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Figure 1: 1-dimensional continuous-time signals

1 Signals and systems

A signal is a function mapping an input variable to some output variable. For
example

sin(πt),
1

2
t3, e−t

2

all represent signals with input variable t ∈ R, and they are plotted in Figure 1.
If x is a signal and t an input variable we write x(t) for the output variable.
Signals can be multidimensional. This page is an example of a 2-dimensional
signal, the independent variables are the horizontal and vertical position on
the page, and the signal maps this position to a colour, in this case either
black or white. A moving image such as seen on your television or computer
monitor is an example of a 3-dimensional signal, the three independent variables
being vertical and horizontal screen position and time. The signal maps each
position and time to a colour on the screen. In this course we focus exclusively
on 1-dimensional signals such as those in Figure 1 and we will only consider
signals where the output variable is real or complex valued. Many of the results
presented here can be extended to deal with multidimensional signals.

1.1 Properties of signals

A signal x is bounded if there exists a real number M such that

|x(t)| ≤M for all t ∈ R

where | · | denotes the (complex) magnitude. Both sin(πt) and e−t
2

are examples

of bounded signals because | sin(πt)| ≤ 1 and |e−t2 | ≤ 1 for all t ∈ R. However,
1
2 t

3 is not bounded because its magnitude grows indefinitely as t moves away
from the origin.

A signal x is periodic if there exists a real number T such that

x(t) = x(t+ kT ) for all k ∈ Z and t ∈ R.

The smallest such nonnegative such T is called the period. For example, the
signal sin(πt) is periodic with period T = 2. Neither 1

2 t
3 or e−t

2

are periodic.
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A signal x is called locally integrable if for all finite constants a and b,∫ b

a

|x(t)| dt

exists (evaluates to a finite number). An example of a signal that is not locally
integrable is x(t) = 1

t (Exercise 1.2). Two signals x and y are equal, i.e. x = y
if x(t) = y(t) for all t ∈ R.

A signal x is called absolutely integrable if

‖x‖1 =

∫ ∞
−∞
|x(t)| dt (1.1)

exists. Here we introduce the notation ‖x‖1 called the `1-norm of x. For exam-

ple sin(πt) and 1
2 t

3 are not absolutely integrable, but e−t
2

is because [Nicholas
and Yates, 1950] ∫ ∞

−∞
|e−t2 |dt =

∫ ∞
−∞

e−t
2

dt =
√
π. (1.2)

A signal x is called is square integrable if

‖x‖2 =

∫ ∞
−∞
|x(t)|2 dt

exists. Square integrable signals are also called energy signals, and the value
of ‖x‖2 is called the energy of x (it is also called the `2-norm of x). For

example sin(πt) and 1
2 t

3 are not energy signals, but e−t
2

is (Exercise 1.5).
A signal x is right sided if there exists a T ∈ R such that x(t) = 0 for all

t < T . Correspondingly x is left sided if x(t) = 0 for all T > t. For example,
the step function

u(t) =

{
1 t > 0

0 t ≤ 0
(1.3)

is right-sided. Its reflection in time u(−t) is left sided (Figure 2). A signal x is
called finite in time if it is both left and right sided, that is, if there exits a
T ∈ R such that x(t) = x(−t) = 0 for all t > T . A signal is called unbounded
in time if it is neither left nor right sided. For example, the continuous time
signals sin(πt) and e−t

2

are unbounded in time, but the rectangular pulse

Π(t) =

{
1 − 1

2 < t ≤ 1
2

0 otherwise
(1.4)

is finite in time.

1.2 Systems (functions of signals)

A system (also known as an operator or functional) maps a signal to another
signal. For example

x(t) + 3x(t− 1),

∫ 1

0

x(t− τ)dτ,
1

x(t)
,

d

dt
x(t)
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Figure 3: A voltage divider circuit.

represent systems, each mapping the signal x to another signal. Consider the
electric circuit in Figure 3 called a voltage divider. If the voltage at time t is
x(t) then, by Ohm’s law, the current at time t satisfies

i(t) =
1

R1 +R2
x(t),

and the voltage over the resistor R2 is

y(t) = R2i(t) =
R2

R1 +R2
x(t) (1.5)

The circuit can be considered as a system mapping the signal x representing the
voltage to the signal i = 1

R1+R2
x representing the current, or a system mapping

x to the signal y = R2

R1+R2
x representing the voltage over resistor R2.

We denote systems with capital letters such as H and G. A system H is a
function that maps a signal x to another signal denoted H(x). We call x the
input signal and H(x) the output signal or the response of system H to
signal x. If we want to include the independent variable t we will write H(x)(t)
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Figure 4: System block diagram with input signal x and output signal H(x).

or H(x, t) and do not distinguish between these [Curry and Feys, 1968]. It is
sometimes useful to depict systems with a block diagram. Figure 4 is a simple
block diagram showing the input and output signals of a system H.

Using this notation the electric circuit in Figure 3 corresponds with the
system

H(x) =
R2

R1 +R2
x = y.

This system multiplies the input signal x by R2

R1+R2
. This brings us to our first

practical test.

Test 1 (Voltage divider) In this test we construct the voltage divider from
Figure 3 on a breadboard with resistors R1 ≈ 100Ω and R2 ≈ 470Ω with values
accurate to within 5%. Using a computer soundcard (an approximation of) the
voltage signal

x(t) = sin(2πf1t) with f1 = 100

is passed through the circuit. The approximation is generated by sampling x(t)
at rate Fs = 1

Ts
= 44100Hz to generate samples

xn = x(nTs) n = 0, . . . , 2Fs

corresponding to approximately 2 seconds of signal. These samples are passed
to the soundcard which starts playback. The voltage over resistor R2 is recorded
(also using the soundcard) that returns a lists of samples y1, . . . , yL taken at rate
Fs. The continuous-time voltage over R2 can be (approximately) reconstructed
from these samples as

ỹ(t) =
L∑
`=1

y` sinc(Fst− `) (1.6)

where

sinc(t) =
sin(πt)

πt
(1.7)

is the called the sinc function and is plotted in Figure 40. We will justify this
reconstruction in Section 5.5. Simultaneously the (stereo) soundcard is used to
record the input voltage x(t) producing samples x1, . . . , xL taken at rate Fs. An
approximation of the continuous-time input signal is

x̃(t) =

L∑
`=1

x` sinc(Fst− `). (1.8)
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In view of (1.5) we would expect the approximate relationship

ỹ ≈ R2

R1 +R2
x̃ =

42

57
x̃

A plot of ỹ, x̃ and 42
57 x̃ over a 20ms period from 1s to 1.02s is given in Figure 5.

The hypothesised output signal 42
57 x̃ does not match the observed output signal

ỹ. A primary reason is that the circuitry inside the soundcard itself cannot
be ignored. When deriving the equation for the voltage divider we implicitly
assumed that current flows through the output of the soundcard without resis-
tance (a short circuit), and that no current flows through the input device of
the soundcard (an open circuit). These assumptions are not realistic. Modelling
the circuitry in the sound card wont be attempted here. In the next section we
will construct circuits that contain external sources of power (active circuits).
These are less sensitive to the circuitry inside the soundcard.

x̃

ỹ
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Figure 5: Plot of reconstructed input signal x̃ (solid line), output signal ỹ (solid line
with circle) and hypothesised output signal 42

57
x̃ (solid line with dot) for the voltage

divider circuit in Figure 3. The hypothesised signal does not match ỹ. One reason is
that the model does not take account of the circuitry inside the soundcard.

Not all signals can be input to all systems. For example, the system

H(x, t) =
1

x(t)

is not defined at those t where x(t) = 0 because we cannot divide by zero.
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Figure 6: Time-shifter system T1.5(x, t) = x(t − 1.5) and T−3(x, t) = x(t + 3) acting

on the signal x(t) = e−t
2

.

Another example is the system

I∞(x, t) =

∫ t

−∞
x(τ)dτ, (1.9)

called an integrator, that is not defined for those signals where the integral
above does not exist (is not finite). For example, the signal x(t) = 1 cannot be

input to the integrator since the integral
∫ t
−∞ dt does not exist.

Thus, when specifying a system it is necessary to also specify a set of signals
that can be input, called a domain for the system. For example, a domain for
the system H(x, t) = 1

x(t) is the set of signals x(t) which are not zero for any t.

A domain for the integrator I∞(x, t) is the set of signals for which the integral∫ t
−∞ x(τ)dτ exists for all t ∈ R. The domain we use for a given system is usually

obvious from the specification of the system itself. For this reason we will not
usually state the domain explicitly. We will only do so if there is chance for
confusion.

1.3 Some important systems

The system
Tτ (x, t) = x(t− τ)

is called the time-shifter. This system shifts the input signal along the t axis
(‘time’ axis) by τ . When τ is positive Tτ delays the input signal by τ . The time-
shifter will appear so regularly in this course that we use the special notation
Tτ to represent it. Figure 6 depicts the action of time-shifters T1.5 and T−3 on

the signal x(t) = e−t
2

. When τ = 0 the time-shifter is the identity system

T0(x) = x

that maps the signal x to itself.
Another important system is the time-scaler that has the form

H(x, t) = x(αt)

8
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Figure 7: Time-scaler system H(x, t) = x(αt) for α = −1, 1
2
, 1 and 2 acting on the

signal x(t) = e−(t−2)2 .

for α ∈ R. Figure 7 depicts the action of a time-scaler with a number of values
for α. When α = −1 the time-scaler reflects the input signal in the time axis.
When α = 1 the time-scaler is the identity system T0.

Another system we regularly encounter is the differentiator

D(x, t) =
d

dt
x(t),

that returns the derivative of the input signal. We also define a kth differentiator

Dk(x, t) =
dk

dtk
x(t)

that returns the kth derivative of the input signal.
A related system is the integrator

Ia(x, t) =

∫ t

−a
x(τ)dτ.

The parameter a describes the lower bound of the integral. In this course it will
often be that a = ∞. The integrator can only be applied to those signals for
which the integral above exists. For example, the integrator I∞ can be applied
to the signal tu(t) where u(t) is the step function (1.3). The output signal is∫ t

−∞
τu(τ)dτ =

{∫ t
0
τdτ = t2

2 t > 0

0 t ≤ 0.

