm+1 = {coef(p) | p ∈ Z}.

Recall from Chapter 4 that we defined the integer valued polynomials, pk, and
showed in Lemma 4.1 (page 56) that the pk form an integer basis for Z. So

Lm+1 = {coef(c0p0 + c1p1 + · · ·+ cmpm) | ci ∈ Z}
= {c0 coef(p0) + c1 coef(p1) + · · ·+ cm coef(pm) | ci ∈ Z}.

Also, recall that we defined P (Section 4.2 page 55) as the m+ 1 by m+ 1 matrix
with columns given by the coefficients of the integer valued polynomials, that is, P
is the matrix

P =
[

coef(p0) coef(p1) . . . coef(pm)
]
.

Then,
Lm+1 = {Px | x ∈ Z} = PZm+1

and it is clear that Lm+1 is anm+1 dimensional lattice. That is, the set of coefficients
of the polynomials from Z forms a lattice with generator matrix P . We can restate
Theorem 7.1 as:

Corollary 7.2. Two polynomial phase signals s(t) = e2πjy(t) and r(t) = e2πjz(t) are
aliases if and only if coef(y) and coef(z) differ by a lattice point in Lm+1.

7.2 Estimation and identifiability

In Chapters 8, 9 and 10 we will want to estimate the coefficients µ̃0, µ̃1, . . . , µ̃m of
a polynomial phase signal of order m, from N noisy observations Y1, Y2, . . . , YN of
the form

Yn = e2π(µ̃0+µ̃1n+···+µ̃mnm) +Xn

1In group theory terminology coef(·) coupled with vector addition is called a group homo-
morphism.
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where n ∈ Z and the Xn are random variables representing the noise. In order to
ensure the identifiability of any estimator of the coefficients we must take account
of aliasing. That is, we must restrict the set of allowable coefficients so that no
two polynomial phase signals are aliases. In consideration of Corollary 7.2 we re-
quire that the coefficients, written in vector form µ, are contained in a set of coset
representatives for the quotient Rm+1/Lm+1, or in other words they are contained
in a tessellating region of the lattice Lm+1 (see Section 2.2). We call the chosen
tessellating region the identifiable region.

To give an example consider a polynomial phase signal of order zero, then
e2πjµ0 = e2πj(µ0+k) for any integer k and in order to ensure identifiability, we must
restrict the µ0 to some interval of length 1. A natural choice is the interval [−1/2, 1/2).
When m = 0 the lattice L1 is the 1-dimensional integer lattice Z and the interval
[−1/2, 1/2) corresponds to the Voronoi cell of L1. When m = 1 it turns out that
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a natural choice of identifiable region is the square box [−1/2, 1/2)2. This result is
also quite intuitive as it corresponds with the Nyquist criterion. The lattice L2

is equal to Z2 so the box [−1/2, 1/2)2 corresponds with the Voronoi cell of L2. When
m > 1 the identifiable region becomes more complicated and Lm+1 is not given
by the integer lattice. However, we can always construct an identifiable region by
taking a tessellating region of lattice Lm+1.

There are an infinity of choices for the identifiable region. A natural choice is the
Voronoi cell of Lm+1 and this was used by McKilliam and Clarkson [2009]. Another
potential choice is a fundamental parallelepiped of Lm+1. In this thesis we shall use
the rectangular tessellating region constructed using Proposition 2.1 (page 17). As
the generator P is upper triangular with kth diagonal given by 1

k!
this rectangular

tessellating region is

B =
m∏
k=0

[
−0.5

k!
,
0.5

k!

)
. (7.2.1)

We will make use of this region when deriving the statistical properties of the angular
least squares estimator in Section 8.2.

There are a number of useful things that we can do now that we have a definition
of the identifiable region B. We can resolve aliased coefficients, that is, given some
polynomial coefficients not necessarily in the identifiable region, we can find the
equivalent coefficients in the identifiable region. For evaluating the performance
of estimators it is convenient to calculate the square error between the true and
estimated polynomial coefficients. Some problems arise due to aliasing, but, we
will show how to compute square error in an unambiguous way. Finally we show
how to generate coefficients that are uniformly distributed in the identifiable region.
This is useful if we wish to evaluate the performance of an estimator over the entire
identifiable region. These procedures make use of the function dealias(µ) that maps
the vector of coefficients µ to its equivalent point inside the identifiable region B.
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Figure 7.4: The cubic polynomials 1
160(174 + 85t − 118t2 + 40t3) (solid line) and

1
48(84 + 19t+ 12t2 − 4t3) (dashed line).

This can be implemented as

dealias(µ) = µ− p

where p is the lattice point in Lm+1 computed by applying Algorithm 2.2 (page 31)
to µ.

7.2.1 Resolving aliasing

Given the polynomial coefficients µ0, . . . , µm the equivalent coefficients within the
identifiable region B are given, in vector form, by dealias(µ).

7.2.2 Computing square error

When evaluating the performance of an estimator by simulation we usually have
some true coefficients µ̃0, . . . , µ̃m and obtain some estimated coefficients µ̂0, . . . , µ̂m.
In order to gauge the accuracy of the estimate we typically wish to compute the
square error between the true and estimated coefficients, that is, the values (µ̃k −
µ̂k)

2. Some difficulties arise due to aliasing. For example, consider when m = 0. It
may be that the true coefficient is µ̃0 = 0.4 and the estimated coefficient is µ̂0 = −0.4.
Näıvely we might compute the square error as (µ̃0 − µ̂0)2 = 0.82. Intuitively this
is wrong because µ̃0 and µ̂0 are angles that are close together on the circle (see
Figure 7.5). We can correctly compute the square error as

(µ̂0 − µ̃0 − dµ̂0 − µ̃0c)2 = 〈µ̂0 − µ̃0〉2 = 0.22.

Analogously, to compute the square error for any m ≥ 0 we first compute the vector

λ = dealias(µ̂− µ̃), (7.2.2)

then square error of the kth coefficient is given by λ2
k.
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−0.5 0

µ̂0 = 0.4

µ̃0 = −0.4

(µ̂0 − µ̃0)2 = 0.82 −0.5 0

µ̂0 = 0.4

µ̃0 = −0.4

(µ̂0 − µ̃0 − dµ̂0 − µ̃0c)2 = 0.22

Figure 7.5: The figure on the left incorrectly computes the square error between the
true coefficient µ̃0 = −0.4 and the estimated coefficient µ̂0 = 0.4. The figure on the right
correctly computes the error.

7.2.3 Generating coefficients

A coefficient uniformly distributed in the identifiable region B can be generated as

µ = dealias(Pw) (7.2.3)

where w is a vector with elements that are independent and uniformly distributed
on [0, 1).

7.3 Summary

In this chapter we have investigated the phenomenon of aliasing that occurs when
polynomial phase signals are sampled uniformly. We found that in order to ensure
the identifiability of any estimator for the polynomial phase coefficients we must
restrict the set of allowable coefficient to an identifiable region. We showed how
a suitable identifiable region is described as a tessellating region of the lattice Lm+1

with generator matrix described using the coefficients of the integer valued polyno-
mials. There are potentially many choices for the identifiable region, one for every
distinct tessellating region. However, for this thesis we will always use the rectan-
gular region given by B (7.2.1). Using this lattice we show how to resolve aliased
parameters, compute square error and generate parameters uniformly in an identifi-
able region. These procedures will be useful in the next chapters where we consider
the estimation of polynomial phase signals.
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—The computer can’t tell you the emotional
story. It can give you the exact mathematical
design, but what’s missing is the eyebrows.

Frank Zappa

8
Angular least squares and its asymptotic

properties

In Chapter 6 we introduced the angular least squares estimator of the unwrapped
mean of a circular random variable and in Section 6.4 we showed how this estimator
could be used for phase estimation. In this chapter we generalise the angular least
squares estimator for the estimation of polynomial phase signals. We will apply the
theory developed in this chapter to frequency estimation and polynomial phase
estimation in Chapters 9 and 10.

We will show in Section 8.1 how the angular least squares estimator for a poly-
nomial phase signals of order m can be computed by finding a nearest lattice point
in the lattice V ∗n/m. This is analogous to how the unwrapped mean was estimated
by angular least squares in Section 6.2 by computing a nearest lattice point in A∗n.
It is no coincidence that V ∗n/0 = A∗n (see Section 4.1). We derived a polynomial time
algorithm to compute a nearest point in V ∗n/m in Section 4.3 and it will follow, by
using this algorithm, that the angular least squares estimator for polynomial phase
signals can be computed in a number of operations that is polynomial in the number
of observations N .

In Section 8.2 we derive the statistical properties of the angular least squares
estimator. We show that the estimator is strongly consistent and we derive its
central limit theorem. For the case of polynomial phase signals of order greater
than one, the statistical results we derive in Section 8.2 are the first of their kind.

8.1 Angular least squares and the lattice V ∗n/m

In this section we describe the angular least squares estimator for the coefficients of
a polynomial phase signal. Consider observing N complex numbers Y1, Y2, . . . , YN

115
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of the form

Yn = ρe2π(µ̃0+µ̃1n+···+µ̃mnm) +Xn

where the Xn are zero mean complex random variables and ρ is an unknown ampli-
tude. The aim is to estimate the polynomial coefficients µ̃0, . . . , µ̃m. For the angular
least squares estimator we take the complex argument of the Yn and divide by 2π
to obtain the circular random variables

Θn =
〈
Φn + µ̃0 + µ̃1n+ µ̃2n

2 + · · ·+ µ̃mn
m
〉

(8.1.1)

where the Φn = 1
2π
∠(ρ + Xn) are projected circular random variables. We define

the sum of squares function

SS(µ0, µ1, . . . , µm) =
N∑
n=1

〈
Θn −

m∑
k=0

µkn
k

〉2

. (8.1.2)

The angular least squares estimator is defined as the coefficients µ̂0, . . . , µ̂m that
minimise SS over the identifiable region B (7.2.1). That is, in vector form,

µ̂ = arg min
µ∈B

SS(µ). (8.1.3)

We will show how this estimator is connected with the lattice V ∗N−m−1/m. Our
presentation mimics that of Section 6.2. We can write the sum of squares function
SS as

SS(µ0, µ1, . . . , µm) =
N∑
n=1

(
Θn −Wn −

m∑
k=0

µkn
k

)2

where Wn =
⌈
Θn −

∑m
k=0 µkn

k
⌋

are the integer wrapping variables. If we consider
the Wn as nuisance parameters to be estimated then SS can be written as a function
of both the coefficients µ0, . . . , µm and the Wn. The angular least squares estimator
is then found by minimising over the µ0, . . . , µm and the Wn. This joint minimisation
problem can be solved by computing a nearest point in the lattice V ∗N−m−1/m. To
see this write SS as a function of both the µ0, . . . , µm and the Wn using vectors as

SS(µ,w) = ‖θ −Xµ−w‖2 (8.1.4)

where X is the rectangular Vandermonde matrix defined in (4.2.2) and where we
define the column vectors w = [W1, . . . ,WN ]† and θ = [Θ1, . . . ,ΘN ]† and the column
vector of coefficients µ = [µ0, . . . , µm]†. Fixing w and minimising with respect to µ
gives

µ̂ = (X†X)−1X†(θ −w) = X+(θ −w) (8.1.5)

where X+ = (X†X)−1X† is the pseudoinverse of X.
Substituting this into SS(µ,w) we obtain the sum of squares function condi-

tioned on minimisation with respect to µ as

SS(w) = ‖Qθ −Qw‖2
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where Q = I − XX+ is the orthogonal projection matrix defined in (4.2.12) on
page 57. It follows that Qw is a lattice point in V ∗N−m−1/m and that minimising

SS(w) is equivalent to finding the nearest lattice point in V ∗N−m−1/m to Qθ. We
can use, for example, the algorithm described in Section 4.3 to compute the nearest
point in a number of operations that is polynomial in N . Denote this point by Qŵ.
Now the estimate µ̂ is given by substituting ŵ for w in (8.1.5). After this procedure
it is possible that the µ̂ obtained is not in the identifiable region but instead is an
aliased version of the desired estimate. This can be resolved using the dealiasing
procedure described in Section 7.2.1, i.e. by computing dealias(µ).

8.2 Asymptotic properties of angular least squares

In this section the angular least squares estimator is shown to be strongly consistent
and its central limit theorem is derived. The main result is Theorem 8.1, the proof
of which is given in two parts within this section. The reader not interested in the
technical details of the proof could read the statement of Theorem 8.1 and then
move onto the remaining chapters that involve the application of the angular least
squares estimator to the problems of frequency estimation and polynomial phase
estimation.

Theorem 8.1. Let µ̂0, µ̂1, . . . , µ̂m be the minimisers of the sum of squares function
SS from (8.1.2) over the identifiable region B. That is, in vector form, µ̂ is given
by (8.1.3). Let λ̂ = dealias(µ̃− µ̂) be the dealiased difference between the true and
estimated coefficients. If the circular random variables Φ1, . . . ,ΦN are independent
and identically distributed with zero unwrapped mean and pdf f then:

1. (Strong consistency) The normalised elements Nkλ̂k converge almost surely to
zero as N →∞ for all k = 0, 1, . . . ,m.

2. (Central limit theorem) If the periodic function f(〈x〉) is continuous at x =
−1/2 and f(−1/2) 6= 1 then the distribution of the vector[

N1/2λ̂0 N3/2λ̂1 . . . N (2m+1)/2λ̂m
]†

converges to the normal with zero mean and covariance matrix

σ2

(1− f(−1/2))2 C−1 (8.2.1)

where σ2 is the unwrapped variance of the Φn and C is the (m+ 1)× (m+ 1)
matrix with elements Ci,j = 1/(i+ j − 1).

The proof of this theorem is broken over the next two sections. Section 8.2.1
proves the strong consistency and Section 8.2.2 proves the central limit theorem.
The proofs for the simpler case of m = 1 where given by McKilliam et al. [2010a]
and the proofs here take a similar approach.