However, the integrator cannot be applied to the signal x(t) = t because∫ t
−∞ τdτ does not exist.

1.4 Properties of systems

A system H is called memoryless if the output signal H(x) at time t depends
only on the input signal x at time t. For example 1

x(t) and the identity system

T0 are memoryless, but

x(t) + 3x(t− 1) and

∫ 1

0

x(t− τ)dτ

9



are not. A time-shifter system Tτ with τ 6= 0 is not memoryless.
A system H is causal if the output signal H(x) at time t depends on the

input signal only at times less than or equal to t. Memoryless systems such as
1
x(t) and T0 are also causal. Time-shifters Tτ (x, t) = x(t − τ) are causal when

τ ≥ 0, but are not causal when τ < 0. The systems

x(t) + 3x(t− 1) and

∫ 1

0

x(t− τ)dτ

are causal, but the systems

x(t) + 3x(t+ 1) and

∫ 1

0

x(t+ τ)dτ

are not causal.
A system H is called bounded-input-bounded-output (BIBO) stable

or just stable if the output signal H(x) is bounded whenever the input signal
x is bounded. That is, H is stable if for every positive real number M there
exists a positive real number K such that for all signals x satisfying

|x(t)| < M for all t ∈ R,

it also holds that
|H(x, t)| < K for all t ∈ R.

For example, the system x(t) + 3x(t−1) is stable with K = 4M since if |x(t)| <
M then

|x(t) + 3x(t− 1)| ≤ |x(t)|+ 3 |x(t− 1)| < 4M = K.

The integrator Ia for any a ∈ R and differentiator D are not stable (Exer-
cises 1.6 and 1.7).

A system H is linear if

H(ax+ by) = aH(x) + bH(y)

for all signals x and y and all complex numbers a and b. That is, a linear system
has the property: If the input consists of a weighted sum of signals, then the
output consists of the same weighted sum of the responses of the system to
those signals. Figure 8 indicates the linearity property using a block diagram.
For example, the differentiator is linear because

D(ax+ by, t) =
d

dt

(
ax(t) + by(t)

)
= a

d

dt
x(t) + b

d

dt
y(t)

= aD(x, t) + bD(y, t)

whenever both x and y are differentiable. However, the system H(x, t) = 1
x(t)

is not linear because

H(ax+ by, t) =
1

ax(t) + by(t)
6= a

x(t)
+

b

y(t)
= aH(x, t) + bH(y, t)

10
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b
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aH
x

bH
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aH(x) + bH(y)

Figure 8: If H is a linear system the outputs of these two diagrams are the same signal,
i.e. H(ax+ by) = aH(x) + bH(y).

x
H Tτ

H
(
Tτ (x)

)
x

Tτ H
Tτ
(
H(x)

)
Figure 9: If H is a time-invariant system the outputs of these two diagrams are the
same signal, i.e. H

(
Tτ (x)

)
= Tτ

(
H(x)

)
.

in general.
The property of linearity trivially generalises to more than two signals. For

example, if x1, . . . , xk are signals and a1, . . . , ak are complex numbers for some
finite k, then

H(a1x1 + · · ·+ akxk) = a1H(x1) + · · ·+ akH(xk).

A system H is time-invariant if

H
(
Tτ (x), t

)
= H(x, t− τ)

for all signals x and all time-shifts τ ∈ R. That is, a system is time-invariant if
time-shifting the input signal results in the same time-shift of the output signal.
Equivalently, H is time-invariant if H commutes with the time-shifter Tτ , that
is, if

H
(
Tτ (x)

)
= Tτ

(
H(x)

)
for all τ ∈ R and all signals x. Figure 9 represents the property of time-
invariance with a block diagram.

1.5 Exercises

1.1. State whether the step function u(t) is bounded, periodic, absolutely in-
tegrable, an energy signal.

1.2. Show that the signal t2 is locally integrable, but that the signal 1
t2 is not.

1.3. Plot the signal

x(t) =

{
1
t+1 t > 0

1
t−1 t ≤ 0.
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State whether it is: bounded, locally integrable, absolutely integrable,
square integrable.

1.4. Plot the signal

x(t) =

{
1√
t

0 < t ≤ 1

0 otherwise.

Show that x is absolutely integrable, but not square integrable.

1.5. Compute the energy of the signal e−α
2t2 (Hint: use equation (1.2) on

page 4 and a change of variables).

1.6. Show that the integrator Ia for any a ∈ R is not stable.

1.7. Show that the differentiator system D is not stable.

1.8. Show that the time-shifter Tτ is linear and time-invariant, and that the
time-scaler is linear, but not time invariant

1.9. Show that the integrator Ic with c finite is linear, but not time-invariant.

1.10. Show that the integrator I∞ is linear and time invariant.

1.11. State whether the system H(x, t) = x(t) + 1 is linear, time-invariant,
stable.

1.12. State whether the system H(x, t) = 0 is linear, time-invariant, stable.

1.13. State whether the system H(x, t) = 1 is linear, time-invariant, stable.

12
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Figure 10: An electrical circuit with resistor and capacitor in series, otherwise known
as an RC circuit.

mass M

K BB

p(t)f(t)

Figure 11: A mechanical mass-spring-damper system

2 Systems modelled by differential equations

Systems of significant interest in this course are those where the input signal x
and output signal y are related by a linear differential equation with constant
coefficients, that is, an equation of the form

m∑
`=0

a`
d`

dt`
x(t) =

k∑
`=0

b`
d`

dt`
y(t)

where a0, . . . , am and b0, . . . , bk are constant real numbers. In what follows
we will use the differentiator system D(x) rather than the notation d

d`x(t) to
represent differentiation of the signal x. To represent the `th derivative we write
D`(x). Using this notation the differential equation above is

m∑
`=0

a`D
`(x) =

k∑
`=0

b`D
`(y). (2.1)

Equations of this form can be used to model a large number of electrical,
mechanical and other real world devices. For example, consider the resistor and
capacitor (RC) circuit in Figure 10. Let the signal vR represent the voltage over
the resistor and i the current through both resistor and capacitor. The voltage

13



signals satisfy
x = y + vR,

and the current satisfies both

vR = Ri, and i = CD(y).

Combining these equations,

x = y +RCD(y) (2.2)

that is in the form of (2.1).
As another example, consider the mass, spring and damper in Figure 11.

A force represented by the signal f is externally applied to the mass, and the
position of the mass is represented by the signal p. The spring exerts force −Kp
that is proportional to the position of the mass, and the damper exerts force
−BD(p) that is proportional to the velocity of the mass. The cumulative force
exerted on the mass is

fm = f −Kp−BD(p)

and by Newton’s law the acceleration of the mass D2(p) satisfies

MD2(p) = fm = f −Kp−BD(p).

We obtain the differential equation

f = Kp+BD(p) +MD2(p) (2.3)

that is in the form of (2.1) if we put x = f and y = p. Given p we can readily
solve for the corresponding force f . As a concrete example, let the spring
constant, damping constant and mass be K = B = M = 1. If the position
satisfies p(t) = e−t

2

, then the corresponding force satisfies

f(t) = e−t
2

(4t2 − 2t− 1).

Figure 12 depicts these signals.
What happens if a particular force signal f is applied to the mass? For

example, say we apply the force

f(t) = Π(t− 1
2 ) =

{
1 0 < t ≤ 1

0 otherwise.

What is the corresponding position signal p? We are not yet ready to answer
this question, but will be later (Exercise 4.11).

In both the mechanical mass-spring-damper system in Figure 11 and the
electrical RC circuit in Figure 10 we obtain a differential equation relating the
input signal x with the output signal y. The equations do not specify the output
signal y explicitly in terms of the input signal x, that is, they do not explicitly
define a system H such y = H(x). As they are, the differential equations, do

14



Figure 12: A solution to the mass spring damper system with K = B = M = 1. The

position is p(t) = e−t
2

with corresponding force f(t) = e−t
2

(4t2 − 2t− 1).

not provide as much information about the behaviour of the system as we would
like. For example, is the system stable? The Laplace transform, described
in Section 4, is a useful tool for answering these questions. A key property
enabling the Laplace transform is that differential equations of the form (2.1)
describe systems that are linear and time-invariant.We further study linear,
time-invariant systems in Section 3. The remainder of this section details the
construction of differential equations that model various mechanical, electrical,
and electro-mechanical systems. We will use the systems constructed here as
examples throughout the course.

2.1 Passive circuits

Passive electrical circuits require no sources of power other than the input sig-
nal itself. For example, the voltage divider in Figure 3 and the RC circuit in
Figure 10 are passive circuits. Another common passive electrical circuit is the
resistor, capacitor and inductor (RLC) circuit depicted in Figure 13. In this cir-
cuit we let the output signal y be the voltage over the resistor. Let vC represent
the voltage over the capacitor and vL the voltage over the inductor and let i be
the current. We have

y = Ri, i = CD(vC), vL = LD(i),

leading to the following relationships between y, vC and vL,

y = RCD(vC), RvL = LD(y).

Kirchhoff’s voltage law gives x = y + vC + vL and by differentiating both sides

D(x) = D(y) +D(vC) +D(vL).

Substituting the equations relating y, vC and vL leads to

RCD(x) = y +RCD(y) + LCD2(y). (2.4)

We can similarly find equations relating the input voltage with vC and vL.
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Figure 13: An electrical circuit with resistor, capacitor and inductor in series, otherwise
known as an RLC circuit.
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Figure 14: Left: triangular component diagram of an operational amplifier. The
v++ and v−− connectors indicate where an external voltage source can be connected
to the amplifier. These connectors will usually be omitted. Right: model for an
operational amplifier including input resistance Ri, output resistance Ro, and open
loop gain A. The diamond shaped component is a dependent voltage source. This
model is only useful when the operational amplifier is in a negative feedback circuit.

2.2 Active circuits

Unlike passive electrical circuits, an active circuit requires a source of power
external to the input signal. In this course active circuits will be modelled and
constructed using operational amplifiers as depicted in Figure 14. The left
hand side of Figure 14 shows a triangular circuit diagram for an operational
amplifier, and the right hand side of Figure 14 shows a circuit that can be
used to model the behaviour of the amplifier. The v++ and v−− connectors
indicate where an external voltage source can be connected to the amplifier, and
will normally not be drawn. The diamond shaped component is a dependent
voltage source with voltage A(v+ − v−) that depends on the difference between
the voltage at the non-inverting input v+ and the voltage at the inverting
input v−. The dimensionless constant A is called the open loop gain. Most
operational amplifiers have large open loop gain A, large input resistance Ri and
small output resistance Ro. As we will see, it can be convenient to consider the
behaviour as A→∞, Ri →∞ and R0 → 0, resulting in an ideal operational
amplifier.