The theorem describes conditions on the dealiased difference λ̂ = dealias(µ̃− µ̂)
between the true coefficients µ̃ and the estimated coefficients µ̂ rather than directly
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on the difference µ̃− µ̂. This makes intuitive sense in view of the discussion in Sec-
tion 7.2.2 where we described the correct way to compute error between polynomial
phase coefficients.

For strong consistency we require that the Φn are independent and identically
distributed with zero unwrapped mean and pdf f . For the central limit theorem we
include the requirement that the periodic function f(〈x〉) is continuous at x = −1/2

and that f(−1/2) 6= 1. If these conditions are not met then other expressions for
the asymptotic covariance can potentially be found, but we will not consider this.
Circular distributions that do not satisfy these requirements are highly unlikely to
be needed in practice. For all of the distributions considered in this thesis these
requirements hold. We will make some discussion about these assumptions after the
proof.

Before we begin it is worthwhile stating that C is known as a Hilbert matrix
and that the elements of the inverse C−1 are given by

C−1
i,j = (−1)i+j(i+ j − 1)

(
n+ i− 1

n− j

)(
n+ j − 1

n− i

)(
i+ j − 2

i− 1

)2

.

Hilbert matrices are particularly ill conditioned and difficult to numerically invert.
This problem can be avoided using the above formula.

8.2.1 Strong consistency

Substituting (8.1.1) into SS we obtain

SS (µ0, µ1, . . . , µm) =
N∑
n=1

〈〈
Φn +

m∑
k=0

µ̃kn
k

〉
−

m∑
k=0

µkn
k

〉2

=
N∑
n=1

〈
Φn +

m∑
k=0

(µ̃k − µk)nk
〉2

.

Let λ = dealias(µ̃ − µ) = µ̃ − µ − p where p is a lattice point from the lattice
Lm+1 (see Chapter 7). So, from the definition of Lm+1 in terms of integer valued
polynomials we have that p0 +p1n+ · · ·+pmnm is an integer whenever n is an integer
and therefore〈

m∑
k=0

λkn
k

〉
=

〈
m∑
k=0

(µ̃k − µk − pk)nk
〉

=

〈
m∑
k=0

(µ̃k − µk)nk
〉
.

and the sum of squares function can be written using λ as

SS (µ0, µ1, . . . , µm) =
N∑
n=1

〈
Φn +

m∑
k=0

λkn
k

〉2

= NSN (λ0, λ1, . . . , λm) ,

where SN(λ) = 1
N
SS(µ). From the definition of the dealias(·) function we have that

λ is inside the identifiable region B so the elements of λ satisfy

−0.5

k!
≤ λk <

0.5

k!
. (8.2.2)
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Now the dealiased difference between the true and estimated coefficients λ̂ = λ =
dealias(µ̃−µ̂) is the minimiser of SN over B. We shall show that the minimiser of SN
is such that the elements Nkλ̂k → 0 almost surely as N →∞ for all k = 0, 1, . . . ,m
and from this the proof of strong consistency will follow.

We take the following approach. We first show, in Lemma 8.1, that SN(λ)
converges in a strong sense (almost surely and uniformly in λ ∈ B) to its expectation
ESN(λ). We can then reason about the minimisers of SN using the minimisers of
its expectation ESN and this leads, via Lemma 8.10, to the proof. The basis of this
approach is described in a general fashion by Amemiya [1985, Theorem 4.1.1]. We
start by proving that SN converges almost surely and uniformly to its expectation.

Lemma 8.1. The function SN(λ) converges almost surely and uniformly in λ ∈ B
to its expectation ESN(λ). That is

sup
λ∈B
|SN(λ)− ESN(λ)| → 0

almost surely as N →∞.

Before we begin this proof it is worth noting that this type of result is common
to a body of literature that, in recent times, has been called the uniform law
of large numbers. Early results were given by, for example, Jenrich [1969] and
Hoadley [1971]. These results typically make rather strong assumptions about the
function SN (or equivalently SS) and also about the random variables Φn that
model the noise. For example, Jenrich [1969] assumes that the noise variables Φn

are independent and identically distributed (as we have here). More modern results
are given by Andrews [1987], Pötscher and Prucha [1989] and Newey and McFadden
[1994] and these make weaker assumptions about SN and the Φn. An overview of
some of these techniques is given by Amemiya [Amemiya, 1985, Chapter 4], however,
it is fair to say that this literature is still, somewhat, scattered. It is worth pointing
out that the majority of results in the literature only prove convergence in probability,
whereas here, we will prove (and prefer) the stronger mode of convergence almost
surely.

It is tempting to try to map our problem to one of the techniques in the literature,
and leverage some existing work in order to prove Lemma 8.1. However, we have
found that the mapping process is more complicated than proving the lemma directly
using some well known results in probability theory, namely Markov’s inequality
and the Borel-Cantelli lemma [Billingsley, 1979, page 46]. However, we note that
the more high powered techniques in the literature might allow this proof to be made
under weaker assumptions about the Φn.

Proof. The idea is to consider a rectangular grid of points spaced over the identifiable
region B. Lemma 8.3 will show that SN converges almost surely to its expectation
on all of the grid points. Lemma 8.5 will show that the grid points are spaced such
that SN cannot change much between consecutive grid points and from this it will
follow that SN converges to its expectation uniformly in B. To specify a grid point
we use the notation λ[r], where r ∈ Zm+1, to denote the point

λ[r] =

[
r0

N b
− 1

2
,

r1

N b+1
− 1

2
, . . . ,

rk
N b+k

− 1

2(k!)
, . . . ,

rm
N b+m

− 1

2(m!)

]
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for some b > 0. The variable b defines how closely spaced the grid points are. Note
that the points are spaced so that adjacent points are separated by 1

Nb in the first
coordinate, 1

Nb+1 in the second coordinate and 1
Nb+k in the kth coordinate. We use

B[r] to denote the small dense space about the grid point λ[r], that is

B[r] =

{
x ∈ Rm+1;

rk
N b+k

≤ xk +
1

2(k!)
<

rk
N b+k

}
.

We only want to consider a finite number of grid points in B and these are given by
the set of points λ[r] where r is in the set

G =
{
x ∈ Zm+1 | xk = 0, 1, 2 . . . , N b+k

}
.

So the total number of grid points is |G| = N (m+1)(2b+m)/2. Note that the union
of the B[r] over all r ∈ G contains the identifiable region B, and in fact, the B[r]
partition B.

It will be convenient to define the difference between SN and its expectation as

DN (λ) = SN (λ)− ESN (λ)

=
1

N

N∑
n=1

〈Φn +
m∑
k=0

λkn
k

〉2

− E

〈
Φn +

m∑
k=0

λkn
k

〉2
 .

Now we wish to show that supλ∈B |DN(λ)| converges to zero almost surely as N
converges to ∞. We may write

sup
λ∈B
|DN(λ)| = sup

r∈G
sup

λ∈B[r]

|DN(λ[r]) +DN(λ)−DN(λ[r])|

≤ sup
r∈G
|DN(λ[r])|+ sup

r∈G
sup

λ∈B[r]

|DN(λ)−DN(λ[r])| .

So, the proof is complete if we can show, firstly that the difference DN converges to
zero on all of the grid points λ[r], i.e. that supr∈G |DN(λ[r])| → 0 almost surely as
N → ∞, and, secondly that the difference DN cannot change much within any of
the small dense regions B[r] surrounding a grid point, that is,

sup
r∈G

sup
λ∈B[r]

|DN(λ)−DN(λ[r])| → 0

almost surely as N →∞. These will be proved in lemmas 8.3 and 8.5 to follow.

We first need the following result about sums of independent random variables.

Lemma 8.2. Let Z1, Z2, . . . , ZN be independent, zero-mean random variables with
all magnitudes |Zj| bounded by some constant. Then, for any integer β > 0 we have

S = E
[
(Z1 + · · ·+ ZN)2β

]
= O(Nβ)

as N →∞.
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Proof. A proof can be found in Lemma 9 of [McKilliam et al., 2010a] and another
proof is given by Brillinger [1962]. This is actually a rather weak result and stronger
versions are known that, for example, do not require independence. See, for example,
Yokoyama [1980].

Lemma 8.3. The difference DN converges to zero almost surely on the all of the
grid points. That is,

sup
r∈G
|DN (λ[r])| → 0

almost surely as N →∞.

Proof. The approach we take it to first bound the probability that supr |DN (λ[r])|
is larger than some small positive constant using Markov’s inequality on a positive
even power of the DN . This proves the convergence in probability. We then show
that the bounds are strong enough to imply that the convergence is almost sure by
the Borel-Cantelli lemma.

For some λ, consider the random variable that results from taking DN(λ) to the
power of 2β with β a positive integer. By applying Markov’s inequality we obtain,
for any arbitrarily small constant ε > 0, that

Prob
(∣∣∣D2β

N (λ)
∣∣∣ ≤ ε2β

)
≤
E
[∣∣∣D2β

N (λ)
∣∣∣]

ε2β

and because β is a positive integer we have
∣∣∣D2β

N (λ)
∣∣∣ = D2β

N (λ) and therefore

Prob (|DN(λ)| ≤ ε) ≤
E
[
D2β
N (λ)

]
ε2β

.

Let

E
[
D2β
N (λ)

]
=

1

N2β
E

( N∑
n=1

Zn

)2β


where each of

Zn =

〈
Φn +

m∑
k=0

λkn
k

〉2

− E

〈
Φn +

m∑
k=0

λkn
k

〉2

are independent with zero mean and are bounded in [−1, 1] due to the fractional
parts. From Lemma 8.2 we see that

E
[
D2β
N (λ)

]
=

1

N2β
E

( N∑
n=1

Zn

)2β
 = O

(
N−β

)
. (8.2.3)
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Now the probability

Prob

(
sup
r∈G
|DN(λ[r])| > ε

)
≤
∑
r∈G

Prob (|DN(λ[r])| > ε)

≤
∑
r∈G

E
[
D2β
N (λ[r])

]
ε2β

= |G|O
(
N−β

)
= O

(
N (m+1)(2b+m)/2−β) .

For any b > 0 we can choose β so that the exponent

(m+ 1)(2b+m)/2− β < 0

and this proves that supr∈G |DN(λ[r])| converges in probability to zero as N → 0.
To extend the convergence to almost surely simply choose β so that the exponent

(m+ 1)(2b+m)/2− β < −1.

Now the sum

∞∑
N=1

Prob

(
sup
r∈G
|DN(λ[r])| > ε

)
=

∞∑
N=1

O
(
N (m+1)(2b+m)/2−β)

converges and consequently from the Borel-Cantelli lemma supr∈G |DN(λ[r])| con-
verges almost surely to zero as N →∞.

Before proving Lemma 8.5 we need the following result about fractional parts.

Lemma 8.4. Let x and δ be real numbers. Then

〈x〉2 − |δ| ≤ 〈x+ δ〉2 ≤ 〈x〉2 + |δ|.

Proof. We will prove the lemma for δ ≥ 0, the proof for δ ≤ 0 is similar. Note that
0 ≤ 〈x〉2 ≤ 1

4
for all real numbers x. So if δ ≥ 1

4
then the lemma is obviously true

because

〈x〉2 − |δ| ≤ 0 ≤ 〈x+ δ〉2 ≤ 1
4
≤ 〈x〉2 + |δ|.

So we may assume that δ < 1
4
. We consider two cases, firstly when 〈x〉 + δ ∈

[−1/2, 1/2), and secondly when 〈x〉 + δ ≥ 1/2. Assume that 〈x〉 + δ ∈ [−1/2, 1/2] and
therefore

−1
2
≤ 〈x〉 ≤ 1

2
− δ

and also

〈x+ δ〉2 = 〈〈x〉+ δ〉2 = (〈x〉+ δ)2 = 〈x〉2 + 2 〈x〉 δ + δ2.

Substituting the bounds on 〈x〉 above into the right hand side of this equation we
obtain

〈x〉2 − δ(1− δ) ≤ 〈x+ δ〉2 ≤ 〈x〉2 + δ(1− δ).
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〈x〉2

x

0.25

Figure 8.1: The function 〈x〉2. Note that the function is continuous and piecewise
differentiable. The derivative has magnitude less than one whenever it exists.

The proof now follows because δ(1− δ) ≤ |δ| because 0 ≤ δ < 1
4
. Now assume that

〈x〉+ δ ≥ 1/2. We have
〈x+ δ〉 = 〈x〉+ δ − 1

and therefore
1
2
− δ ≤ 〈x〉 ≤ 1

2

and also

〈x+ δ〉2 = (〈x〉+ δ − 1)2 = 〈x〉2 + 2 〈x〉 (δ − 1) + (δ − 1)2.

Substituting the bounds on 〈x〉 above into the right hand side of this equation we
again obtain

〈x〉2 − δ(1− δ) ≤ 〈x+ δ〉2 ≤ 〈x〉2 + δ(1− δ)

and the proof follows because δ(1− δ) ≤ |δ| because 0 ≤ δ < 1
4
.

Consideration of Figure 8.1 makes Lemma 8.4 obvious because the function 〈x〉2
is clearly continuous and piecewise differentiable and the derivative has magnitude
less than one whenever it exists. The function is similar to the ‘row of glasses’
function described by [Huxley, 1996, page 95]. It is a shame that the proof mostly
loses this intuitive picture, however, we have not found a more intuitive proof with
the same amount of rigour. In any case, we are now in a position to prove Lemma 8.5.