As an example, an operational amplifier configured as a multiplier is de-
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picted in Figure 15. This circuit is an example of an operation amplifier con-
figured with negative feedback, meaning that the output of the amplifier is
connected (in this case by a resistor) to the inverting input. The horizontal
wire at the bottom of the plot is considered to be ground (zero volts) and is
connected to the negative terminal of the dependent voltage source of the oper-
ational amplifier depicted in Figure 14. An equivalent circuit for the multiplier
using the model in Figure 14 is shown in Figure 16. Solving this circuit (Ex-
ercise 2.1) yields the following relationship between the input voltage signal x
and the output voltage signal y,

y =
Ri(AR2 +Ro)

Ri(R2 +Ro) +R1(R2 +Ri −ARi +Ro)
x. (2.5)

For an ideal operational amplifier we let A→∞, Ri →∞ and Ro → 0. In this
case terms involving the product ARi dominate and we are left with the simpler
equation

y = −R2

R1
x. (2.6)

Thus, assuming an ideal operational amplifier, the circuit acts as a multiplier
with constant −R2

R1
.

The equation relating x and y is much simpler for the ideal operational
amplifier. Fortunately this equation can be obtained directly using the following
two rules:

1. the voltage at the inverting and non-inverting inputs are equal,

2. no current flows through the inverting and non-inverting inputs.

These rules are only useful for analysing circuits with negative feedback. Let us
now rederive (2.6) using these rules. Since the non-inverting input is connected
to ground, the voltage at the inverting input is zero. So, the voltage over resistor
R2 is y = R2i. Since no current flows through the inverting input the current
through R1 is also i and x = −R1i. Combing these results, the input voltage x
and the output voltage y are related by

y = −R2

R1
x.

In Test 2 the inverting amplifier circuit is constructed and the relationship above
is tested using a computer soundcard.

We now consider another circuit consisting of an operational amplifier, two
resistors and two capacitors depicted in Figure 17. Assuming an ideal opera-
tional amplifier, the voltage at the inverting terminal is zero because the non-
inverting terminal is connected to ground. Thus, the voltage over capacitor C2

and resistor R2 is equal to y and, by Kirchoff’s current law

i =
y

R2
+ C2D(y).
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Figure 15: Inverting amplifier

R1 R2

Ri

Ro

+

−Avi

y(t)x(t)

v−

v+

Figure 16: An equivalent circuit for the inverting amplifier from Figure 15 using the
model for an operational amplifier in Figure 14. The symbol vi = v+ − v− is the
voltage over resistor Ri.
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R2

i(t)
R1

x(t)
y(t)

C2

C1

Figure 17: Operational amplifier configured with two capacitors and two resistors.
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Test 2 (Inverting amplifier) In this test we construct the inverting amplifier
circuit from Figure 15 with R2 ≈ 22kΩ and R1 ≈ 12kΩ that are accurate to
within 5% of these values. The operational amplifier used is the Texas Instru-
ments LM358P. Using a computer soundcard (an approximation of) the voltage
signal

x(t) = 1
3 sin(2πf1t) + 1

3 sin(2πf2t)

with f1 = 100 and f2 = 233 is passed through the circuit. As in previous tests,
the soundcard is used to sample the input signal x and the output signal y.
Approximate reconstructions of the input signal x̃ and output signal ỹ are given
according to (1.8), and (1.6). According to (2.4) we expect the approximate
relationship

ỹ ≈ −R2

R1
x̃ = − 11

6 x̃.

Each of ỹ, x̃ and − 11
6 x̃ are plotted in Figure 18.

x̃
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Figure 18: Plot of reconstructed input signal x̃ (solid line), output signal ỹ (solid line
with circle) and hypothesised output signal − 11

6
x̃ (solid line with dot).
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Similarly, since no current flows through the inverting terminal,

i = − x

R1
− C1D(x).

Combining these equations yields

− x

R1
− C1D(x) =

y

R2
+ C2D(y). (2.7)

Observe the similarity between this equation and that for the passive RC cir-
cuit (2.2) when R1 = R2 and C1 = 0 (an open circuit). In this case

x = −y −R1C2D(y). (2.8)

We call this this active RC circuit. This circuit is tested in Test 3.

Test 3 (Active RC circuit) In this test we construct the circuit from Figure 17
with R1 ≈ R2 ≈ 27kΩ and C2 ≈ 10nF accurate to within 5% of these values and
C1 = 0 (an open circuit). The operational amplifier used is a Texas Instruments
LM358P. Using a computer soundcard (an approximation of) the voltage signal

x(t) = 1
3 sin(2πf1t) + 1

3 sin(2πf2t)

with f1 = 500 and f2 = 1333 is passed through the circuit. As in previous tests,
the soundcard is used to sample the input signal x and the output signal y
and approximate reconstructions x̃ and ỹ are given according to (1.8) and (1.6).
According to (2.8) we expect the approximate relationship

x̃ ≈ −R1

R2
ỹ −R1CD(ỹ) = −ỹ − 27

10000D(ỹ).

The derivative of the sinc function is

D(sinc, t) =
1

πt2
(
πt cos(πt)− sin(πt)

)
, (2.9)

and so,

D(ỹ) = D

(
L∑
`=1

y` sinc(Fst− `)
)

= Fs

L∑
`=1

y`D(sinc, Fst− `). (2.10)

Each of ỹ, x̃ and −ỹ − 27
10000D(ỹ) are plotted in Figure 18.
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Figure 18: Plot of reconstructed input signal x̃ (solid line with circle), output signal ỹ
(solid line), and hypothesised input signal −ỹ − 27

10000
D(ỹ) (solid line with dot).

Consider the circuit in Figure 19. Assuming an ideal operational amplifier,
the input voltage x satisfies

−i =
x

R1
+ C1D(x).

The voltage over the capacitor C2 is y −R2i and so the current satisfies

i = C2D(y −R2i).

Combining these equations gives

− x

R1
− C1D(x) = C2D(y) +

R2C2

R1
D(x) +R2C2C1D

2(x),

and after rearranging,

D(y) = − 1

R1C1
x−

(
R2

R1
+
C1

C2

)
D(x)−R2C1D

2(x).

Put

Ki =
1

R1C2
, Kp =

R2

R1
+
C1

C2
, Kd = R2C1

and now
D(y) = −Kix−KpD(x)−KdD

2(x). (2.11)
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Figure 19: Operational amplifier implementing a proportional-integral-derivative
controller.

This equation models what is called a proportional-integral-derivative con-
troller or PID controller. The coefficients Ki,Kp and Kd are called the
integral gain, proportional gain, and derivative gain.

The final active circuit we consider is called a Sallen-Key [Sallen and Key,
1955] and is depicted in Figure 20. Observe that the output of the amplifier is
connected directly to the inverting input and is also connected the noninverting
input by a capacitor. This circuit has both negative and positive feedback. It
is not immediately apparent that we can use the simplifying assumptions for an
ideal operational amplifier with negative feedback. However, we will do so, and
will find that it works in this case.

Let vR1, vR2, vC1, and vC2 be the voltages over the components R1, R2, C1,
and C2. Kirchoff’s voltage law leads to the equations

x = vR1 + vR2 + vC2, y = vC1 + vR2 + vC2.

The voltage at the inverting and noninverting terminals is y, and so, the voltage
over the capacitor C2 is y, that is, y = vC2. Using this, the equations above
simplify to

x = vR1 + vR2 + y, vC1 = −vR2.

The current i2 through capacitor C2 satisfies i2 = C2D(vC2) = C2D(y). Because
no current flows into the inverting terminal of the amplifier the current through
R2 is also i2, and so vR2 = R2i2 = R2C2D(y). Substituting this into the
equations above gives

x = vR1 +R2C2D(y) + y, vC1 = −R2C2D(y). (2.12)

Kirchoff’s current law asserts that i+ i1 = i2. The current i through capacitor
C1 satisfies i = C1D(vC1) = −R2C1C2D

2(y) and the current through resistor
R1 satisfies

vR1 = R1i1 = R1(i2 − i) = R1C2D(y) +R1R2C1C2D
2(y).
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Figure 20: Operational amplifier implementing a Sallen-Key.

M1

BB

f(t)

p1(t)

M2

K

p(t)

Figure 21: Two masses, a spring and a damper

Substituting this into the equation on the left of (2.12) gives

x = y + C2(R1 +R2)D(y) +R1R2C1C2D
2(y). (2.13)

The Sallen-Key will be useful when we consider the design on analogue electrical
filters in Section 5.3.

2.3 Masses, springs and dampers

A mechanical mass, spring, damper system was described in Section 2 and
Figure 11. We now consider another mechanical system involving a different
configuration of masses, a spring and a damper depicted in Figure 21. A mass
M1 is connected to a wall by a damper with constant B, and to another mass
M2 by a spring with constant K. A force represented by the signal f is applied
to the first mass. We will derive a differential equation relating f with the
position p of the second mass. We assume that the spring applies no force (is
in equilibrium) when masses are distance d apart. The forces due to the spring
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satisfy
fs1 = −fs2 = K(p− p1 − d)

where fs1 and fs2 are signals representing the force due to the spring on mass
M1 and M2 respectively. It is convenient to define the signal g(t) = p1(t) + d so
that forces due to spring satisfy the simpler equation

fs1 = −fs2 = K(p− g).

The only force applied to M2 is by the spring and so, by Newton’s law, the
acceleration of M2 satisfies

M2D
2(p) = fs2.

Substituting this into the previous equation gives a differential equation relating
g and p,

Kg = Kp+M2D
2(p). (2.14)

The force applied by the damper on mass M1 is given by the signal

fd = −BD(p1) = −BD(g)

where the replacement of p1 by g is justified because differentiation will remove
the constant d. The cumulative force on M1 is given by the signal

f1 = f + fd + fs1

= f −Kg +Kp−BD(g), (2.15)

and by Newton’s law the acceleration of M1 satisfies

M1D
2(p1) = M1D

2(g) = f1.