Lemma 8.5. The difference between DN evaluated at the grid point λ[r] and DN

evaluated anywhere in the small dense region B[r] containing λ[r] converges to zero
almost surely as N →∞. That is,

sup
r∈G

sup
λ∈B[r]

|DN (λ)−DN (λ[r])| → 0

almost surely as N →∞.
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Proof. The proof we give is not just almost surely but surely as the convergence will
be shown to occur irrespective of the values of the Φn. For convenience let

bn = Φn +
m∑
k=0

λkn
k and an = Φn +

m∑
k=0

λ[r]kn
k

where λ[r]k denotes the kth element of the grid point λ[r]. For λ contained in the
small region about the grid point λ[r], i.e. λ ∈ B[r], we have

bn = an + δn

where all of the δn have magnitude |δn| ≤ m+1
Nb . Taking factional parts, squaring,

and applying Lemma 8.4 we see that, for all real numbers x, the difference between
〈x+ bn〉2 and 〈x− an〉2 is bounded above and below like

−m+ 1

N b
≤ −|δn| ≤ 〈x+ bn〉2 − 〈x− an〉2 ≤ |δn| ≤

m+ 1

N b

or equivalently | 〈x+ bn〉2 − 〈x− an〉2 | ≤ m+1
Nb . Now note that

SN(λ) =
1

N

N∑
n=1

〈Φn + bn〉2 and SN(λ[r]) =
1

N

N∑
n=1

〈Φn + an〉2

and then

SN(λ)− SN(λ[r]) =
1

N

N∑
n=1

〈Φn + bn〉2 − 〈Φn − an〉2

and therefore, for all λ ∈ B[r], we have

|SN(λ)− SN(λ[r])| ≤ m+ 1

N b
.

Seeing as this bound is independent of the Φn we also immediately have the same
result for the expectation, so, using Jensen’s inequality,

|ESN(λ)− ESN(λ[r])| ≤ E |SN(λ)− SN(λ[r])| ≤ m+ 1

N b
.

Therefore, for all λ ∈ B[r], we have

|DN(λ)−DN(λ[r])| = |SN(λ)− SN(λ[r]) + ESN(λ)− ESN(λ[r])|

≤ |SN(λ)− SN(λ[r])|+ |ESN(λ)− ESN(λ[r])| ≤ 2
m+ 1

N b

and as this bound does not depend on the grid point chosen, i.e. the bound is
independent of r, we have

sup
r∈G

sup
λ∈B[r]

|DN (λ)−DN (λ[r])| ≤ 2
m+ 1

N b

and the proof follows.
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We have now given all the results required for the proof of Lemma 8.1, that SN(λ)
converges to its expectation ESN(λ) almost surely and uniformly in λ ∈ B as N →
∞. We now require some information about the minimisers of the expectation ESN .
Because the distribution of the Φn has zero unwrapped mean and has unwrapped
variance σ2 then the expected value of 〈Φn + z〉2 is

E 〈Φn + z〉2 =

∫ 1/2

−1/2

〈θ + z〉2 f(θ)dθ (8.2.4)

and over z ∈ [−1/2, 1/2) this is minimised uniquely at z = 0 (see Section 5.2.2). Also,
when z = 0 we see that

E 〈Φn〉2 = var Φn = σ2 =

∫ 1/2

−1/2

θ2f(θ)dθ (8.2.5)

is the unwrapped variance of the Φn.

Lemma 8.6. For λ in the identifiable region B the expectation ESN(λ) is minimised
uniquely at 0 and at this minimum ESN(0) = σ2.

Proof. Let z be the polynomial

z(n) = λ0 + λ1n+ λ2n
2 + · · ·+ λmn

m

then we can write

ESN(λ) =
1

N
E

N∑
n=1

〈
Φn +

m∑
k=0

λkn
k

〉2

=
1

N

N∑
n=1

E 〈Φn + 〈z(n)〉〉2 .

We know that E 〈Φn + 〈z(n)〉〉2 is minimised uniquely when 〈z(n)〉 = 0 at which
point it takes the value σ2. Now 〈z(n)〉 is equal to zero for all integers n if and only
if z ∈ Z, or equivalently if coef(z) is a lattice point in Lm+1. From the definition
of the identifiable region B (7.2.1) contains precisely one lattice point from Lm+1,
this being the origin 0. Therefore ESN is minimised uniquely at 0 at which point
it takes the value σ2.

Lemma 8.7. The value of the expectation ESN(λ̂) converges almost surely to ESN(0) =
σ2 as N →∞. That is

ESN(λ̂)− σ2 → 0 (8.2.6)

almost surely as N →∞.

Proof. By definition
λ̂ = arg min

λ∈B
SN(λ) (8.2.7)

and therefore
0 ≤ SN(0)− SN(λ̂).

Also, because ESN is minimised at 0, then

0 ≤ ESN(λ̂)− ESN(0)
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and adding these two inequalities gives

0 ≤ ESN(λ̂)− ESN(0) ≤ ESN(λ̂)− ESN(0) + SN(0)− SN(λ̂)

≤ |ESN(λ̂)− SN(λ̂)|+ |SN(0)− ESN(0)|

and from Lemma 8.1, the right hand side of the above equation converges almost
surely to 0 as N → ∞. So, ESN(λ̂) − ESN(0) converges to zero almost surely as
N →∞ and because ESN(0) = σ2 we have

ESN(λ̂)− σ2 → 0

almost surely as N →∞.

The proof of strong consistency is now partly complete because ESN(λ̂) is
uniquely minimised at 0 and therefore λ̂ must converge to zero. However, this
tells us nothing about the order of convergence of the elements in λ̂ as required by
the theorem. We will show in Lemma 8.10 that all sequences λ1,λ2, . . . ,λN that
satisfy (8.2.6) have the property that Nkλk,N → 0 for all k = 0, 1, . . . ,m where

λk,N is the kth element in the Nth vector in the sequence. As λ̂ satisfies (8.2.6)

almost surely it will immediately follow that Nkλ̂k → 0 almost surely as N → ∞
and this will complete the proof of strong consistency. To prove Lemma 8.10 we
need some preliminary results about arithmetic progressions and from the calculus
of finite differences.

Let W = {1, 2, . . . , N} be the set of integers from 1 to N and let K be a subset
of W . For any integer h we define the set A(h,K) to contain all integers n such that
the arithmetic progression

n, n+ h, n+ 2h, . . . , n+mh

of length m+ 1 is contained in the subset K. That is

A(h,K) =
{
n | n+ ih ∈ K ∀ i ∈ {0, 1, . . . ,m}

}
. (8.2.8)

If K is a small subset of W then A(h,K) might contain no elements at all, i.e. there
may be no arithmetic progressions n, n+ h, . . . of length m+ 1 in K. However, the
next two lemmas and the following corollary will show that if K is sufficiently large
then it always contains at least one arithmetic progression (for all sufficiently small
h) and therefore A(h,K) is not empty. We will write K\r to denote the set K with
the element r removed.

Lemma 8.8. Let r ∈ K. For any h, removing r from K removes at most m + 1
arithmetic progressions n, n+ h, . . . n+mh of length m+ 1. That is,

|A(h,K\r)| ≥ |A(h,K)| − (m+ 1).

Proof. The proof follows because there are at most m + 1 integers, n, such that
n + ih = r where i ∈ {0, 1, . . . ,m}. That is, there are at most m + 1 arithmetic
progressions of type n, n+ h, . . . n+mh that contain r.
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Lemma 8.9. Let K ⊆ W . Then |A(h,K)| ≥ N −mh− (N − |K|)(m+ 1)

Proof. Note that |A(h,W )| = N −mh. The proof follows by starting with A(h,W )
and applying Lemma 8.8 |W |−|K| = N−|K| times. That is, K can be constructed
by removing N − |K| elements from W and this removes at most (N − |K|)(m+ 1)
arithmetic progressions.

Corollary 8.1. Let K ⊆ W such that |K| > 2m+1
2m+2

N . Then for all 1 ≤ h ≤ N
2m

the set K contains at least one arithmetic progression n, n+h, . . . , n+mh of length
m+ 1. That is, |A(h,K)| > 0.

Proof. By substituting the bounds |K| > 2m+1
2m+2

N and h ≤ N
2m

directly into the
inequality from Lemma 8.9 we immediately obtain |A(h,K)| > 0.

The final piece of machinery we require comes from the calculus of finite differ-
ences. For any function d(n), let

∆hd(n) = d(n+ h)− d(n)

denote the first difference with interval h. Let

∆2
hd(n) = ∆hd(n+ h)−∆hd(n) = d(n+ 2h)− 2d(n+ h) + d(n)

denote the second difference with interval h and similarly let

∆r
hd(n) = ∆r−1

h d(n+ h)−∆r−1
h d(n) =

r∑
k=0

(
r

k

)
(−1)r−kd(n+ kh) (8.2.9)

denote the rth difference with interval h. It is not hard to show (and is well known)
that the sum of the magnitude of the coefficients (i.e the binomial coefficients) inside
the summand above is equal to 2r, that is

r∑
k=0

(
r

k

)
= 2r.

In other words, ∆r
hd(n), can be represented by adding and subtracting the

d(n), d(n+ h), . . . , d(n+ kh)

precisely 2r times.
The differencing operator ∆h has some special properties when applied to poly-

nomials. If d(n) = arn
r + · · ·+ a0 is a polynomial of order r then the rth difference

of order h of the polynomial d is given by

∆r
hd(n) = hrr!ar. (8.2.10)

So, the rth difference of the polynomial is a constant depending on h, r and the
rth polynomial coefficient ar. A derivation of this well known property is given
by Jordan [1965, page 51]. We can now prove Lemma 8.10 from which the proof of
strong consistency will follow.
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Lemma 8.10. Suppose λ1,λ2, . . . is a sequence with λn ∈ B for all n = 1, 2, . . .
and with

ESN(λN)− σ2 → 0

as N →∞. Then Nkλk,N → 0 for all k = 0, 1, . . . ,m.

Proof. For the sake of notational simplicity we will abbreviate λk,N to λk. Define
the function

g(z) = E 〈Φn + z〉2 − σ2 =

∫ 1/2

−1/2

〈θ + z〉2 f(θ)dθ − σ2

which is continuous in z. Also, because of (8.2.5) and (8.2.4), we have g(z) ≥ 0 with
equality only at z = 0 for z ∈ [−1/2, 1/2). Now

ESN(λ0, . . . , λm)− σ2 =
1

N

N∑
n=1

g

(〈
m∑
k=0

nkλk

〉)
→ 0

as N →∞. It will be convenient to define the polynomial

z(n) = λ0 + λ1n+ λ2n
2 + · · ·+ λmn

m.

Now we may write

ESN(λ0, . . . , λm)− σ2 =
1

N

N∑
n=1

g (〈z(n)〉)→ 0.

We need the following lemma.

Lemma 8.11. For any constants 0 ≤ c < 1 and δ > 0 there exists an N0 such that
for all N > N0 the proportion of 〈z(n)〉 with magnitude less than δ is greater than
c. That is, the set

KN = {n ≤ N | | 〈z(n)〉 | < δ}

has more than cN elements for all N > N0.

Proof. Assume not. Then for every N0 there exists an N > N0 such that there are
more than (1− c)N integers from 1 to N with | 〈z(n)〉 | > δ. Let γ be the minimum
value of g over the interval given by the union [−1/2,−δ] ∪ [δ, 1/2). Because g is
minimised uniquely at 0 then γ is strictly greater than 0 and the sum

1

N

N∑
n=1

g (〈z(n)〉) ≥ (1− c)γ

with (1− c)γ a positive constant. This violates the fact that g converges to zero as
N →∞ and the lemma is true by contradiction.
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It is particularly useful to choose the constants

c =
2m+ 1

2m+ 2
and δ <

1

22m+1
.

So, the set KN has |KN | > 2m+1
2m+2

N elements and from Corollary 8.1 it follows that

for all 1 ≤ h ≤ N
2m

the set A(h,KN) contains at least one element, that is, there
exist an n′ ∈ A(h,KN) such that all the elements from the arithmetic progression
n′, n′ + h, . . . , n′ +mh are in KN and therefore

| 〈z(n′)〉 |, | 〈z(n′ + h)〉 |, . . . , | 〈z(n′ +mh)〉 |

are all less than δ.

Lemma 8.12. Let a1, a2, . . . , ar be r real numbers such |〈an〉| < δ for all n =
1, 2, . . . , r. Then |〈

∑r
n=1 an〉| < rδ.

Proof. If δ > 1
2r

the proof is trivial as |〈
∑r

n=1 an〉| ≤
1
2

for all an ∈ R. If δ ≤ 1
2r

then
〈
∑r

n=1 an〉 =
∑r

n=1 〈an〉 and from the triangle inequality∣∣∣∣∣
〈

r∑
n=1

an

〉∣∣∣∣∣ =

∣∣∣∣∣
r∑

n=1

〈an〉

∣∣∣∣∣ ≤
r∑

n=1

|〈an〉| < rδ

Consider the mth difference of the 〈z(n)〉 evaluated at n′. Because the mth
difference is a linear combination of 2m elements (see (8.2.9)) from

〈z(n′)〉 , 〈z(n′ + h)〉 , . . . , 〈z(n′ +mh)〉

all with magnitude less than δ we obtain, from Lemma 8.12, that

| 〈∆m
h z(n′)〉 | ≤ |∆m

h 〈z(n′)〉 | ≤ ∆m
h | 〈z(n′)〉 | < 2mδ. (8.2.11)

Using the properties of the mth difference of a polynomial from (8.2.10) it follows
that the left hand side is equal to a constant involving h, m and λm giving the bound

| 〈hmm!λm〉 | = | 〈∆m
h z(n′)〉 | < 2mδ (8.2.12)

for all 1 ≤ h ≤ N
2m

. Setting h = 1 and recalling from the definition of the identifiable
region (8.2.2) that λm ∈ [−0.5

m!
, 0.5
m!

), we have

| 〈m!λm〉 | = |m!λm| < 2mδ

because λm is small enough for the fractional part to disappear. Now, because we
chose δ < 1

22m
it follows that

|λm| < 2m

m!
δ < 1

m!2m+1 .

So, when h = 2,
| 〈2mm!λm〉 | = |2mm!λm| < 2mδ
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because 2mm!λm ∈ [−0.5, 0.5) so the fractional parts disappear again. Therefore

|λm| <
1

m!
δ <

1

m!22m+1
.

Now, with h = 4, we similarly obtain | 〈4mm!λm〉 | = |4mm!λm| < 2mδ and iterating
this process we eventually obtain

|λm| <
2m

2rmm!
δ <

1

m!2(r+1)m + 1

where 2r is the largest power of 2 less than or equal to N
2m

. Then 2r+1 > N
2m

and
substituting this into the inequality above gives

|λm| <
1

2m!
(
N
2m

)m δ
from which it follows that

Nm|λm| <
2m−1mm

m!
δ. (8.2.13)

As δ can be made arbitrarily small and m is constant, it follows that Nmλm → 0 as
N →∞.

We have now shown that the highest order polynomial coefficient λm converges
as required by Theorem 8.1. The remaining coefficients will be shown to converge
by induction. Assume that Nkλk → 0 for all k = r+ 1, r+ 2, . . . ,m, that is, assume
that the m− r highest order coefficients all converge. Define the polynomial

zr(n) = λ0 + λ1n+ λ2n
2 + · · ·+ λrn

r.

Because them−r highest order coefficients converge we can write z(n) = zr(n)+γ(n)
where γ(n) can be made simultaneously arbitrarily small for all n. Now the bound
from (8.2.11), but applied using the rth difference, gives

|〈∆r
hz(n′)〉| = |〈∆r

hγ(n′) + ∆r
hzr(n

′)〉| = | 〈ε+ hrr!λr〉 | < 2rδ (8.2.14)

where ε = ∆r
hγ(n′) and therefore |ε| ≥ 0 can be chosen arbitrarily small. We need

the following lemma.

Lemma 8.13. Let |〈a+ ε〉| < δ where |ε| < 1/4 and 0 < δ < 1/4. Then |〈a〉| < δ+ |ε|.

Proof. The idea behind this proof is to show that under the conditions given 〈〈a〉+ ε〉
does not wrap, i.e. that 〈a〉 + ε ∈ [−1/2, 1/2). The proof will then follow easily. To
start, assume that 〈a〉+ ε ≥ 1/2. Then 1/2 ≤ 〈a〉+ ε < 3/4 and

−1/2 ≤ 〈〈a〉+ ε〉 = 〈a+ ε〉 < −1/4

and therefore | 〈a+ ε〉 | > 1/4 > δ, a contradiction. Similarly, assume that 〈a〉 +
ε < −1/2. Then −1/2 > 〈a〉 + ε > −3/4 and 1/2 > 〈a+ ε〉 > 1/4 and therefore
|〈a+ ε〉| > 1/4 > δ, a contradiction. So, 〈a〉+ ε ∈ [−1/2, 1/2) and

| 〈a+ ε〉 | = |〈a〉+ ε| < δ

from which it follows that |〈a〉| < δ + |ε|.



8.2 Asymptotic properties of angular least squares 131

We can choose δ and ε such that 2rδ < 1
4

and |ε| < 1
4
. Then from the left hand

side of (8.2.14) and the above lemma we have

| 〈hrr!λr〉 | < 2rδ + |ε|

and by choosing 2rδ + |ε| < 1
22r+1 and using the same iterative process we did for

the highest order coefficient λm (see (8.2.12) to (8.2.13)) we find that N rλr → 0 as
N →∞. The proof now follows by induction.

8.2.2 The central limit theorem

The derivation of the central limit theorem is fortunately more straightforward than
the proof of strong consistency. Most of this proof is more easily derived using vector
notation. From (8.1.5) we obtain

µ̂ = X+ (θ − ŵ)

where the elements of ŵ = dθ −Xµ̂c are the estimated wrapping variables Ŵn and
X+ = (X†X)−1X† is the pseudoinverse of the N by m + 1 Vandermonde matrix X
from (4.2.2). Writing the observed random variables Θ1,Θ2, . . . ,ΘN from (8.1.1) in
vector form we obtain

θ = 〈φ + Xµ̃〉
where the fractional part function 〈·〉 (and also the round function d·c) works ele-
mentwise on vectors. Substituting this into the equation for µ̂ above we obtain

µ̂ = X+
(
〈φ + Xµ̃〉 −w

)
= X+

(
〈φ + Xµ̃〉 − dθ −Xµ̂c

)
= X+

(
〈φ + Xµ̃〉 − d〈φ + Xµ̃〉 −Xµ̂c

)
= X+

(
φ + Xµ̃− dφ + X(µ̃− µ̂)c

)
where, in the last line, we have used the fact that d〈x〉+ yc = dx+ yc− dxc for any
real numbers x and y. Now because X+X is the m+ 1 by m+ 1 identity matrix we
have

µ̂− µ̃ = X+
(
φ− dφ + X(µ̃− µ̂)c

)
. (8.2.15)

Recall that λ̂ = dealias(µ̂ − µ̃) = µ̃ − µ̂ − p where p is a lattice point from Lm+1

(see Chapter 7). From the definition Lm+1 in terms of integer valued polynomials
we have that all the elements in the vector Xp are integers so⌈

φ + Xλ̂
⌋

= dφ + X(µ̃− µ̂− p)c = dφ + X(µ̃− µ̂)c −Xp.

Negating and subtracting p from both sides of (8.2.15) gives

λ̂ = X+
⌈
φ + Xλ̂

⌋
−X+φ. (8.2.16)

So, to derive the central limit theorem we need to find the distribution of

Dλ̂ = DX+
⌈
φ + Xλ̂

⌋
−DX+φ (8.2.17)
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where D is the m+ 1 by m+ 1 diagonal matrix with diagonal elements di,i = N i/2.
For notational convenience we let z be the vector

z = DX+
⌈
φ + Xλ̂

⌋
. (8.2.18)

It is proved in Lemma 8.15 below that the expected value of z satisfies

E[z] = Dλ̂
(
f(−1/2) + o(1)

)
where o(1) converges almost surely to zero asN →∞, and it is proved in Lemma 8.16
below that the vector z−E[z] converges in probability to zero, i.e. the elements of
z− E[z] are all in oP (1).

Subtracting E[z] from both sides of (8.2.17) and using Lemmas 8.15 and 8.16
gives

Dλ̂(1− f(−1/2) + o(1)) = oP (1)−DX+φ

where, by a mild abuse of notation, oP (1) here denotes a column vector of length
m + 1 with all elements converging in probability to zero as N → ∞. Because
f(−1/2) < 1 from the statement of Theorem 8.1 we may rearrange this to

Dλ̂ = oP (1)− DX+φ

1− f(−1/2) + o(1)
.

Because the Φn are identical and independent with zero mean and variance σ2 it
follows from the standard central limit theorem [Billingsley, 1979, page 308] that
the distribution of DX+φ converges to the normal with zero mean and covariance
σ2(X+)†D2X+. It is not hard to show that the matrix (X+)†D2X+ converges to
the inverse of the m+ 1 by m+ 1 Hilbert matrix C−1. It follows immediately that
Dλ̂ converges to the normal with zero mean and covariance σ2(1 − f(−1/2))−2C−1

as required. It remains to prove Lemmas 8.15 and 8.16 that we have used. We first
need the following lemma.

Lemma 8.14. Let ε be a positive constant less than one and let

fε = sup
−ε≤x≤ε

|f(−1/2)− f(〈−1/2 + x〉)|.

Then, for all x such that |x| ≤ ε the expected value of dΦ1 + xc satisfies the bound

x(f(−1/2)− fε) ≤ E dΦ1 + xc ≤ x(f(−1/2) + fε)

Proof. First note that, because ε < 1 then,

dΦ1 + xc =


1 Φ1 + x ≥ 1/2

−1 Φ1 + x < −1/2

0 otherwise.

Consider when x is positive so that 0 ≤ x ≤ ε and the expectation

E dΦ1 + xc = Prob(Φ1 + x ≥ 1/2) =

∫ 1/2

1/2−x
f(θ)dθ.
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From the definition of fε the integral above can be lower and upper bounded giving

x(f(−1/2)− fε) ≤ E dΦ1 + xc =

∫ 1/2

1/2−x
f(θ)dθ ≤ x(f(−1/2) + fε)

for all 0 ≤ x ≤ ε. Similarly for all −ε ≤ x < 0 we have

E dΦ1 + xc = −Prob(Φ1 + x < 1/2) =

∫ −1/2−x

−1/2

f(θ)dθ

and again the integral can be lower and upper bounded giving

x(f(−1/2)− fε) ≤ E dΦ1 + xc ≤ x(f(−1/2) + fε).

Lemma 8.15. The expected value of the vector z from (8.2.18) satisfies

E[z] = Dλ̂
(
f(−1/2) + o(1)

)
Proof. We have

E[z] = DX+E
⌈
φ + Xλ̂

⌋
= DX+E dφ + ac

where a = Xλ̂. In view of strong consistency all the elements in a converge almost
surely to zero as N →∞. Let

E dΦn + anc = E dΦ1 + anc
because the Φn are identical. Now consider when 0 ≤ an < 1. For any positive
constant ε less than one we have |an| < ε almost surely as N → ∞. So from
Lemma 8.14,

an(f(−1/2)− fε) ≤ E dΦn + anc ≤ an(f(−1/2) + fε)

almost surely for all n = 1, . . . , N . From the statement of Theorem 8.1 the periodic
function f(〈x〉) is continuous at x = −1/2 so, fε can be made arbitrarily close to zero
by choosing ε small. Using this the inequality above can be written in vector form
as

E dΦn + ac = a(f(−1/2) + o(1))

where o(1) denotes a number going to zero as N →∞. Substituting Xλ = a gives

E dΦn + Xλc = Xλ(f(−1/2) + o(1))

and multiplying both sides by DX+ and using that X+X is the m + 1 by m + 1
identity matrix completes the proof.

Lemma 8.16. The elements in the vector of random variables z−E[z] converge in
probability to zero as N →∞.

Proof. The variance of the nth element of the vector z− E[z] is

var [Zn − EZn] = E[Z2
n]− E[ZN ]2 ≤ E[Z2

n].

By the same argument used in Lemma 8.15 it can be shown that

E[Z2
n] ≤ an(f(−1/2) + o(1)).

The proof follows because all the an converge almost surely to zero.
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Discussion about the assumptions on f and Φn

For the proof of the central limit theorem we have made the assumption that the
periodic function f(〈x〉) is continuous at x = −1/2 and that f(−1/2) 6= 1. Intuitively
the assumption that f(〈x〉) is continuous ties the ends of f together, that is

f(−1/2) = lim
θ→1/2

f(θ)

where the limit approaches from below. We used this fact in Lemmas 8.15 and 8.16
to compute the expected value of the vector z (8.2.18). It might be possible to relax
this continuity assumption but we will not consider this here.

A result we have omitted is that a circular random variable, say Φ, with zero
unwrapped mean and pdf f must have the property that f(−1/2) ≤ 1. A proof
of this follows by contradiction and using the integral (5.2.5) from the proof of
Theorem 5.1. So, the requirement that f(−1/2) 6= 1 could equivalently be stated
as f(−1/2) ≤ 1. Dealing with the case that f(−1/2) = 1 probably requires taking a
higher order approximation of f at −1/2 in order to obtain an expression for E[z]
that avoids the asymptote in (8.2.1) that occurs when f(−1/2) = 1. We will not
consider this.

To a large extent circular distributions for which f(〈x〉) is discontinuous at −1/2

and f(−1/2) = 1 are pathological and unlikely to occur in practice. For all of the
circular distributions considered in this thesis these assumptions hold.

8.3 Summary

In this chapter we have considered estimating the coefficients of a polynomial
phase signal. In Section 8.1 we derived the angular least squares estimator for the
polynomial coefficients and showed how the estimator could be computed by finding
a nearest lattice point in the lattice V ∗n/m. We derived the asymptotic properties of
this estimator showing that it is strongly consistent and obtaining its central limit
theorem under some assumptions about the circular noise terms Φn. For the case of
polynomials of order greater than one, the statistical results derived in this chapter
are the first of their kind.

In the remaining chapters we will employ the angular least squares estimator
in frequency estimation and polynomial phase estimation. We will find that the
angular least squares estimator is in practice statistically much more accurate than
many of the estimators that exist in the literature.



—We encounter periodic phenomena every day of
our lives. Those of us who still use analogue clocks
are acutely aware of the 60 second, 60 minute
and 12 hour periods associated with the sweeps
of the second, minute and hour hands. We are
conscious of the fact that the Earth rotates on its
axis roughly every 365 days. These periodicities
are reasonably accurate. The quantities we are
interested in measuring are not precisely periodic
and there will also be error associated with their
measurement.

from The Estimation and Tracking of Frequency,
B. G. Quinn and E. J. Hannan. 9

Frequency estimation

In this chapter we consider estimating the two coefficients of a polynomial phase
signal of order one. This is equivalent to a well studied problem called frequency
estimation and has application to, for example, radar, sonar, telecommunications,
astronomy and medicine [Quinn and Hannan, 2001].

In Sections 9.1, 9.2 and 9.3 we describe some of the estimators that exist in the
literature. These are the periodogram estimator, the Quinn-Fernandes esti-
mator and Kay’s unwrapping estimator. In Section 9.5 we discuss the angular
least squares estimator that can be computed by finding a nearest point in the
lattice V ∗n/1. We could use the nearest point algorithm described in Section 4.3,
but we find that it is quite slow. Instead we describe a simple approximate near-
est point algorithm that is much faster, and for frequency estimation, has almost
identical statistical performance to the exact nearest point algorithm. Section 9.5
compares the estimators by Monte-Carlo simulation. It is found that that the an-
gular least squares estimator is very statistically accurate, but is computationally
more expensive than the other estimators.