Substituting this into (2.15) and using (2.14) we obtain a fourth order differential
equation relating p and f ,

f = BD(p) + (M1 +M2)D2(p)− BM2

K
D3(p) +

M1M2

K
D4(p). (2.16)

Given the position of the second mass p we can readily solve for the corre-
sponding force f and position of the first mass p. For example, if the constants
B = K = 1 and M1 = M2 = 1

2 and d = 5
2 , and if the position of the second

mass satisfies
p(t) = e−t

2

then, by application of (2.16) and (2.14),

f(t) = e−t
2

(1− 8t− 8t2 + 4t3 + 4t4), and p1(t) = 2e−t
2

t2 − 5
2 .

This solution is plotted in Figure 22.
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Figure 22: Solution of the system describing two masses with a spring and damper
where B = K = 1 and M1 = M2 = 1

2
and the position of the second mass is

p(t) = e−t
2

.

2.4 Direct current motors

Direct current (DC) motors convert electrical energy, in the form of a voltage,
into rotary kinetic energy [Nise, 2007, page 76]. We derive a differential equation
relating the input voltage v to the angular position of the motor θ. Figure 23
depicts the components of a DC motor.

The voltages over the resistor and inductor satisfy

vR = Ri, vL = LD(i),

and the motion of the motor induces a voltage called the back electromotive
force (EMF),

vb = KbD(θ)

that we model as being proportional to the angular velocity of the motor. The
input voltage now satisfies

v = vR + vL + vb = Ri+ LD(i) +KbD(θ).

The torque τ applied by the motor is modelled as being proportional to the
current i,

τ = Kτ i.

A load with inertia J is attached to the motor. Two forces are assumed to act
on the load, the torque τ applied by the current, and a torque τd = −BD(θ)
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v(t) motor Jvb(t)

θ(t) τ(t) τd(θ)

Figure 23: Diagram for a rotary direct current (DC) motor

modelling a damper that acts proportionally against the angular velocity of the
motor. By Newton’s law, the angular acceleration of the load satisfies

JD2(θ) = τ + τd = Kτ i−BD(θ).

Combining these equations we obtain the 3rd order differential equation

v =

(
RB

Kτ
+Kb

)
D(θ) +

RJ + LB

Kτ
D2(θ) +

LJ

Kτ
D3(θ)

relating voltage and motor position. In many DC motors the inductance L is
small and can be ignored, leaving the simpler second order equation

v =

(
RB

Kτ
+Kb

)
D(θ) +

RJ

Kτ
D2(θ). (2.17)

Given the position signal θ we can find the corresponding voltage signal v.
For example, put the constants Kb = Kτ = B = R = J = 1 and assume that

θ(t) = 2π(1 + erf(t))

where erf(t) = 2
π

∫ t
−∞ e−τ

2

dτ is the error function. The corresponding angular
velocity D(θ) and voltage v satisfy

D(θ, t) = 4
√
πe−t

2

, v(t) = 8
√
πe−t

2

(1− t).

These signals are depicted in Figure 24. This voltage signal is sufficient to make
the motor perform two revolutions and then come to rest.

2.5 Exercises

2.1. Analyse the inverting amplifier circuit in Figure 16 to obtain the relation-
ship between input voltage x and output voltage y given by (2.5). You
may wish to use a symbolic programming language (for example Sage,
Mathematica, or Maple).
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Figure 24: Voltage and corresponding angle for a DC motor with constants Kb =
Kτ = B = R = J = 1.
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3 Linear time-invariant systems

Throughout this section we let H be a linear time-invariant system.

3.1 Convolution, regular systems and the delta “function”

A large number of linear time-invariant systems can be represented by a signal
called the impulse response. The impulse response of a system H is a signal
h such that

H(x, t) =

∫ ∞
−∞

h(τ)x(t− τ)dτ,

that is, the response of H to input signal x can be represented as an integral
equation involving x and the impulse response h. The integral is called a con-
volution and appears so often that a special notation is used for it

h ∗ x =

∫ ∞
−∞

h(τ)x(t− τ)dτ.

Those systems that have an impulse response we call regular systems1. Ob-
serve that regular systems are linear because

H(ax+ by) = h ∗ (ax+ by)

=

∫ ∞
−∞

h(τ)
(
ax(t− τ) + by(t− τ)

)
dτ

= a

∫ ∞
−∞

h(τ)x(t− τ)dτ + b

∫ ∞
−∞

h(τ)y(t− τ)dτ

= a(h ∗ x) + b(h ∗ y)

= aH(x) + bH(y).

(3.1)

The above equations show that convolution commutes with scalar multiplication
and distributes with addition, that is

h ∗ (ax+ by) = a(h ∗ x) + b(h ∗ y).

Regular systems are also time-invariant because

Tκ
(
H(x)

)
= H(x, t− κ)

=

∫ ∞
−∞

h(τ)x(t− κ− τ)dτ

=

∫ ∞
−∞

h(τ)Tκ(x, t− τ)dτ

= H
(
Tκ(x)

)
.

1The name regular system is motivated by the term regular distribution [Zemanian,
1965]
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We can define the impulse response of a regular system H in the following
way. First define the signal

pγ(t) =

{
γ, 0 < t ≤ 1

γ

0, otherwise

that is a rectangular shaped pulse of height γ and width 1
γ . The signal pγ is

plotted in Figure 25 for γ = 1
2 , 1, 2, 5. As γ increases the pulse gets thinner and

higher so as to keep the area under pγ equal to one. Consider the response of
the regular system H to the signal pγ ,

H(pγ)(t) = (h ∗ pγ)(t)

=

∫ ∞
−∞

h(τ)pγ(t− τ)dτ

= γ

∫ t

t−1/γ

h(τ)dτ,

because pγ(t− τ) = 1 when τ ∈ (t− 1
γ , t] and zero otherwise. Taking limits as

γ →∞,

lim
γ→∞

H(pγ)(t) = lim
γ→∞

γ

∫ t

t−1/γ

h(τ)dτ = h(t) a.e.

Thus, the impulse response of a regular system H is defined as the limit

h = lim
γ→∞

H(pγ).

The limit exists when H is regular. If this limit does not exist, the system is
not regular and does not have an impulse response.

As an example, consider the integrator system

I∞(x, t) =

∫ t

−∞
x(τ)dτ (3.2)

described in Section 1.3. This systems response to pγ is

I∞(pγ , t) =

∫ t

−∞
pγ(τ)dτ =


0, t ≤ 0

γt, 0 < t ≤ 1
γ

1, t > 1
γ .

The response is plotted in Figure 25. Taking the limit as γ → ∞ we find that
the impulse response of the integrator is the step function

u(t) = lim
γ→∞

H(pγ) =

{
0 t ≤ 0

1 t > 0.
(3.3)
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Figure 25: The rectangular shaped pulse pγ for γ = 0.5, 1, 2, 5 and the response of the
integrator (3.2) to pγ for γ = 0.5, 1, 2, 5,∞.

Some important systems do not have an impulse response. For example, the
identity system T0 does not because

lim
γ→∞

T0(pγ) = lim
γ→∞

pγ

does not exist. Similarly, all the time shifters Tτ do not have impulse responses.
However, it is notationally useful to pretend that T0 does have an impulse
response and we denote it by the symbol δ called the delta function. The idea
is to assign δ the property ∫ ∞

−∞
x(t)δ(t)dt = x(0)

so that convolution of x and δ is

δ ∗ x =

∫ ∞
−∞

δ(τ)x(t− τ)dτ = x(t) = T0(x, t).

We now treat δ as if it were a signal. So δ(t − τ) will represent the impulse
response of the time shifter Tτ because

Tτ (x) = δ(t− τ) ∗ x

=

∫ ∞
−∞

δ(κ− τ)x(t− κ)dκ

=

∫ ∞
−∞

δ(k)x(t− τ − k)dk (change variable k = κ− τ)

= x(t− τ).
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δ(t+ 2) + 2δ(t)− δ(t− 1)

1
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t

2 sin(πt) + δ(t− 3
2 )

2

1
2

Figure 26: Plot of the signal δ(t+ 2) + 2δ(t)− δ(t− 1) (left) and the signal 2 sin(πt) +
δ(t− 3

2
) (right).

It is common to plot aδ(t− τ) using an arrow of height a at t = τ as indicated
in Figure 26. It is important to realise that δ is not actually a signal. It is not a
function. However, it can be convenient to treat δ as if it were a function. The
manipulations in the last set of equations, such as the change of variables, are
not formally justified, but they do lead to the desired result Tτ (x) = x(t − τ)
in this case. In general, there is no guarantee that mechanical mathematical
manipulations involving δ will lead to sensible results.

The only other non regular systems that we have use of are differentiators
Dk, and it is convenient to define a similar notation for pretending that these
systems have an impulse response. In this case we use the symbol δk and assign
it the property ∫ ∞

∞
x(t)δk(t)dt = Dk(x, 0),

so that convolution of x and δ is

δk ∗ x =

∫ ∞
−∞

δk(τ)x(t− τ)dτ = Dk(x, t).

As with the delta function the symbol δk must be treated with care. This
notation can be useful, but purely formal manipulations with δk may not lead
to sensible results in general.

The impulse response h immediately yields some properties of the corre-
sponding system H. For example, if h(t) = 0 for all t < 0, then H is causal
because

H(x, t) = h ∗ x =

∫ ∞
−∞

h(τ)x(t− τ)dτ =

∫ ∞
0

h(τ)x(t− τ)dτ

only depends on values of x at times less than t, i.e., only times t−τ with τ > 0.
The system H is stable if and only if h is absolutely integrable (Exercise 3.3).
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Another important signal is the step response of a system that is defined
as the response of the system to the step function u(t). For example, the step
response of the time shifter Tτ is the time shifted step function Tτ (u, t) =
u(t− τ). The step response of the integrator I∞ is

I∞(u, t) =

∫ t

−∞
u(t)dt =

{∫ t
0
dt = t t > 0

0 t ≤ 0.