Signal model

Typically the signal model for frequency estimation is given in complex exponential
form, that is, we observe N complex numbers of the form

Yn = ρ̃e2πj(f̃n+µ̃) +Xn (9.0.1)

where ρ̃ > 0 is an unknown amplitude and X1, X2, . . . , XN are zero mean complex
random variables. The parameter f̃ is typically called the frequency and µ̃ is called
the phase. Note that to ensure identifiability we must restrict (µ̃, f̃) to the square
identifiable region [−1/2, 1/2)2. This corresponds to the fact that the lattice L2 = Z2

when m = 1 (see Section 7.2). It also corresponds with the Nyquist criterion.
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Our focus will be on estimating the frequency, f̃ , as this is typically the pa-
rameter of interest in the literature and also in practice. Once an estimate of the
frequency, say f̂ , is found the phase can be estimated from Yne

−2πjnf̂ using any
of the approaches to phase estimation described in Section 6.4. We now briefly
describe a number of popular estimators from the literature.

9.1 Least squares and the periodogram estimator

An obvious approach is the least squares estimator. This is given by the minimisers
of the sum of squares function

S(ρ, µ, f) =
N∑
n=1

∣∣Yn − ρe2πi(µ+fn)
∣∣2.

The minimisation is over the frequency, f , the phase, µ, and also the amplitude, ρ.
It may at first seem a search over all of three parameters is needed, but the problem
can be simplified by conditioning the sum of squares function with respect to the
amplitude and the phase. To see this let r = ρe2πiµ and write the sum of squares
function as

S(r, f) =
N∑
n=1

∣∣Yn − re2πifn
∣∣2.

Fixing f and differentiating with respect to the conjugate of r gives

d

dr∗
S(r, f) =

N∑
n=1

Yne
−2πifn − r,

and setting this to zero gives

r̂ = N−1

N∑
n=1

Yne
−2πifn,

and it is not hard to check that this stationary point corresponds to a minimum.
Substituting this into S(r, f) gives the sum of squares function conditioned upon
minimisation with respect to r as1

S(f) =
N∑
n=1

|Yn|2 −N−1

∣∣∣∣∣
N∑
n=1

Yne
−2πifn

∣∣∣∣∣
2

.

Now the frequency can be estimated by finding the minimiser of S(f) and this
only involves a minimisation over the single parameter, f . The sum

∑N
n=1 |Yn|2 is

1We have slightly abused notation by reusing S, as in S(ρ, µ, f), S(r, f) and S(f), but this
should not cause any confusion as the different objective functions can easily be told apart by their
different inputs.
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constant with respect to f and therefore, for the purpose of minimisation, can be
ignored. By negating the remaining term we obtain

Ps(f) = N−1

∣∣∣∣∣
N∑
n=1

Yne
−2πifn

∣∣∣∣∣
2

which is referred to as the periodogram in the frequency estimation literature.
The periodogram estimator results from selecting the frequency that maximises
Ps(f). The periodogram is the squared magnitude of the Fourier transform of
the Yn and so maximisation of Ps(f) amounts to selecting the frequency component
of the signal Yn that has largest energy. In this context the periodogram estimator
is particularly intuitively appealing. The statistical asymptotic properties of the
periodogram estimator have been known for some time [Quinn and Hannan, 2001;
Hannan, 1973; Walker, 1971].

There still remains the problem of computing the maximiser of the periodogram
in practice. Rife and Boorstyn [1974] have suggested a practical method, by using
the fast Fourier transform to obtain the value of the periodogram at the Fourier
frequencies

f = −1

2
,−1

2
+

1

N
,−1

2
+

2

N
, . . . ,

1

2
− 1

N
. (9.1.1)

The Fourier frequency that maximises the periodogram is found and this estimate is
then further refined by a numerical procedure such as Newton’s method. A problem
is that the numerical procedure can fail to locate the correct maximiser [Rice and
Rosenblatt, 1988]. To avoid the problem Rife and Boorstyn [1974] suggested zero
padding the signal to length 4N before performing the fast Fourier transform to
obtain samples of the periodogram on the finer intervals

f = −1

2
,−1

2
+

1

4N
,−1

2
+

2

4N
, . . . ,

1

2
− 1

4N
.

This zero padding has recently been shown to work by Quinn et al. [2008], who
also show that applying Newton’s method to the derivative of certain monotonic
functions of the periodogram, rather than to the periodogram itself, ensures that
Newton’s method will succeed even without any zero padding.

Regardless of these implementation difficulties, the periodogram estimator is
widely seen as the best method for frequency estimation. It provides very accurate
results and using the fast Fourier transform can be computed in only O(N logN)
arithmetic operations. Nevertheless, many other methods for frequency estimation
exist.

9.2 The Quinn-Fernandes estimator

In order to avoid the numerical difficulties associated with maximising the peri-
odogram Quinn and Fernandes [1991] suggested a different frequency estimator.
The estimator begins with an initial guess of the frequency. A specialised itera-
tive procedure then converges from this guess to the estimated frequency. In our
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implementation the guess is given by choosing the Fourier frequency (9.1.1) that
maximises the periodogram. These are calculated using the fast Fourier transform
and therefore our implementation requires O(N logN) operations. The advantage
of the Quinn-Fernandes estimator is that the specialised iterative procedure is sub-
stantially more robust than Newton’s method. The asymptotic properties of the
estimator are also well studied [Quinn and Fernandes, 1991; Quinn, 1999, 2008].

9.3 Kay’s unwrapping estimator

It appears to have been Tretter [1985] who first suggested estimating the frequency
using only the complex argument of the observations ∠Yn. Tretter [1985] noticed
that the ∠Yn looked like a straight line that is wrapped modulo 2π and suggested that
if the line could be unwrapped then the frequency could be estimated using standard
linear regression. This is precisely the mentality behind the angular least squares
estimator. Tretter [1985] did not suggest how the unwrapping should be performed.
For the angular least squares estimator we have taken a least squares approach,
but many authors have considered different unwrapping methods, for example Kay
[1989] and Lovell et al. [1991]. We shall briefly describe one of the more popular
approaches that is due to Kay [1989].

Kay [1989] considered the first differences of the phase signal ∠Yn − ∠Yn+1 and
noted that the resulting signal resembles a moving average process, whose param-
eters can be estimated by standard linear techniques. A significant advantage of
this approach is that the moving average process has enough structure for the esti-
mates to be computed with only O(N) arithmetic operations. The estimator also
appears to perform well when the signal-to-noise ratio is large. A major drawback
of Kay’s estimator is that it is not as statistically accurate as the other estimators.
Another problem is that Kay’s estimator only works well when the true frequency f̃
is bounded away from ±0.5. This phenomenon has been studied by Quinn [2000]. In
Chapter 10 we shall see that many popular estimators for polynomial phase signals
suffer from a similar, but more severe, problem.

9.4 Approximating angular least squares

In order to use the angular least squares estimator we take the complex argument
of the Yn and divide by 2π to obtain the circular random variables

Θn = ∠Yn
2π

=
〈

Φn + f̃n+ µ̃
〉

(9.4.1)

where the Φn = 1
2π
∠(ρ+Xn) are projected circular random variables (see Sec-

tion 5.6). The Θn are now in the form of (8.1.1) and we can use the angular least
square estimator in the way described in Section 8.1.

Computing the angular least squares estimator requires computing a nearest lat-
tice point in the lattice V ∗(N−2)/1. Using the algorithm developed in Section 4.3 this

requires O(N5) operations. Although polynomial time this is far too slow for prac-
tical use, particularly when the other estimators require only O(N) or O(N logN)
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operations. For this reason we will describe an approximate angular least squares es-
timator that requires O(N2 logN) operations and performs in practice very similarly
to the exact angular least squares estimator.

The geometric intuition behind the approximate algorithm is that of computing
the nearest point in the lattice A∗N−1 to a line of points. When m = 1 we can rewrite
the sum of squares function from (8.1.4) in vector form as

SS(µ, f,w) = ‖θ − fn− µ1−w‖2. (9.4.2)

where θ = [Θ1, . . . ,ΘN ]† and 1 is the all ones vector, n is the vector [1, 2, . . . , N ]
and w is a vector of integer wrapping variables that are considered as nuisance
parameters. Fixing both f and w and minimising with respect to µ we obtain

µ =
1 · (y − fn−w)

N
. (9.4.3)

Substituting this into (9.4.2) we find that the angular least square estimator of the
frequency, conditioned on minimisation with respect to µ, is given by

f̂ = arg min
f∈[−1/2,1/2)

min
w∈ZN

‖Qy − fQn−Qw‖2, (9.4.4)

where Q is the projection matrix into the space orthogonal to the all ones vector 1
(3.3.1). By definition the Qw are lattice points in A∗N−1 (see Section 3.3) and we
can rewrite the minimisation problem above as

f̂ = arg min
f∈[−1/2,1/2)

min
x∈A∗

N−1

‖z− fg − x‖2

where z = Qy and g = Qn. Geometrically this minimisation problem is that of
finding the nearest lattice point in A∗N−1 to the line segment given by z + fg for
f ∈ [−1/2, 1/2). Seeing as very fast algorithms exist to compute a nearest lattice
point in A∗N−1 we suggest the following obvious approach to computing f̂ . Take a
set V of uniformly spaced samples from [−1/2, 1/2) so that the elements in V are

−1

2
,−1

2
+

1

|V |
,−1

2
+

2

|V |
, . . . ,

1

2
− 1

|V |

and consider the minimisation problem

ŵ = arg min
w∈A∗

N−1

min
f∈V
‖z− fg −w‖2.

That is ŵ is the nearest point in A∗N−1 to the sampled line segment z+fg for f ∈ V .
An estimate of frequency is then given by

f̂ =
(z− ŵ) · g

g · g
.

The nearest point in A∗N−1 can be computed in O(N) operations using Algo-

rithm 3.4 so computing ŵ and f̂ requires O(|V |N) operations. A problem is that we
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do not know how many samples of the line segment are needed to guarantee that the
true minimiser is found, that is, we do not know how large V should be. Therefore
this approach can only be considered an approximation to the exact angular least
squares estimator. Experimentation seems to suggest that choosing |V | = 2N log2N
gives very good results and in this case the algorithm requires O(N2 logN) arith-
metic operations. Using similar ideas the exact angular least squares estimator
can be computed in O(N3 logN) arithmetic operations. We will not describe this
algorithm here, but details can be found in McKilliam et al. [2010a].

9.5 Simulations

In this section we use Monte Carlo simulation to compare the performance of
the angular least squares estimator, the periodogram estimator, Kay’s estimator
and the Quinn-Fernandes estimator for three different noise distributions, complex
Gaussian, von Mises and wrapped uniform. We consider five different values of
N = 4, 16, 64, 256, 1024 over a range of noise variance. One thousand trials were
run for each noise variance and the true frequency f̃ and the true phase µ̃ are var-
ied uniformly over [−1/2, 1/2) and the true amplitude ρ̃ = 1. The simulated mean
square error (MSE) of the frequency is plotted in Figures 9.1, 9.2 and 9.3. The MSE
is computed using the dealised error as described in Section 7.2.2. The frequency
is the more interesting parameter so we do not provide plots for the MSE of the
phase. The plots for either frequency or phase lead to similar conclusions about the
performance of the estimators.

In Figure 9.1 the complex noise term Xn from (9.0.1) is zero mean complex
Gaussian with independent real and imaginary parts each with variance σ2

c . In this
case the Cramér-Rao lower bound (CRB) has been derived by Rife and Boorstyn
[1974] and is given by

covar
[
N1/2(µ̃− µ̂), N3/2(f̃ − f̂)

]†
≥ σ2

c

4π2

[
4 −6
−6 12

]
.

Under these conditions the periodogram estimator is also the maximum likelihood
estimator. It can be seen that the periodogram estimator and Quinn-Fernandes esti-
mator perform very close to the CRB when the noise variance is below a particular
threshold value. The threshold grows as N increases. The angular least squares
estimator performs very closely to the variance predicted by Theorem 8.1. We have
plotted the exact angular least square estimator (diamonds) for N = 4, 16, 64 and
it can be seen that the approximate angular least square estimator (crosses) gives a
close approximation, but with substantially less computationally complexity.

Kay’s estimator performs very poorly. This is due to the estimator failing when
the true frequency f̃ is near ±1/2. In practice it might be possible to bound the
frequency away from ±1/2 by, for example, increasing the rate (in Hz) at which
observations are acquired. For this reason we have also plotted the MSE of Kay’s
estimator where f̃ is chosen uniformly in [−0.3, 0.3). Kay’s estimator works better
under these conditions but is still not comparable with the other estimators when
the noise variance is large.
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Figures 9.2 and 9.3 display the performance of the estimators when the circular
noise term Φn from (9.4.1) takes respectively the von Mises and the wrapped uni-
form distribution. In this case the complex samples Yn are given by e2πjΘn where Θn

is calculated according to (9.4.1). For the von Mises distribution the periodogram
and Quinn-Fernandes estimators give the best performance with the angular least
squares estimator being marginally less accurate. For the wrapped uniform distribu-
tion we see that the angular least squares estimator gives the best performance. This
is similar to the results found in Chapter 5 where it was noticed that for mean di-
rection estimation the angular least squares estimator performs well when the noise
distribution is ‘uniform-like’. The variance given by Theorem 8.1 again accurately
models the behaviour of the angular least squares estimator. Kay’s estimator again
only works well when the frequency and phase are bounded away from ±1/2 and
even then Kay’s estimator is not as accurate as the others.

9.6 Summary

This chapter considered the problem of signal frequency estimation. Three esti-
mators that exist in the literature were described, the periodogram estimator,
the Quinn-Fernandes estimator and Kay’s unwrapping estimator. We also
considered the angular least squares estimator.

We showed by Monte-Carlo simulation that the periodogram estimator, the
Quinn-Fernandes estimator and the angular least squares estimator are all very
accurate. The performance of the angular least squares estimator is well modelled
by the central limit theorem derived in Theorem 8.1. Kay’s unwrapping estimator
only works well when the true value of the frequency parameter is bounded away
from ±0.5 and even then the performance is not as good as the other estimators.

The periodogram and Quinn-Fernandes estimators both requireO(N logN) arith-
metic operations and Kay’s unwrapping estimator requires O(N) operations where
N is the number of observations. The angular least square estimator requires a
nearest point in the lattice V ∗N−2/1 to be computed. If we use the algorithm from

Chapter 4 then O(N5) operations are required. This is very slow, so we described a
simple method to approximate the nearest point in O(N2 logN) arithmetic opera-
tions. Although much faster, the complexity is still high when compared with other
frequency estimators. However, it may be that much faster nearest point algorithms
exist for V ∗N−2/1. As we have shown, even fast approximate nearest point algorithms
would prove very useful for frequency estimation.
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Figure 9.1: Mean square error in frequency with zero mean complex Gaussian noise
having independent real and imaginary parts with variance σ2

c .
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Figure 9.2: Mean square error in frequency with von Mises noise with zero unwrapped
mean and unwrapped variance equal to σ2.
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Figure 9.3: Mean square error in frequency with wrapped uniform noise with zero
unwrapped mean and unwrapped variance equal to σ2.



—Out of this haphazard excursion into number
theory, it is my fervent hope that something co-
herent, interesting and useful has emerged.

I. Vaughan L. Clarkson

10
Polynomial phase estimation

In this chapter we consider estimating the m+ 1 coefficients of a polynomial phase
signal of order m. The problem has applications in electrical engineering, partic-
ularly in radar, sonar and telecommunications and also in science, particularly in
optics, geophysics and biology. In radar and sonar applications polynomial phase
signals occur when acquiring radial velocity and acceleration (and higher order mo-
tion descriptors) of a target from a reflected signal. In biology, polynomial phase
signals can be used to describe the sounds emitted by bats and dolphins for echo
location [Suga et al., 1975; Thomas et al., 2005; Peleg and Friedlander, 1995].

In Section 10.1 we describe the least squares estimator for polynomial phase
signals and show how it can be computed by iterating the periodogram estima-
tor from frequency estimation (see Section 9.1). The least squares estimator is very
computationally intensive and for this reason many authors have considered meth-
ods to reduce the computational complexity [Peleg and Friedlander, 1995; Kitchen,
1994; Morelande, 2009; Morelande and Zoubir, 2002; Djuric and Kay, 1990; O’Shea,
1996; Golden and Friedlander, 1998b, 1999, 1998a; Farquharson, 2006; Farquharson
et al., 2005]. Loosely these techniques can be grouped into two classes, those based
on polynomial phase transforms and those based on phase unwrapping. It
is not the intention of this thesis to give a exhaustive review of the numerous esti-
mators that exist in the literature so we will focus on two estimators that we feel
are the most representative of these two classes. These are the discrete polyno-
mial phase transform [Peleg and Friedlander, 1995] and Kitchen’s unwrapping
estimator [Kitchen, 1994].

Section 10.2 describes the discrete polynomial phase transform (DPT) that
works by transforming the observed data so that each polynomial coefficient can be
estimated individually using the periodogram estimator. The DPT is computation-
ally efficient requiring only O(N logN) arithmetic operations where N is the number
of observations. The estimator can also be statistically quite accurate. However, we
find that the DPT does not work very well for some coefficients in the identifiable
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region. This is, in a way, similar to how Kay’s frequency estimator performs poorly
when the true frequency is near ±0.5. The problem is actually far more severe for
the DPT estimator and we find that the range of coefficients for which the DPT
estimator works correctly can be extremely small when compared to the identifiable
region. Moreover, this range shrinks rapidly as the number of observations, N , in-
creases. We consider how this problem might be overcome by increasing the rate
at which observation are acquired (the sample rate), but we show that this comes
with inevitable statistical penalties.

Section 10.3 describes Kitchen’s unwrapping estimator. This estimator is a
natural generalisation of Kay’s unwrapping estimator for frequency estimation (Sec-
tion 9.3). Kitchen’s estimator shares many of the properties of Kay’s unwrapping
estimator, in that it is very computationally efficient, requiring only O(N) opera-
tions, but it only works well when the noise variance and the number of observations
is small. Also, Kitchen’s estimator only works when the range of parameters is re-
stricted (bounded away from the edge of the identifiable region), but this restriction
is much less severe than it is for the discrete polynomial phase transform.

Section 10.4 considers the angular least squares estimator that was studied in
Chapter 8. Computing the angular least squares estimator requires finding a nearest
lattice point in the lattice V ∗n/m. The nearest point algorithm described in Section 4.3
can be to compute the estimator in a number of operations that is polynomial in N ,
but this turns out to be very computationally expensive in practice. So we consider
alternative algorithms, the sphere decoder, the K-best algorithm and Babai’s
nearest plane algorithm, to compute or approximate the nearest point. These
approaches are feasible, but they are still computationally more expensive than the
discrete polynomial phase transform and Kitchen’s unwrapping estimator.

In Section 10.5 we use Monte-Carlo simulation to compare the performance of
the estimators in practice. We find that the angular least squares estimators and
the least squares estimators are both very accurate and work well for coefficients
anywhere in the identifiable region. Kitchen’s unwrapping estimator and the DPT
are less accurate. The DPT suffers from the fact that it operates very poorly on
a large range of coefficients inside the identifiable region. We also discuss some
computational properties of the various estimators.

Signal Model

Like frequency estimation the signal model for polynomial phase estimation is typ-
ically given in complex exponential form, that is, by N complex observations of the
form

Yn = ρ̃e2πi(µ̃0+µ̃1n+µ̃2n2+···+µ̃mnm) +Xn (10.0.1)

where ρ̃ > 0 is an unknown amplitude and X1, X2, . . . , XN are zero mean complex
random variables. The aim is to estimate the polynomial coefficients µ̃0, . . . , µ̃m. As
discussed in Section 7.2 in order to ensure identifiability it is necessary to restrict the
coefficients such that µ̃ = [µ̃0, . . . , µ̃m] is inside the identifiable region from (7.2.1),

B =
m∏
k=0

[
−0.5

k!
,
0.5

k!

)2
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that tessellates on the lattice Lm+1.

10.1 The least squares estimator

An obvious approach to estimating the polynomial coefficients is the least squares
estimator. This is given by the minimisers of the sum of squares function

S(ρ, µ0, µ1, . . . , µm) =
N∑
n=1

∣∣∣Yn − ρe2πi(µ̃0+µ̃1n++µ̃2n2+···+µ̃mnm)
∣∣∣2.

The minimisation is over the m+1 polynomial coefficients and also the amplitude ρ.
It may at first seem that we need to perform a search over all of these parameters to
find the minimum, but, similar to the approach taken for the periodogram frequency
estimator, S can be conditioned with respect to ρ and µ0 to obtain the simpler sum
of squares function

S(µ1, . . . , µm) =
N∑
n=1

|Yn|2 −N−1

∣∣∣∣∣
N∑
n=1

Yne
−2πi(µ̃1n+µ̃2n2+···+µ̃mnm)

∣∣∣∣∣
2

.

Now the µ1, . . . , µm can be estimated by searching over only these m coefficients.
We recommend the following approach to minimising this function. First perform

a discrete search over the m− 1 coefficients µ2, . . . , µm using suitably many samples
spaced over the identifiable region. We recommend using 4N2 samples for µ2 and
4N3 samples for µ3 and in general 4Nm for µm. We wish to spread these samples
over the subset of the identifiable region associated with µ2, . . . , µm. To do this we
take a generator for Lm+1, i.e. the matrix P , then the set of discrete samples is
given (in vector form) as

V =
{
Pu | u0 = 0, u1 = 0, uk =

{
0, 1

4Nk ,
2

4Nk , . . . , 1− 1
4Nk

}}
.

Note that we have decided to index the vector u by starting at zero because this
matches with the way we have indexed the polynomial coefficients. Each vector in
v ∈ V corresponds to a discrete sample of µ2, . . . , µm by setting

µ2 = v2, µ3 = v3, . . . , µm = vm.

For each discrete sample we compute the signal

Yne
−2πi(µ2n2+···+µmnm)

and then obtain an estimate of the frequency parameter µ1 by applying the pe-
riodogram estimator (see Section 9.1). Once the minimiser of S(µ1, . . . , µm) over
the discrete samples has been found the estimate is further refined using Newton’s
method. After this procedure it is possible that the estimate obtained is not in the
identifiable region but instead is an aliased version of the desired estimate. This
can be resolved using the dealiasing procedure described in Section 7.2.1, i.e. by
applying the dealias(·) function. It is important to realise that this proceedure does
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not guarantee that the global minimiser is found because Newton’s method might
fail. By increasing the number of discrete samples (i.e. the size of the set V ) we can
increase the chance of Newton’s method succeeding. Using the number of discrete
samples we have suggested does give good results in practice, but it may fail some-
times, we don’t know. Abatzoglou [1986] considers this problem for the specific case
when m = 2 and arrives at a similar conclusion as to the number of discrete samples
required that we have here.

The overall complexity of this algorithm is proportional to the number of dis-
crete samples |V | multiplied by the computational complexity of the periodogram
estimator which is O(N logN). Using the number of samples we have recommended
results in an algorithm that requires O(Nm(m+1)/2 logN) operations. For large N
and moderate m this is computationally very expensive and for this reason many
authors have considered methods to reduce the computational complexity. Loosely
these techniques can be grouped into two classes, those based on polynomial phase
transforms and those based on phase unwrapping.

10.2 The polynomial phase transform

The class of estimators based on polynomial phase transforms typically attempt to
transform the received signal so that each coefficient can be estimated independently.
This reduces the m − 1 dimensional search used for the least squares estimator to
m − 1 one-dimensional searches. Perhaps the primary example of this approach
is the discrete polynomial phase transform (DPT) suggested by Peleg and
Friedlander [1995]. Modifications of the DPT have been suggested by O’Shea [1996]
and Golden and Friedlander [1998b]. Another example of an estimator in this class
is the so called high-order phase function considered by Farquharson et al. [2005]
and Wang et al. [2008].

The basic idea behind the DPT is that of convolution with a delayed complex
conjugate. The effect of this is to difference the phase of the signal and, by the
calculus of finite differences, obtain a signal with phase described by a polynomial
of a smaller order [Jordan, 1965]. The convolution is applied m − 1 times so that
the resulting signal resembles a single frequency signal and the coefficients can then
be estimated using any of the techniques for frequency estimation discussed in the
Chapter 9. Peleg and Friedlander [1995] suggest using the periodogram estimator
and that is also what we recommend. This process of m − 1 delayed convolutions
followed by a discrete Fourier transform (as apart of the periodogram estimator) is
what Peleg and Friedlander [1995] call the discrete polynomial phase transform
of order m.

An adjustable quantity is the delay (sometimes also called the lag) used in the
convolution operation which Peleg and Friedlander [1995] denote by τ . The sta-
tistical performance of the estimator is dependent on τ and, in order to maximise
the performance Peleg and Friedlander [1995] suggest choosing τ = N

m
or τ = N

m+2
.

Here we will assume that τ = N
m

. The DPT estimator works correctly when the
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coefficients satisfy

2|µk| ≤
1

k!τ k−1
=

1

k!

(m
N

)k−1

(10.2.1)

for all k = 0, . . .m [Peleg and Friedlander, 1995, eq. (15)].
This means that the DPT works correctly only when the coefficients lie within

a m+ 1 dimensional rectangular prism of volume

VDPT =
m∏
k=0

1

k!

(m
N

)k−1

=
(m
N

)m(m−1)/2
m∏
k=0

1

k!
.

The volume of the identifiable region is given by the square root of the determinant
of the lattice Lm+1, that is

Vm = vol(Vor(Lm+1)) =
√

detLm+1 =
m∏
k=0

1

k!
.

Observing the ratio
VDPT
Vm

=
(m
N

)m(m−1)/2

(10.2.2)

it is clear that, when m > 1, the range of coefficients for which the DPT works is
small when compared to the size of the identifiable region. Moreover, the ratio VDPT

Vm
shrinks quite rapidly as N increases. For large N this may make the DPT unusable
as the true coefficients might lie outside the rectangular prism defined by (10.2.1).
Note that the identifiable region is independent of N . As we shall see in Section 10.5
see the least squares estimator and the angular least square estimator work correctly
for coefficients anywhere in the identifiable region.

In practice the observations are acquired at a particular sample rate, say δ, in
Hz. If we desire the volume of acceptable coefficients VDPT to remain constant as N
increases it is necessary to increase the sampling rate. Including the rate parameter
δ we find that the DPT works correctly if the coefficients satisfy

2|µk|
δk
≤ 1

k!τ k−1
=

1

k!

(m
N

)k−1

. (10.2.3)

These inequalities correspond to coefficients lying inside a rectangular prism of vol-
ume

VDPT (δ) = δm(m+1)/2VDPT = δm(m+1)/2
(m
N

)m(m−1)/2

Vm.

It makes sense to pick δ so that VDPT (δ) = Vm so that the volume of acceptable
coefficients for the DPT is equal to the volume of the identifiable region. In this
case

δ =

(
N

m

)(m−1)/(m+1)

. (10.2.4)

So the sampling rate must increase like O(N1/3) when m = 2, like O(N1/2) when
m = 3, like O(N3/5) when m = 4 and for large m the sample rate must increases
close to linearly with N . We have plotted the required increase in the sampling rate
for m = 2, 3, 4 in Figure 10.1.
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Figure 10.1: Required increase in sample rate for the DPT as the number of obser-
vations N increases for m = 2, 3, 4.