This signal is often called the ramp function. Not all systems have a step re-
sponse. For example, the system with impulse response u(−t) does not because
the convolution of the step u(t) and it’s reflection u(−t) does not exist. If a
system H has both an impulse response h and a step response H(u), then these
two signals are related. To see this, observe that the step response is

H(u) = h ∗ u =

∫ ∞
−∞

h(τ)u(t− τ)dτ =

∫ t

−∞
h(τ)dτ = I∞(h, t). (3.4)

Thus, the step response can be obtained by applying the integrator I∞ to the
impulse response.

3.2 Properties of convolution

The convolution x∗y of two signals x and y does not always exist. For example,
if x = u(t) and y = u(−t), then

x ∗ y =

∫ ∞
−∞

u(τ)u(τ − t)dτ =

∫ ∞
t

dτ,

which is not finite for any t. On the other hand, if x = y = u(t), then

x ∗ y =

∫ ∞
−∞

u(τ)u(t− τ)dτ =

{∫ t
0
dt = t t > 0

0 t ≤ 0,

which exists for all t.
We have already shown in (3.1) that convolution commutes with scalar multi-

plication and is distributive with addition, that is, for signals x, y, w and complex
numbers a, b,

a(x ∗ w) + b(y ∗ w) = (ax+ by) ∗ w.
Convolution is commutative, that is, x∗y = y∗x whenever these convolutions

exist. To see this, write

x ∗ y =

∫ ∞
−∞

x(τ)y(t− τ)dτ

=

∫ ∞
−∞

x(t− κ)y(κ)dκ (change variable κ = t− τ)

= y ∗ x.
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Convolution is also associative, that is, for signals x, y, z,

(x ∗ y) ∗ z = x ∗ (y ∗ z). (see Exercise 3.2)

By combining the associative and commutative properties we find that the order
in which the convolutions in x ∗ y ∗ z are performed does not mater, that is

x ∗ y ∗ z = y ∗ z ∗ x = z ∗ x ∗ y = y ∗ x ∗ z = x ∗ z ∗ y = z ∗ y ∗ x

provided that all the convolutions involved exist. More generally, the order
in which any sequence of convolutions is performed does not change the final
result.

3.3 Linear combining and composition

Let H1 and H2 be linear time-invariant systems and let H be the system

H(x) = cH1(x) + dH2(x), c, d ∈ R

formed by a linear combination of H1 and H2. The system H is linear because
for signals x, y and complex numbers a, b,

H(ax+ by) = cH1(ax+ by) + dH2(ax+ by)

= acH1(x) + bcH1(y) + adH2(x) + bdH2(y) (linearity H1, H2)

= a
(
cH1(x) + dH2(x)

)
+ b
(
cH1(y) + dH2(y)

)
= aH(x) + bH(y).

The system is also time-invariant because

H
(
Tτ (x)

)
= cH1

(
Tτ (x)

)
+ dH2

(
Tτ (x)

)
= cTτ

(
H1(x)

)
+ dTτ

(
H2(x)

)
(time-invariance H1, H2)

= Tτ
(
cH1(x) + dH2(x)

)
(linearity Tτ )

= Tτ
(
H(x)

)
.

So, we can construct linear time-invariant systems by linearly combining
(adding and multiplying by constants) other linear time-invariant systems. If
H1 and H2 are regular systems this linear combining property can be expressed
using their impulse responses h1 and h2. We have

H(x) = aH1(x) + bH2(x)

= ah1 ∗ x+ bh2 ∗ x
= (ah1 + bh2) ∗ x (distributivity of convolution)

= h ∗ x,

and so, H is a regular system with impulse response h = ah1 + bh2.
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H(x) = cH1(x) + dH2(x)

cH1

dH2

x

H

Figure 27: Block diagram depicting the linear combining property of linear time-
invariant systems. The system cH1(x) + dH2(x) can be expressed as a single linear
time-invariant system H(x).

Another way to construct linear time-invariant systems is by composition.
Let H1 and H2 be linear time-invariant systems and let

H(x) = H2

(
H1(x)

)
,

that is, H first applies the system H1 and then applies the system H2. The
composition H2

(
H1(x)

)
only applies to those signals x in the domain of H1 and

such that the signal H1(x) is in the domain of H2. The system H is linear
because, for signals x, y and complex numbers a, b,

H(ax+ by) = H2

(
H1(ax+ by)

)
= H2

(
aH1(x) + bH1(y)

)
(linearity H1)

= aH2

(
H1(x)) + bH2

(
H1(y))

)
(linearity H2)

= aH(x) + bH(y).

The system is also time-invariant because

H
(
Tτ (x)

)
= H2

(
H1(Tτ (x)

)
= H2

(
Tτ
(
H1(x)

))
(time-invariance H1)

= Tτ
(
H2

(
H1(x)

))
(time-invariance H2)

= Tτ
(
H(x)

)
.

If H1 and H2 are regular systems the composition property can be expressed
using their impulse responses h1 and h2. It follows that

H(x) = H2(H1(x))

= h2 ∗ (h1 ∗ x)

= (h2 ∗ h1) ∗ x (associativity of convolution)

= h ∗ x,
and so, H is a regular system with impulse response h = h2 ∗ h1.

A wide variety of linear time-invariant systems can now be constructed by
linearly combining and composing simpler systems.
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x H1 H2 H(x) = H2(H1(x))

H

Figure 28: Block diagram depicting the composition property of linear time-invariant
systems. The system H2(H1(x)) can be expressed as a single linear time-invariant
system H(x).

3.4 Eigenfunctions and the transfer function

Let s = σ + jω ∈ C. Complex exponential signals of the form

est = eσtejωt = eσt
(

cos(ωt) + j sin(ωt)
)

play an important role in the study of linear time-invariant systems. The real
an imaginary parts of the signal e(σ+jπ)t with σ = − 1

10 , 0,
1
10 are plotted in

Figure 29. The signal is oscillatory when ω 6= 0. The signal converges to zero
as t→∞ when σ < 0 and diverges as t→∞ when σ > 0.

Let H be a linear time-invariant system and let y = H(est) be the response of
H to the exponential signal est. Consider the response of H to the time-shifted
signal es(t+τ) for τ ∈ R. By time-invariance

H(es(t+τ), t) = H(est, t+ τ) = y(t+ τ) for all t, τ ∈ R,

and by linearity

H(es(t+τ), t) = esτH(est, t) = esτy(t) for all t, τ ∈ R.

Combining these equations we obtain

y(t+ τ) = esτy(t) for all t, τ ∈ R.

This equation is satisfied by signals of the form y(t) = λest where λ is a complex
number. That is, the response of H to an exponential signal est is the same
signal est multiplied by some constant complex number λ. Due to this property
exponential signals are called eigenfunctions of linear time-invariant systems.
The constant λ does not depend on t, but it does usually depend on the complex
number s and the system H. To highlight this dependence on H and s we write
λ(H, s) or λ(H)(s). Considered as a function of s, λ(H, s) is called the transfer
function of the system H. Thus, the transfer function satisfies

H(est) = λ(H, s)esτ . (3.5)

We can use these eigenfunctions to better understand the properties of sys-
tems modelled by differential equations, such as those in Section 2. As an
example, consider the active electrical circuit from Figure 17. In the case that
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Figure 29: The function cos(πt)eσt (top) and sin(πt)eσt (bottom) for σ = − 1
10
, 0, 1

10
.
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the resistors R1 = R2, and the capacitor C1 = 0 (an open circuit) the differential
equation relating the input voltage x and output voltage y is

x = −y −R1C2D(y).

We called this the active RC circuit. To simplify notation put R = R1 and
C = C2 so that x = −y − RCD(y). Observe what occurs when y = cest is a
complex exponential signal with c ∈ C. We have

x = −cest − cRCsest = −(1 +RCs)cest = −(1 +RCs)y,

and so, x is also a complex exponential signal. We immediately obtain the
relationship

y = − 1

1 +RCs
x,

that holds whenever y (or equivalently x) is of the form cest with c ∈ C. Let H
be a system that maps the input voltage x to the output voltage y, i.e., H is
a system that describes the active RC circuit. Putting x = est in the equation
above, we find that

y = H(x) = H(est) = − 1

1 +RCs
est,

and so, the transfer function of the system H describing the active RC circuit
is

λ(H, s) = − 1

1 +RCs
. (3.6)

3.5 The spectrum

It is often of interest to focus on the transfer function when s is purely imaginary,
that is, when s = jω. In this case the complex exponential signal takes the form

ejωt = cos(ωt) + j sin(ωt).

This signal is oscillatory when ω 6= 0 and does not decay or explode as |t| → ∞.
The function

Λ(H, f) = λ
(
H, j2πf

)
is called the spectrum of the system H. It follows from (3.5) that the response
of the system to the complex exponential signal ej2πft satisfies

H(ej2πft) = λ(H, j2πf)ej2πft = Λ(H, f)ej2πft, f ∈ R.

It is of interest to consider the magnitude spectrum |Λ(H, f)| and the phase
spectrum ∠Λ(H, f) separately. The notation ∠ denotes the argument (or
phase) of a complex number. We have,

Λ(H, f) = |Λ(H, f)| ej∠Λ(H,f),
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and correspondingly,

H(ej2πft) = |Λ(H, f)| ej(2πft+∠Λ(H,f)).

By taking real and imaginary parts we obtain the pair of real valued solutions

H
(

cos(2πft)
)

= |Λ(H, f)| cos
(
2πft+ ∠Λ(H, f)

)
,

H
(

sin(2πft)
)

= |Λ(H, f)| sin
(
2πft+ ∠Λ(H, f)

)
. (3.7)

Consider again the active RC circuit with H the system mapping the input
voltage x to the output voltage y. According to (3.6) the spectrum of H is

Λ(H, f) = − 1

1 + 2πRCfj
. (3.8)

The magnitude and phase spectrum is

|Λ(H, f)| =
(
1 + 4π2R2C2f2

)− 1
2 , ∠Λ(H, f) = atan(2πRCf

)
+ π.

The magnitude and phase spectrum are plotted in Figure 30. Observe from the
plot of the magnitude spectrum that a low frequency sinusoidal signal, say 100Hz
or less, input to the RC circuit results in a sinusoidal output signal with the same
frequency and approximately the same amplitude. However, a high frequency
sinusoidal signal, say greater than 1000Hz, input to the RC circuit results in a
sinusoidal output signal with the same frequency, but small amplitude. For this
reason RC circuits are called low pass filters.