A word of caution is that although the volumes VDPT (δ) and Vm are equal
this does not mean that the m + 1 dimensional rectangular prism corresponding
to VDPT (δ) is equal to the identifiable region B. The inequalities from (10.2.3) do
not describe a tessellating region for the lattice Lm+1. However, for the purpose
of comparing the DPT with the other estimators, selecting δ so that the volumes
VDPT (δ) and Vm are equal appears to be the fairest approach. At least, under this
condition, the volume of acceptable coefficients is the same. Whether it is possible
to increase the sampling rate in practice is likely to be highly application dependent.
However, as we shall see in Section 10.5, increasing the sampling rate comes with
inevitable statistical penalties.

The high-order phase function estimator of Farquharson et al. [2005] also
only works on a very restricted set of coefficients. Here the estimator, in the most
general case, only works correctly if the coefficients lie inside a rectangular prism of
volume

VHPF =

(
2

N

)m(m−1)/2 m∏
k=0

1

k!

which is even smaller than VDPT . In order to make the volume VHPF equal to the
volume of the identifiable region Vm we would need to select the sample rate

δ =

(
N

2

)(m−1)/(m+1)

which is even faster than that required by the DPT.
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10.3 Kitchen’s unwrapping estimator

Motivated by the phase unwrapping approach to frequency estimation suggested
by Tretter [1985] and Kay [1989], both Djuric and Kay [1990] and Kitchen [1994]
suggested approaches to polynomial phase estimation based on phase unwrapping
ideas. We will consider Kitchen’s estimator here.

Kitchen considered the mth difference of the complex argument of the Yn. Like
Kay’s frequency estimator the resulting signal resembles a moving average process
and can be estimated by standard linear techniques. A significant advantage is that
the moving average process has enough structure for the estimates to be computed
with only O(N) arithmetic computations. Kitchen’s estimator shares many of the
properties of Kay’s frequency estimator in that it appears to be statistically efficient
only when both the noise variance and N are small. Also, Kitchen’s estimator does
not appear to work well over the entire identifiable region. This is similar to how
Kay’s estimator fails when the true frequency and phase of the signal is near ±0.5.
The situation is far less severe than for the DPT. Experimentation reveals that the
estimator works correctly when the kth coefficient is bounded away from ±0.5

k!
. For

the simulations in Section 10.5 we find that if the coefficients lie in the prism

m∏
k=1

[
−0.3

k!
,
0.3

k!

)

then Kitchen’s estimator appears to work reasonably well. Note that the volume
of this prism is smaller than the identifiable region by the factor (3

5
)m+1 but, in

contrast to the discrete polynomial phase transform, the volume does not shrink as
the number of observations N increases.

A problem with Kitchen’s estimator is that we need to bound the phase coeffi-
cient, µ̃0 away from ±0.5. In practice the higher order coefficients µ̃1, . . . , µ̃m can
all be bounded away from ±0.5

k!
by slightly increasing the sampling rate, but we

do not have similar control over the phase coefficient. Fortunately, an easy fix is
to use Kitchen’s estimator to obtain the estimates µ̂1, . . . , µ̂m of the higher order
coefficients, then compute the estimate µ̂0 of the phase coefficients from the signal
Yne

−2π(µ̂1+···+µ̂m) by applying any of the techniques for phase estimation that we
discussed in Section 6.4. In our implementation we have used the least squares es-
timator. The complexity of the estimator is still O(N) with this modification, but
the estimator now works well when the coefficients lie in the prism

[
−1

2
,
1

2

)
×

m∏
k=1

[
−0.3

k!
,
0.3

k!

)
(10.3.1)

which has volume (3
5
)m. In the simulations in Section 10.5 we will use this modifi-

cation of Kitchen’s estimator.
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10.4 Approximating angular least squares

In order to use the angular least squares estimator we take the complex argument
of the Yn and divide by 2π to obtain the circular random variables

Θn = ∠Yn
2π

=
〈
Φn + µ̃0 + µ̃1n+ +µ̃2n

2 + · · ·+ µ̃mn
m
〉

(10.4.1)

where the Φn = 1
2π
∠(ρ̃+Xn) are projected circular random variables. The Θn are

now in the form of (8.1.1).

Computing the angular least squares estimator requires finding a nearest point
in the lattice V ∗n/m. We could use the algorithm suggested in Section 4.3 to compute

a nearest point in O(N (m+1)2+1) operations. However, when m = 2 this is O(N10)
and when m = 3 this is O(N17) so although these are polynomial-time in N they
are far too slow for practical use. We suggest the following approximate approaches
in practice.

When N is small (approximately less than 50) the sphere decoder can be
used to compute the nearest point exactly and quite rapidly. For any N Babai’s
nearest plane algorithm can be used to approximate the nearest point in only
O(N2) operations. However, we will find that a reasonably significant performance
penalty is suffered by using Babai’s nearest plane algorithm if the noise variance is
large. Finally the K-best algorithm can be used to approximate the nearest point
in O(K2N2 logK) operations [Guo and Nilsson, 2006]. We have found that setting
K = 4N seems to work well and in this case the algorithm requires O(N3 logN)
operations.

Even these approximate approaches are quite computationally expensive com-
pared to the DPT that requires only O(N logN) operations and Kitchen’s unwrap-
ping estimator that requires on O(N) operations. For now at least this might restrict
the use of the angular least squares estimator to cases where N is small. However,
there may exist significantly faster methods for computing or approximating a near-
est point in the lattice V ∗n/m that we have not discovered yet. In the next section we
will display the excellent statistical performance of the angular least squares esti-
mator. Due to this performance, studying the properties of V ∗n/m more thoroughly,
particularly with a view to finding faster nearest point algorithms is a worthy direc-
tion for future research.

10.5 Simulations

In this section Monte-Carlo simulation is used to compare the performance of the
least squares estimator, the DPT, Kitchen’s estimator and the angular least squares
estimator computed using Babai’s nearest plane algorithm, the sphere decoder, and
the K-best algorithm.

Figures 10.4 to 10.15 display the performance of the estimators for a polynomial
phase signal of order 3. The number of observations is N = 16, 64 and 256. It
is only possible to compute the exact angular least squares estimator using the
sphere decoder when N = 16 and 64. The noise term Xn is complex Gaussian with
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independent real and imaginary parts having variance σ2
c . In this case the Cramer-

Rao lower bound (CRB) has been derived by Peleg and Porat [1991] who note
that computing the exact CRB for small N is numerically difficult, but for large N
a close approximation is given by

covar
[
N1/2(µ̃0 − µ̂0) . . . N (2m+1)/2(µ̃m − µ̂m)

]
≥ σ2

c

4π2
C−1

where C is the m+ 1 by m+ 1 Hilbert matrix (see Section 8.2 page 117).
For Figures 10.4 to 10.7 (pages 158 and 159) the true coefficients µ̃0, µ̃1, µ̃2, µ̃3 are

distributed uniformly in the identifiable region. Both the DPT and Kitchen’s un-
wrapping estimator display very poor performance. The sphere decoder and K-best
methods perform similarly and a rather significant performance penalty is suffered
by using Babai’s nearest plane algorithm. Also plotted is the CRB and the asymp-
totic variance predicted by Theorem 8.1 which can be seen to accurately model the
behaviour of the angular least squares estimator provided that the noise variance is
small enough to avoid the threshold effect.

For Figures 10.8 to 10.11 (pages 160 and 161) the true coefficients µ̃0, µ̃1, µ̃2, µ̃3

are restricted to suit the particular estimators. For the DPT the coefficients all
satisfy (10.2.1) and for Kitchen’s estimator the coefficients are all inside the prism
defined by (10.3.1). For the angular least squares estimator the coefficients are
again generated uniformly within the identifiable region. Under these conditions
both Kitchen’s estimator and the DPT work, although they are still not as accurate
as the angular least squares estimator.

The results displayed in Figures 10.8 to 10.11 are, in a sense, unfair. The reason
is that the DPT and Kitchen’s estimator have been given extra information about
the true coefficients. In the case of the Kitchen’s estimator the coefficients have
only been restricted slightly by a factor (in volume) of

(
3
5

)m
and this is probably

negligible. However, for the DPT the coefficients have been severely restricted.
From (10.2.2), when N = 256, the volume of coefficients searched by the DPT is(

3
256

)3 ≈ 1.6× 10−6 times the size of the identifiable region. The DPT is searching
a space almost one million times smaller than the angular least squares estimator!
In this context we would probably expect the DPT to work much better than the
angular least square estimator. It is somewhat surprising that it does not.

In order to display more fair results we can increase the sample rate of the DPT
so that the volume of coefficients to which it applies is equal to the volume of the
identifiable region. This comes with some inevitable statistical penalties. If we
rederive the Cramèr-Rao lower bound taking account of the fact that the sample
rate is now δ given by (10.2.4) then we obtain

covar
[
N1/2(µ̃0 − µ̂0) . . . N (2m+1)/2(µ̃m − µ̂m)

]
≥ σ2

c

4π2
SC−1

where S is the m + 1 by m + 1 diagonal matrix with diagonal entries given by
1, δ2, δ4, . . . , δ2m. The DPT, applied at the sample rate δ, will not achieve a mean
square error less than this new CRB. The results are displayed in Figures 10.12
to 10.15 and it can be seen that in this scenario the performance of the DPT is, as
predicted, substantially worse than before.
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In Figures 10.2 and 10.3 we compare the angular least squares estimator with the
least squares estimator. Here, the polynomial phase signal has order 2 and we have
only plotted results for the highest order parameter µ2. It is only possible to run the
least squares estimator for small N and we have used N = 10 and 50. In Figure 10.2
the noise terms Xn are complex Gaussian with independent real and imaginary parts
having variance σ2

c . Under these conditions the least squares estimator is also the
maximum likelihood estimator. The performance of the angular least squares esti-
mator computed exactly using the sphere decoder and approximately using Babai’s
nearest plane algorithm is displayed. It can be seen that the least squares estimator
has better performance. When N = 50 the threshold effect occurs for larger vari-
ance with the least squares estimator. It is possible that this gap will close as N
increases as this type of behaviour is observed in the results displayed for frequency
estimation in Section 9.5 (see Figure 9.1). We unfortunately are unable to test this
due to the computational complexity of the least squares estimator.

Figure 10.3 displays the performance when the circular noise terms Φn from
(10.4.1) take the wrapped uniform distribution. In this case the complex samples
Yn are given by e2πjΘn where Θn is calculated according to (10.4.1). Here, the angular
least squares estimator computed using the sphere decoder performs slightly better
than the least squares estimator.

Computational considerations

The least squares estimator can only be computed in a reasonable amount of time for
N approximately less than 50 and m = 2, but is very computationally intensive for
any N when m > 2. By comparison the sphere decoder estimator can be computed
quite quickly for any m with N approximately less than 50. In situations where N is
small, but high statistical accuracy is required, the sphere decoder is computationally
a better choice than the least squares estimator, especially for polynomial phase
signals of order greater than 2.

Babai’s nearest plane algorithm only requires O(N2) operations and can be run in
a reasonable amount of time for anym and even very largeN . It should be noted that
Babai’s nearest plane algorithm requires a Lovàs reduced basis [Lenstra et al.,
1982] for the lattice V ∗n/m. This requires O(N4) operations to compute, but, the
Lovàs reduced basis can be computed once offline. It does not need to be computed
each time the estimator is run. The K-best algorithm runs in a reasonable amount
of time for any m and when N is less than about 300. If the noise variance is small,
then both the sphere decoder and the K-best algorithm are actually very fast. This
is because both of these estimators begin with the lattice point found by Babai’s
nearest plane algorithm. If this point is close to (or is) the nearest point then both
the sphere decoder and the K-best algorithm terminate quite quickly. This is in
contrast to the least squares estimator that is slow regardless of the noise variance.

Both Kitchen’s estimator and the DPT are very fast to compute. These estima-
tors can feasibly be run for any m and extremely large N . However, for very large N
the DPT might not be applicable because as N increases the region of coefficients
for which it works correctly decreases, and for very large N , the true coefficient
might lie outside this region.
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10.6 Summary

In this chapter we have described a number of techniques for estimating the m+ 1
coefficients of a polynomial phase signal of order m. We first considered the least
squares estimator and described how it could be computed by sampling an objective
function over the m − 1 highest order coefficients µ2, µ3, . . . , µm and applying the
periodogram frequency estimator. Using the number of samples that we recommend
results in an estimator that requires O(Nm(m+1)/2 logN) operations. This is very
computationally intensive, and is infeasible when m > 2. For this reason many
authors have considered computationally tractable approaches and we studied two of
these: the discrete polynomial phase transform (DPT) [Peleg and Friedlander,
1995] and Kitchen’s unwrapping estimator [Kitchen, 1994].

Using ideas from the calculus of finite differences the DPT operates on the ob-
served signal so that each coefficient can be estimated iteratively using the peri-
odogram estimator used for frequency estimation (Section 9.1). The DPT requires
only O(N logN) operations. The major drawback of the DPT is that it only op-
erates correctly for a very small portion of the identifiable region, and worse, this
region shrinks rapidly as the number of observations, N , increases. This might make
the DPT estimator infeasible for large N as the true coefficients might lie outside
the region acceptable for the DPT. For some applications this problem may be over-
come by increasing the sampling rate. We showed that the sampling rate must
increase like O(N (m−1)/(m+1)) in order for the volume of acceptable coefficients to
remain constant. Section 10.5 showed that increasing the sample rate comes with
inevitable statistical penalties.

Section 10.3 described Kitchen’s unwrapping estimator that is very computa-
tionally efficient, requiring only O(N) operations, but only works well when the
noise variance is small. The estimator also only works when the range of coefficients
is restricted to a region smaller than the identifiable region, but this restriction is
far less severe than for the DPT and the volume of acceptable coefficients does not
shrink as N increases.