Test 4 (Spectrum of the active RC circuit) We test the hypothesis that
the active RC circuit satisfies (3.7). To do this sinusoidal signals at varying
frequencies of the form

xk(t) = sin(2πfkt), fk = 110× 2k/2, k = 0, 1, . . . , 12

are input to the active RC circuit constructed as in Test 3 with R = R1 = 27kΩ
and C = C2 = 10nF. In view of (3.7) the expected output signals are of the
form

yk(t) = |Λ(H, fk)| sin
(
2πfkt+ ∠Λ(H, fk)

)
, k = 0, 1, . . . , 12.

This equality can also be shown directly using the differential equation for the
active RC circuit. For any positive integer M the energy of the periodic trans-
mitted signal xk over any interval of length T = M/fk (an interval containing
M periods) is

energy(xk) =

∫ T

0

sin2(2πfkt)dt =
1

2

∫ T

0

1− cos(4πfkt)dt =
T

2
=

M

2fk
.
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Figure 30: Magnitude spectrum (top) and phase spectrum (bottom) of the active RC
circuit with R = 27× 103 and C = 10× 10−9.

The energy of the output signal yk over the same interval is

energy(yk) = |Λ(H, fk)|2 energy(xk) =
energy(xk)

1 + 4π2R2C2f2
k

. (3.9)

We see that the square of the magnitude spectrum relates the energy of the
input and output signals. We test this relationship.

Using the soundcard the signals xk for each k = 0, . . . , 21 are input to the
circuit. Reconstructions of the input signal x̃k and the output signal ỹk are
constructed from samples xk,1, . . . , xk,L and yk,1, . . . , yk,L in a similar manner
to (1.8) and (1.6) where L is the number of samples obtained by the soundcard.
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The energy of the reconstructed input signal x̃k is

‖x̃k‖2 =

∫ ∞
−∞

∣∣∣∣∣
L∑
`=1

xk,` sinc(Fst− `)
∣∣∣∣∣
2

dt

=

∫ ∞
−∞

L∑
`=1

L∑
m=1

xk,`xk,m sinc(Fst− `) sinc(Fst−m)dt

=

L∑
`=1

L∑
m=1

xk,`xk,m

∫ ∞
−∞

sinc(Fst− `) sinc(Fst−m)dt

=
1

Fs

L∑
`=1

x2
k,`

where, on the last line we use the fact that sinc and its time shifts by a nonzero
integer Tm(sinc) are orthogonal (see Section 5.2). That is,∫ ∞

−∞
sinc(t) sinc(t−m)dt =

{
1 m = 0

0 m 6= 0.
(3.10)

Similarly, the energy of the reconstructed output signal ỹk is

‖ỹk‖2 =
1

Fs

L∑
`=1

y2
k,`.

So, to compute the energy of the reconstructed signals it suffices to sum the
squares of the samples and divide by the sample rate Fs. In view of (3.9), we
expect the approximate relationship

‖ỹk‖2
‖x̃k‖2

≈ |Λ(H, fk)|2 =
1

1 + 4π2R2C2f2
k

. (3.11)

Each signal xk is played for a period of approximately 1 second and approx-
imately L ≈ Fs = 44100 samples are obtained. On the soundcard hardware
used for this test samples near the beginning and end of playback are distorted.
This appears to be an unavoidable feature of the soundcard. To alleviate this
we discard the first A − 1 = 9999 samples and use only the B = 8820 samples
that follow (corresponding to 200ms of signal). In view of (3.11), we expect the
relationship √√√√∑A+B

`=A y2
k,`∑A+B

`=A x2
k,`

≈ |Λ(H, f)| =
√

1

1 + 4π2R2C2f2
k

.

Figure 31 displays a plot of the hypothesised spectrum |Λ(H, f)| (solid line) and
also the spectrum measured using the left hand side of the approximate equation
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above (dots). The measurements are close to the hypothesised spectrum, but
are consistently a small amount larger. The amplifier appears to produce a
slightly larger output voltage than expected. This could be due to inaccuracies
in the components used, and also due to our assumption of an ideal operational
amplifier.
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Figure 31: Plot of the hypothesised magnitude spectrum |Λ(H, f)| (solid line) and the
measured magnitude spectrum (dots).

3.6 Exercises

3.1. Show that convolution distributes with addition and commutes with scalar
multiplication, that is, show that a(x ∗ w) + b(y ∗ w) = (ax+ by) ∗ w.

3.2. Show that convolution is associative. That is, if x, y, z are signals then
x ∗ (y ∗ z) = (x ∗ y) ∗ z.

3.3. Show that a regular system is stable if and only if its impulse response is
absolutely integrable.
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4 The Laplace transform

Let x : R → C be a complex valued function of the real line (a signal). The
integral

L(x) =

∫ ∞
−∞

x(t)e−stdt, (4.1)

when it exists, is called the Laplace transform of x. The Laplace transform
is a function of the complex parameter s, and if we need to indicate this we
write L(x)(s) or L(x, s). The Laplace transform does not necessarily exist for
all values of s ∈ C. Let R be the set of real numbers such that x(t)e−σt is
absolutely integrable if and only if σ ∈ R, that is∫ ∞

−∞
|x(t)| e−σtdt exists if and only if σ ∈ R.

In this case, the Laplace transform L(x, s) exists for all s with real part satisfying
Re(s) ∈ R because

|L(x, s)| =
∣∣∣∣∫ ∞
−∞

x(t)e−stdt

∣∣∣∣ ≤ ∫ ∞
−∞
|x(t)| e−Re(s)tdt <∞.

The subset of the complex plane with real part from R is called the region of
convergence (ROC) of the signal x.

For example, the Laplace transform of the right sided signal eαtu(t) is

L(eαtu(t)) =

∫ ∞
−∞

eαte−stu(t)dt

=

∫ ∞
0

e(α−s)tdt

= lim
t→∞

e(α−s)t

α− s −
1

α− s .

The limit exists for all s with Re(α − s) < 0. Thus, the Laplace transform of
eαtu(t) is

L(eαtu(t)) =
1

s− α Re(s) > Re(α)

The region of convergence of eαtu(t) is the subset of the complex plane with
real part greater than Re(α). Figure 32 shows the region of convergence when
Re(α) = −2. Now consider the left sided signal eβtu(−t) with Laplace transform

L(eβtu(−t)) = lim
t→−∞

e(β−s)t

β − s +
1

β − s .

The limit exists only when Re(β − s) > 0, and so,

L(eβtu(−t)) =
1

β − s Re(s) < Re(β).
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The signal aeαtu(t) + beβtu(−t) has Laplace transform

L
(
aeαtu(t) + beβtu(−t)

)
=

∫ ∞
−∞

(
aeαtu(t) + beβtu(−t)

)
e−stdt

= a

∫ ∞
−∞

eαtu(t)e−stdt+ b

∫ ∞
−∞

eβtu(−t)e−stdt

= aL(eαtu(t)) + bL(eβtu(−t))

that exists only when Re(α) < Re(s) < Re(β). The corresponding ROC is
shown in Figure 32 when Re(α) = −2 and Re(β) = 3. In the previous equation
we have discovered that the Laplace transform is linear, that is, for signals x
and y and constants a and b,

L(ax+ by) = aL(x) + bL(y). (4.2)

In words: the Laplace transform of a linear combination of signals is the same
linear combination of the Laplace transforms of those signals.

In the previous example the Laplace transform does not exist for any s if
Re(α) ≥ Re(β), and the region of convergence is correspondingly the empty set.
Other signals also have this property. For example, the signal x(t) = 1 does not
have a Laplace transform because

L(1) =

∫ ∞
∞

e−stdt =
1

s
lim

t→−∞
e−st − 1

s
lim
t→∞

e−st

and the limit as t→ −∞ exists only when Re(s) < 0 while the limit as t→∞
exists only when Re(s) > 0.

As a final example, consider the rectangular pulse

Π(t) =

{
1 − 1

2 < t ≤ 1
2

0 otherwise.

Its Laplace transform is

L(Π) =

∫ ∞
−∞

Π(t)e−stdt =

∫ 1/2

−1/2

e−stdt =
es/2 − e−s/2

s
, (4.3)

and this transform exists for all s ∈ C. The region of convergence of the rect-
angular pulse Π is the entire complex plane. The examples just given exhibit
all the possible types of regions of convergence. The region of convergence is
either the entire complex plane, a left or right half plane, a vertical strip, or the
empty set.

Given the Laplace transform L(x) the signal x can be recovered by the
inverse Laplace transform

x(t) = L−1(x) =
1

2πj
lim
ω→∞

∫ σ−jω

σ−jω
L(x, s)estds,
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Figure 32: Regions of convergence (unshaded) for the signal e−2tu(t) (top left), the
signal e−2tu(t) + e3tu(−t) (top right), the rectangular pulse Π (bottom left), and the
constant signal x(t) = 1 (bottom right).
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where σ is a real number that is inside the region of convergence of x. Solving
the integral above typically requires a special type of integration called contour
integration that we will not consider here [Stewart and Tall, 2004]. For our
purposes, and for many engineering purposes, it suffices to remember only the
following Laplace transform pair

L
(
tnu(t)

)
=

n!

sn+1
Re(s) > 0, (4.4)

where n ≥ 0 is an integer (Exercise 4.2). Let x(t) be a signal with region of
convergence R. The Laplace transforms of the signal x(t) and the signal eαtx(t)
are related. To see this write

L
(
eαtx(t), s

)
=

∫ ∞
−∞

eαtx(t)e−stdt

=

∫ ∞
−∞

x(t)e−(s−α)tdt

= L(x, s− α) Re(s− α) ∈ R. (4.5)

This is called the frequency shift rule. Combining the frequency shift rule
with (4.4) we obtain the transform pair

L
(
tneαtu(t)

)
= L

(
tnu(t), s− α

)
=

n!

(s− α)n+1
Re(s) > Re(α), (4.6)

where n ≥ 0 is an integer. This is the only Laplace transform pair we require
here.

4.1 The transfer function and the Laplace transform

Our purpose for introducing the Laplace transform is to study the response of
a linear time-invariant system H to exponential signals of the form est. Recall
from Section 3.4 that exponential signals are eigenfunctions of linear time-
invariant systems. That is, for each s ∈ C, the response of H to est is λest

where λ ∈ C is a constant that does not depend on t, but may depend on s and
the system H. To highlight this dependence on H and s we write λ(H, s) or
λ(H)(s). Considered as a function of s, λ(H, s) is called the transfer function
of the system H. For a given system H, we would like to understand how
λ(H, s) behaves as s changes. In what follows we regularly drop the argument
“(s)” and simply write λ(H) as the transfer function of H.

Assume that H is a regular system with impulse response h. In this case,

H(est, t) = estλ(H, s) = h ∗ est

=

∫ ∞
−∞

h(τ)es(t−τ)dτ

= est
∫ ∞
−∞

h(τ)e−sτdτ

= estL(h, s),
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and so, λ(H) = L(h). That is, the transfer function of a regular system is pre-
cisely the Laplace transform of its impulse response. The region of convergence
of the impulse response describes the set of complex exponential signals est that
can be input to (are in the domain of) the system and we refer to this as the
region of convergence of the system. In this way, both signals and systems have
regions of convergence.

The transfer functions of the time-shifter and differentiator can be obtained
by inspection. For the time-shifter

Tτ (est) = es(t−τ) = e−sτest and so λ(Tτ , s) = e−sτ . (4.7)

The region of convergence is the whole complex plane s ∈ C. For the special
case of the identity system T0 we obtain λ(T0, s) = 1. For the differentiator

D(est) =
d

dt
est = sest and so λ(D, s) = s.

The region of convergence is the whole complex plane s ∈ C. More generally,
for the kth differentiator

Dk(est) =
dk

dtk
est = skest and so λ(Dk, s) = sk. (4.8)

The region of convergence is again the whole complex plane. These results
motivate assigning the following Laplace transforms to the delta “function” and
its derivatives

L(δ, s) = 1, L(δk, s) = sk.

These conventions are common in the literature [Oppenheim et al., 1996].

4.1.1 The transfer function of a linear combination of systems

Let H = aH1 +bH2 be a linear combination of systems H1 and H2. Let R1 ⊆ C
and R2 ⊆ C be the regions of convergence of H1 and H2. We have,

H(est) = aH1(est) + bH2(est)

= aλ(H1)est + aλ(H2)est s ∈ R1 ∩R2,

=
(
aλ(H1) + aλ(H2)

)
est s ∈ R1 ∩R2,

= λ(H)est s ∈ R1 ∩R2,

and so,
λ(H) = aλ(H1) + bλ(H2) s ∈ R1 ∩R2.

That is, the transfer function of a linear combination of systems is the same
linear combination of the transfer functions. The region of convergence of the
linear combination is the intersection of the regions of convergence of the systems
being combined.
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4.1.2 The transfer function of a composition of systems

Let H be the system constructed by composing two systems H1 and H2 with
regions of convergence R1 and R2, that is, H(x) = H1

(
H2(x)

)
. The response

of H to the signal est is

H(est) = H1

(
H2(est)

)
= H1

(
λ(H2)est

)
s ∈ R2

= λ(H2)H1(est) s ∈ R2

= λ(H2)λ(H1)est s ∈ R1 ∩R2

= λ(H)est s ∈ R1 ∩R2,

and so,
λ(H) = λ(H1)λ(H2) s ∈ R1 ∩R2. (4.9)

That is, the transfer function of a composition of linear time invariant systems
is the multiplication of the transfer functions of those systems. The region of
convergence of the composition is the intersection of the regions of convergence
of the systems being composed.

4.1.3 The convolution theorem

We showed in Section 3.3 that if H1 and H2 are regular systems with impulse
responses h1 and h2, then the impulse of the system H(x) = H1

(
H2(x)

)
is given

by the convolution h = h1 ∗ h2. Because,

λ(H) = L(h) λ(H1) = L(h1) λ(H1) = L(h1),

and using (4.9), we obtain,

L(h1 ∗ h2) = L(h) = λ(H) = λ(H1)λ(H2) = L(h1)L(h2), s ∈ R1 ∩R2.

Putting x = h1, y = h2, Rx = R1, and Ry = R2 we obtain the convolution
theorem,

L(x ∗ y) = L(x)L(y), s ∈ Rx ∩Ry. (4.10)

In words: the Laplace transform of a convolution of signals is the multiplication
of their Laplace transforms.

4.1.4 The Laplace transform of an output signal

Let H be a regular system with impulse response h and let y = H(x) = h ∗ x
be the response of H to input signal x. Using the convolution theorem, the
Laplace transform of the output signal y is

L(y) = L(h)L(x) = λ(H)L(x), s ∈ R ∩Rx, (4.11)

where R is the region of convergence of the system H and Rx is the region of
convergence of the input signal x. Thus, the Laplace transform of the output
signal y = H(x) is the transfer function of the system H multiplied by the
Laplace transform of the input signal x. This result also holds when H is a
time-shifter or a differentiator (Exercise 4.11).
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4.2 Solving differential equations

Assume we have a system modelled by a differential equation of the form

m∑
`=0

a`D
`(x) =

k∑
`=0

b`D
`(y), (4.12)

where x and y are signals. Taking Laplace transforms of both sides of this
equation,

L
(

m∑
`=0

a`D
`(x)

)
= L

(
k∑
`=0

b`D
`(y)

)
m∑
`=0

a`L
(
D`(x)

)
=

k∑
`=0

b`L
(
D`(y)

)
(linearity (4.2))

m∑
`=0

a`λ(D`)L(x) =

k∑
`=0

b`λ(D`)L(y) (using (4.11))

m∑
`=0

a`s
`L(x) =

k∑
`=0

b`s
`L(y). (since λ(D`) = s` by (4.8))

We have obtained an equation relating the Laplace transforms of x and y,

L(x)(a0 + a1s+ . . . ams
m) = L(y)(b0 + b1s+ . . . bks

k).

Rearranging this equation we obtain

L(y) =
a0 + a1s+ . . . ams

m

b0 + b1s+ . . . bksk
L(x).

Let H be a system such that y = H(x) whenever x and y satisfy the differential
equation (4.12). According to (4.11) the transfer function of H is

λ(H) =
L(y)

L(x)
=
a0 + a1s+ . . . ams

m

b0 + b1s+ . . . bksk
.

Properties of H can be obtained by inspecting this transfer function. For ex-
ample, the impulse response of H (if is exists) can be obtained by applying the
inverse Laplace transform.

We now apply these results to the differential equations that model the RC
electrical circuit from Figure 10 and the mass spring damper from Figure 11.
The RC circuit is an example of what is called a first order system and the
mass, spring, damper is an example of what is called a second order system.

4.3 First order systems

Recall the passive electrical RC circuit from Figure 10. The differential equation
modelling this circuit is (2.1),

x = y +RCD(y),
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where x is the input voltage signal, y is the voltage over the capacitor, and R
and C are the resistance and capacitance. The RC circuit is an example of a
first order system. Let H be a system mapping the input voltage signal x to
the output voltage signal y. We will discover the impulse response of H. Taking
the Laplace transform on both sides of the differential equation gives

L(x) = (1 +RCs)L(y),

and it follows that the transfer function of H is

λ(H) =
L(y)

L(x)
=

1

1 +RCs
=

r

r + s
,

where r = 1
RC . The value 1

r = RC is called the time constant. The impulse
response of H is given by the inverse of this Laplace transform. There are
two signals with Laplace transform r

r+s : the right sided signal re−rtu(t) with

region of convergence Re(s) > −r, and the left sided signal −re−rtu(−t) with
region of convergence Re(s) < −r. The RC circuit (and in fact all physically
realisable systems) are expected to be causal. For this reason, the left sided
signal −re−rtu(−t) cannot be the impulse response of H. The impulse response
is the right sided signal

h(t) = re−rtu(t).

Given an input voltage signal x we can now find the corresponding output signal
y = H(x) by convolving x with the impulse response h. That is,

y = H(x) = h ∗ x =

∫ ∞
−∞

re−rτu(τ)x(t− τ)dτ = r

∫ ∞
0

e−rτx(t− τ)dτ.

If r ≥ 0 the impulse response is absolutely integrable, that is,

‖h‖1 =

∫ ∞
−∞

∣∣re−rtu(t)
∣∣ dt

= r

∫ ∞
0

e−rtdt

= 1− lim
t→∞

e−rt = 1,

and the system is stable (Exercise 3.3). However, if r < 0 the impulse response
is not absolutely integrable, and the system is not stable. Figure 34 shows the
impulse response when r = − 1

5 ,− 1
3 ,− 1

2 ,− 1
2 , 1, 2. In a passive electrical RC

circuit the resistance R and capacitance C are always positive and r = 1
RC is

positive. For this reason, passive electrical RC circuits are always stable.
From (3.4), the step response H(u) is given by applying the integrator I∞

to the impulse response, that is,

H(u) = I∞(h) =

∫ t

−∞
τe−rτu(τ)dτ =

{
τ
∫ t

0
e−rτdτ t > 0

0 otherwise
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or more simply
H(u) =

(
1− e−rt

)
u(t). (4.13)

This step response in plotted in Figure 34.

Test 5 (The active RC circuit again) In this test we repeat the experiment
with the active RC circuit from Test 3 with resistors R = R1 = R2 = 27kΩ and
capacitors C = C2 = 10nF. In Test 3 we applied the differential equation (2.8)
to the reconstructed output signal ỹ and asserted that the resulting signal was
close to the reconstructed input signal x̃. In this test we instead convolve the
input signal x̃ with the impulse response

h = − 1
RC e

−t/RC = −re−rt, r = 1
RC =

100000

27
,

and assert that the resulting signal is close to the output signal ỹ. That is, we
test the expected relationship

ỹ ≈ h ∗ x̃ = −
∫ ∞
−∞

re−rτu(τ)x̃(t− τ)dτ = −r
∫ ∞

0

e−rτ x̃(t− τ)dτ.

From (1.8),

ỹ(t) ≈ −r
∫ ∞

0

e−rτ
L∑
`=1

x` sinc(Fst− Fsτ − `)dτ

= −r
L∑
`=1

x`

∫ ∞
0

e−rτ sinc(Fst− Fsτ − `)dτ

= −r
L∑
`=1

x`f(Fst− `),

where the function

f(t) =

∫ ∞
0

e−rτ sinc(t− Fsτ)dτ.