Section 10.4 considered the angular least squares estimator which involves
computing a nearest point in the lattice V ∗n/m. The polynomial time nearest point
algorithm described in Chapter 4 is unfortunately too slow for practical use and
we therefore considered some general purpose algorithms, the sphere decoder,
Babai’s nearest plane algorithm and the K-best algorithm. Both the sphere
decoder and K-best algorithm are statistically very accurate. Figures 10.2 and 10.3
showed that the performance is similar to the least squares estimator. If N is small,
then the sphere decoder and K-best algorithms are in practice much computation-
ally simpler than the least squares estimator. We found that Babai’s nearest plane
algorithm is computationally efficient, requiring only O(N2) arithmetic operations,
but its statistical performance is not as good. Unlike the DPT and Kitchen’s un-
wrapping estimator the angular least squares estimator works uniformly well over
the entire identifiable region. In cases where N is large and the noise variance is
not too large, this property makes the approximate angular least squares estimator
computed using Babai’s nearest plane algorithm an attractive choice.
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The algorithms that we have used for computing the angular least squares esti-
mator are still slower than the DPT estimator and Kitchen’s unwrapping estimator.
However, there may exist fast (exact or approximate) nearest point algorithms for
V ∗n/m that we have not found yet. Considering the statistical superiority of the an-
gular least squares estimator the search for faster nearest point algorithms for V ∗n/m
is a promising direction of future research.
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Figure 10.2: MSE in second order parameter µ2 for N = 10, 50 versus the variance
σ2
c of the Xn. The Xn are complex Gaussian random variables.
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Figure 10.3: MSE in second order parameter µ2 for N = 10, 50 versus the unwrapped
variance σ2

u of the Φn. The Φn are zero mean wrapped uniform circular random variables.
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Figure 10.4: MSE in the phase coefficient µ0 versus varXn = σ2
c . The true coefficients

are uniformly spread in the identifiable region.

N = 16

N = 64

N = 256

0.005 0.01 0.02 0.05 0.1 0.2 0.5 1

10−8

10−6

10−4

0.01

σ2
c

M
S

E
in
µ
1

Figure 10.5: MSE in the frequency coefficient µ1 versus varXn = σ2
c . The true

coefficients are uniformly spread in the identifiable region.
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Figure 10.6: MSE in the second order coefficient µ2 versus varXn = σ2
c . The true

coefficients are uniformly spread in the identifiable region.
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Figure 10.7: MSE in the third order coefficient µ3 versus varXn = σ2
c . The true

coefficients are uniformly spread in the identifiable region.
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Figure 10.8: MSE in the phase coefficient µ0 versus varXn = σ2
c . The coefficient have

been restricted for Kitchen’s estimator and the DPT.
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Figure 10.9: MSE in the frequency coefficient µ1 versus varXn = σ2
c . The coefficient

have been restricted for Kitchen’s estimator and the DPT.
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Figure 10.10: MSE in the second order coefficient µ2 versus varXn = σ2
c . The

coefficient have been restricted for Kitchen’s estimator and the DPT.
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Figure 10.11: MSE in the third order coefficient µ3 versus varXn = σ2
c . The coefficient

have been restricted for Kitchen’s estimator and the DPT.
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Figure 10.12: MSE in the phase coefficient µ0 versus varXn = σ2
c . The DPT estimator

runs at the higher sampling rate δ so that the volumes VDPT (δ) = Vm.
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Figure 10.13: MSE in the frequency coefficient µ1 versus varXn = σ2
c . The DPT

estimator runs at the higher sampling rate δ so that the volumes VDPT (δ) = Vm.
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Figure 10.14: MSE in the second order coefficient µ2 versus varXn = σ2
c . The DPT

estimator runs at the higher sampling rate δ so that the volumes VDPT (δ) = Vm.

N = 16

N = 256

N = 16

N = 256

0.005 0.01 0.02 0.05 0.1 0.2 0.5 1

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

0.01

σ2
c

M
S

E
in
µ
3

Figure 10.15: MSE in the third order coefficient µ3 versus varXn = σ2
c . The DPT

estimator runs at the higher sampling rate δ so that the volumes VDPT (δ) = Vm.



164 Polynomial phase estimation



Conclusion

In this thesis we have studied connections between two fields, lattice theory and
circular statistics. We focused on the estimation and theoretical analysis of poly-
nomial phase signals. These signals have a vast array of applications in science,
in particular in astronomy, optics, biology, geology, geography and meteorology and
also in engineering, particularly in communications and radar. Despite this, the
theoretical tools for analysing these signals were found lacking. In particular the
effect of aliasing that occurs when polynomial phase signals are sampled was not
understood. We discovered some special lattices, called Vn/m, V ∗n/m and V ⊥n/m, that
are particularly useful for studying polynomial phase signals. Using these lattices we
completely described the aliasing, and also produced some remarkably accurate esti-
mators. These results will be of great value to engineers, scientists and statisticians
studying polynomial phase signals.

In Chapter 2 we described some introductory concepts from lattice theory. We
focused on tesselating regions, the Voronoi cell, the nearest lattice point
problem, dual lattices, sublattices, quotient groups and also the properties
of lattices generated by intersection with or projection into a subspace.

In Chapter 3 we considered the lattices An, A∗n and also a related family called
the Coxeter lattices. We showed how An can be constructed as the intersection of
the integer lattice Zn+1 with the subspace that is orthogonal to the all ones vector
1, and how A∗n can be constructed as the projection of Zn+1 into this subspace.
We described nearest point algorithms for these lattices that require only a linear
number of operations in the dimension of the lattice n. The algorithms exploit the
fact that the Voronoi cell of the lattice An is equivalent to the convex polytope that
results from projecting the n + 1 dimensional hypercube into the subspace that is
orthogonal to 1. These new algorithms are the fastest known.

In Chapter 4 we derived a number of properties of the lattices Vn/m, V ∗n/m and

V ⊥n/m. We showed how these lattices are generated as intersections and projections

of the integer lattice Zn+m+1. We derived generator matrices for V ⊥n/m and V ∗n/m
and found closed-form formulas for the determinants and also the order of the dual
quotient group V ∗n/m/Vn/m. Using these properties we found an algorithm to com-
pute the nearest point in V ∗n/m by computing a set of coset representatives for the

dual quotient group. The nearest point algorithm requires O(n(m+1)2+1) operations
in total which is polynomial in the dimension n but is exponential in the projec-
tion parameter m. This is an improvement over the fastest algorithms for random
lattices, such as the sphere decoder, that require a number of operations that is
exponential in the dimension.
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In Chapter 5 we gave a brief overview of circular statistics. We described cir-
cular random variables and their probability density functions and showed
how the standard definition of the mean in terms of the expected value does not
map well to our intuitive notion of mean direction. To solve this we considered
two different definitions, the circular mean and the unwrapped mean. Both of
these means map well to our intuitive notion of mean direction. The two means are
not in general equal and for some distributions they are not even defined. In Theo-
rem 5.1 we described a large class of circular distribution that have equal unwrapped
and circular means and we called these unimean distributions. We consider some
popular circular distributions, the von Mises distribution, the wrapped nor-
mal distribution, the wrapped uniform distribution and the projected nor-
mal distribution. We described conditions under which these distributions are
unimean.

Chapter 6 considered methods for estimating the circular and unwrapped means
of a circular random variable from a number, say N , of observations. The first
estimator considered is the sample circular mean estimator of the circular mean.
Theorem 6.1 showed that the sample circular mean is strongly consistent and derived
its central limit theorem. The second estimator is the angular least squares
estimator of the unwrapped mean. We showed how this estimator can be rapidly
computed by finding a nearest point in the lattice A∗n. Theorem 6.2 showed that
the angular least squares estimator is strongly consistent and that it satisfied a
central limit theorem. We considered the performance of these estimators for some
unimean distributions and found that the angular least squares estimator tends to
perform better when the distribution is ‘uniform-like’ whereas the sample circular
mean tends to perform better when the distribution is ‘von Mises-like’. We also
found that the performance of the estimators is very accurately modeled by the
central limit theorems derived in Theorems 6.1 and 6.2.

In Sections 6.4, 6.5 and 6.6 we applied the estimators to the problems of phase
estimation, noncoherent detection, and delay estimation. For phase estima-
tion we found that it is better to simply use the standard least squares estimator.
For noncoherent detection of PSK signals we found that highly accurate detection
could be performed in practice using the angular least squares or the sample circular
mean estimators. This approach is computationally attractive because it requires
only a linear number of operations in the block length, whereas existing least
squares approaches require a log-linear number of operations. We also considered
the problem of delay estimation from noisy and incomplete data. It was observed
that the angular least squares estimator or the sample circular mean could be used
to produce very accurate estimates of the delay regardless of the amount of data
that is missing. However, if the noise level is very high, then a significant accuracy
penalty is paid for having incomplete data.

We also discussed some of the computational properties of the two estimators.
We focused on the number of trigonometric operations that are required and found
that if the N observations are complex numbers, such as in the problem of phase
estimation, then the sample circular mean requires only a single arctangent opera-
tion, but the angular least squares estimator requires N arctangent operations. On
the other hand, if the angles are observed directly, as is likely to be the case in
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meteorology and other applications, then the sample circular mean requires 2N + 1
trigonometric operations, but the angular least squares estimator does not require
any. If trigonometric operations are particularly expensive, as is typically the case
on small computing devices, then consideration of these properties will likely lead
to computational savings.

Estimating the mean direction of a circular random variable is equivalent to
estimating the phase of a polynomial phase signal of order zero, otherwise called a
constant phase signal. In Part III we generalised this concept to polynomial phase
signals of arbitrary order. In Chapter 7 we considered the phenomenon of aliasing
that occurs when polynomial phase signals are sampled uniformly and we described
how the aliasing occurs using some ideas from lattice theory. For polynomial phase
signals of order one, this aliasing effect is equivalent to the Nyquist criterion. In order
to ensure the identifiability of any estimator the polynomial phase coefficients must
be restricted to an identifiable region. We showed how an identifiable region is
described as a tessellating region of the lattice Lm with generator matrix described
using the integer valued polynomials. Using this lattice we showed how to resolve
aliased parameters, compute square error and generate parameters uniformly in an
identifiable region.

Chapter 8 considered the problem of estimating the coefficients of a polynomial
phase signal from N observations. We derived the angular least squares estimator
for the polynomial coefficients and showed how the estimator could be computed
by finding a nearest lattice point in the lattice V ∗n/m. We derived the asymptotic
properties of this estimator showing that it is strongly consistent and obtaining its
central limit theorem. For the case of polynomials of order greater than one, the
statistical results derived in this chapter are the first of their kind. We have proved
these theoretical results under the assumption that the noise terms are identical and
independent, but we discussed how these assumptions could potentially be relaxed.

Chapter 9 considered the special case of estimating the two coefficients of a
polynomial signal of order one, otherwise known as frequency estimation. We
described three estimators that exist in the literature, the periodogram estimator,
the Quinn-Fernandes estimator and Kay’s unwrapping estimator. We also
considered the angular least squares estimator. We showed by Monte-Carlo
simulation that the periodogram estimator, the Quinn-Fernandes estimator and the
angular least squares estimator are all very accurate. The performance of the angular
least squares estimator is well modeled by the central limit theorem derived in
Theorem 8.1. Kay’s unwrapping estimator is not as accurate as the other estimators.

The angular least square estimator requires a nearest point in the lattice V ∗N−2/1

to be computed. If we use the algorithm from Chapter 4 then O(N5) operations
are required. This is very slow, so we described a simple method to approximate
the nearest point in O(N2 logN) arithmetic operations. Although much faster, the
complexity is still high when compared with other frequency estimators. It may be
that much faster nearest point algorithms exist for V ∗N−2/1. Considering the accuracy
of this estimator, even fast approximate nearest point algorithms might prove useful
for frequency estimation.
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Chapter 10 described a number of techniques for estimating the m + 1 coeffi-
cients of a polynomial phase signal of order m from N noisy observations. We first
considered the least squares estimator and showed that it is very computationally
intensive. We then described some computationally tractable approaches that exist
in the literature: the discrete polynomial phase transform (DPT) [Peleg and
Friedlander, 1995] and Kitchen’s unwrapping estimator [Kitchen, 1994].

The DPT requires only O(N logN) operations and Kitchen’s unwrapping estima-
tor requires only O(N) operations. However, both of these estimators only function
correctly for a restricted range of coefficients inside the identifiable region. For the
DPT estimator the problem is particularly severe and the range of coefficients is a
very small fraction of the identifiable region and shrinks rapidly as the number of
observations N increases. We considered how this problem might be overcome by
increasing the sampling rate, but showed how this came with inevitable statistical
penalties.

We then considered the angular least squares estimator that involves com-
puting a nearest point in the lattice V ∗n/m. The polynomial time nearest point
algorithm described in Chapter 4 is unfortunately too slow for practical use and
therefore we considered some general purpose algorithms, the sphere decoder,
Babai’s nearest plane algorithm and the K-best algorithm. The sphere de-
coder and K-best algorithm are statistically very accurate with performance similar
to the least squares estimator. We found that Babai’s nearest plane algorithm is
computationally efficient, requiring only O(N2) arithmetic operations, but its sta-
tistical performance is not as good. Unlike the DPT and Kitchen’s unwrapping
estimator the angular least squares estimator works uniformly well over the entire
identifiable region. In cases where N is large and the noise variance is not too large,
this property makes the approximate angular least squares estimator computed us-
ing Babai’s nearest plane algorithm an attractive choice.

The algorithms that we used for computing the angular least squares estimator
are slower than the DPT estimator and Kitchen’s unwrapping estimator. However,
there may exist fast (exact or approximate) nearest point algorithms for V ∗n/m that
we have not found yet. Considering the statistical superiority of the angular least
squares estimator the search for faster nearest point algorithms for V ∗n/m is a worthy
direction for future research.
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