An approximation of f(t) is made using the trapezoidal sum

f(t) ≈ K

2N

(
g(0) + g(K) + 2

N−1∑
n=1

g(∆n)

)
,

where g(τ) = e−rτ sinc(t− Fsτ), and

K = −RC log
(
10−3

)
, N = d10FsKe, ∆ = K/N.

Figure 33 plots the input signal x̃, output signal ỹ, and hypothesised output
signal h ∗ x̃ over a 4ms window.
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Figure 33: Plot of reconstructed input signal x̃ (solid line), output signal ỹ (solid line
with circle), and hypothesised output signal h ∗ x̃ (solid line with dot).

4.4 Second order systems

Consider the mass, spring, damper system from Figure 11 that is described by
the equation

f = Kp+BD(p) +MD2(p), (4.14)

where f is the force applied to the mass M and p is the position of the mass and
K and B are the spring and damping coefficients. The mass spring damper is an
example of a second order system. Another example of a second order system
is the Sallen-Key active electrical circuit depicted in Figure 20. In Section 2 we
were able to find the force f corresponding with a given position signal p. Let
H be a system mapping f to p, that is, such that p = H(f). We will find
the impulse response of H. Taking Laplace transforms on both sides of the
differential equation gives

L(f) = (K +Bs+Ms2)L(p).

Rearranging gives the transfer function of H,

λ(H) =
L(p)

L(f)
=

1

K +Bs+Ms2
.
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We can invert this Laplace transform to obtain the impulse response. There
are three cases to consider, depending on whether the quadratic K +Bs+Ms2

has two distinct real roots, is irreducible (does not have real roots), or has two
identical real roots.

Case 1: (Distinct real roots) In this case, the roots are

β − α, −β − α,

where

α =
B

2M
, β =

√
B2 − 4KM

2M

and B2 − 4KM > 0. By a partial fraction expansion (Exercise 4.7),

λ(H) =
1

M(s− β + α)(s+ β + α)

=
1

2βM

(
1

s− β + α
− 1

s+ β + α

)
.

From (4.6), we obtain the transform pairs

L(e(β−α)tu(t)) =
1

s− β + α
, L(e−(β+α)tu(t)) =

1

s+ β + α
.

As in Section 4.3, other signals with these Laplace transforms are discarded
because they do not lead to an impulse response that is zero for t < 0. That is,
they do not lead to a causal system H. The impulse response of H is thus

h(t) =
1

2βM
u(t)e−αt

(
eβt − e−βt

)
.

This is a sum of the impulse response of two first order systems.

Case 2: (Distinct imaginary roots) The solution is as in the previous case,
but now 4KM −B2 > 0 and β is imaginary. Put θ = β/j so that

eβt − e−βt = ejθt − e−jθt = 2j sin(θt).

The impulse response of H is

h(t) =
1

θM
u(t)e−αt sin(θt).

Case 3: (Identical roots) In this case, the two roots are equal to −α and

λ(H) =
1

M(s+ α)2
.
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From (4.6) we obtain the transform pair

L
(
te−αtu(t)

)
=

1

(s+ α)2
,

and this is the only signal with this Laplace transform that leads to a causal
impulse response. The impulse response of H is thus

h(t) =
1

M
te−αtu(t).

A second order system is called overdamped when there are two distinct
real roots, underdamped when their are two distinct imaginary roots, and
critically damped when the roots are identical. The different types of impulse
responses for are plotted in Figure 35.

With no damping (i.e. damping coefficient B = 0) the roots are of the form
±β and have no real part. In this case, the impulse response is

h(t) =
1

θM
u(t) sin(θt),

where θ = β/j =
√
KM is called the natural frequency of the second order

system. This impulse response oscillates for all t > 0 without decay or explosion.
Two identical roots occur when the damping coefficient B =

√
4KM , and this

is sometimes called the critical damping coefficient.
The impulse response of a second order system is absolutely integrable when

α = B
2M > 0, but not when α ≤ 0. Thus, the system is stable when α > 0

and not stable when α ≤ 0. For the mass spring damper both the mass M
and damping coefficient B are positive, and so, mass spring dampers are always
stable.

From (3.4) the step response H(u) is given by applying the integrator I∞ to
the impulse response. There are three cases to consider depending on whether
the system is overdamped, underdamped, or critically damped. When the sys-
tem is overdamped the step response is

H(u) = I∞(h) =
1

2βM

∫ t

−∞
e−ατ

(
eβτ − e−βτ

)
u(τ)dτ

=
1

2βM

∫ t

0

e−ατ
(
eβτ − e−βτ

)
dτ

=
1

2βM
u(t)

(
e(β−α)t − 1

β − α +
e−(β+α)t − 1

β + α

)
.

When the system is underdamped the step response is

H(u) = I∞(h) =
1

θM

∫ t

0

e−ατ sin(θτ)dt

= u(t)

(
θ − e−tα

(
θ cos(tθ) + α sin(tθ)

)
Mθ(α2 + θ2)

)
.
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When the system is critically damped the step response is

H(u) = I∞(h) =
1

θM

∫ t

0

1

M
te−αtdt

=
1

Mα2
u(t)

(
1− e−tαs(1 + tα)

)
.

These step responses are plotted in Figure 36.

4.5 Poles, zeros, and stability

As discussed in Section 4.2 the transfer function of a system described by a
linear differential equation with constant coefficients is of the form

λ(H) =
L(y)

L(x)
=
a0 + a1s+ . . . ams

m

b0 + b1s+ . . . bksk
.

Factorising the polynomials on the numerator and denominator we obtain

λ(H) = C
(s− α0)(s− α1) · · · (s− αm)

(s− β0)(s− β1) · · · (s− βk)
,

where α0, . . . , αm are the roots of the numerator polynomial a0 + a1s + · · · +
ams

m, and β0, . . . , βk are the roots of the denominator polynomial b0 + b1s +
· · · + bks

k, and C = am
bm

. That such a factorisation is always possible is called
the fundamental theorem of algebra [Fine and Rosenberger, 1997]. If the
numerator and denominator polynomials share one or more roots, then these
roots cancel leaving the simpler expression

λ(H) = C
(s− αd)(s− α1) · · · (s− αm)

(s− βd)(s− β1) · · · (s− βk)
, (4.15)

where d is the number of shared roots, these shared roots being

α0 = β0, α1 = β1, . . . , αd−1 = βd−1.

The roots from the numerator αd, . . . , αm are called the zeros and the roots
from the denominator βd, . . . , βm are called the poles. A pole-zero plot is
constructed by marking the complex plane with a cross at the location of each
pole and a circle at the location of each zero. Pole-zero plots for the first order
system from Section 4.3, the second order system from Section 4.4, and the
system describing the PID controller (2.11) are shown in Figure 37.

It is always possible to apply partial fractions and write (4.15) in the form

λ(H) = p(s) +
∑
`∈K

A`
(s− β`)r`

,

where r` are positive integers, A` are constants, K is a subset of the indices
from {d, d+ 1, . . . , k}, and p(s) is a polynomial of degree m− k. If k > m then
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Figure 35: Impulse response of the mass spring damper with M = 1, K = π2

4
and

damping constant B = π
3

(underdamped), B =
√

4KM = π (critically damped), and
B = 2π (overdamped).
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Figure 36: Step response of the mass spring damper with M = 1, K = π2

4
and damping

constant B = π
3

(underdamped), B =
√

4KM = π (critically damped), and B = 2π
(overdamped).
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Figure 37: Top left: pole zero plot for the first order system x = y+D(y). There is a
single pole at −1. Top right: pole zero plot for the overdamped second order system
x = 2y+ 3D(y) +D2(y) that has two real poles at −1 and −2. Bottom left: pole zero
plot for the underdamped second order system x = 5y + 2D(y) +D2(y) that has two
imaginary poles at −1 + 2j and −1 − 2j. The poles form a conjugate pair. Bottom
right: pole zero plot for the equation D(y) = 5x− 2D(x) +D2(x) that models a PID
controller (2.11). The system has a single pole at the origin and two zeros at 1 + 2j
and 1− 2j.
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p(s) = 0. The integer r` is called the multiplicity of the pole β`. We now
restrict ourselves to the case when the coefficients of the numerator polynomial
a0, . . . , am and the coefficients of the denominator polynomial b0, . . . , bk are real.
In this case, the coefficients of the polynomial p(s) are real, and the constant
A` is real whenever the corresponding pole β` is real. If the pole β` has nonzero
imaginary part there always exists another pole βi such that β` = β∗i , where β∗i
is the complex conjugate of βi. These poles have the same multiplicity, that
is, r` = ri, and also the constants A` = A∗i . Stated another way: the complex
poles occur in conjugate pairs.

We see that the transfer function contains the summation of two parts: the
polynomial p(s), and a sum of terms of the form A

(s−β)r . Let p(s) = γ0 + γ1s+

· · · + γk−ms
m−k. This polynomial is the transfer function of the nonregular

system
H1 = γ0T0 + γ1D + γ2D

2 + · · ·+ γm−kD
m−k.

This system is a linear combination of the identity system T0 and differentiators
of order at most m− k. From (4.6),

L
(
A

r!
tr−1eβtu(t)

)
=

A

(s− β)r
Re(s) > Re(β),

and so, the terms of the form A
(s−β)r correspond with the transfer function of a

regular system with impulse response A
r! t

r−1eβtu(t). Other signals with Laplace

transform A
(s−β)r are discarded because they do not correspond with the impulse

response of a causal system. Thus,
∑
`∈K

A`
(s−β`)r` is the transfer function of the

regular system H2 with impulse response

h2(t) = u(t)
∑
`∈K

A`
r`!
tr`−1eβ`t.

Let Kr = {` ∈ K ; Imβ` = 0} be the indices from K corresponding with the
real poles, and let Ki = {` ∈ K ; Imβ` > 0} be the indices corresponding with
those poles with positive imaginary part. Because the imaginary poles occur in
conjugate pairs the impulse response h2 can be written as

h2(t) = u(t)
∑
`∈Kr

A`
r`!
tr`−1eβ`t + u(t)

∑
`∈Ki

tr`−1

r`!

(
A`e

β`t +A∗`e
β∗
` t
)
.

The terms

A`e
β`t +A∗`e

β∗
` t = |A`| eRe β`t

(
eIm β`t+∠A` + e− Im β`t−∠A`

)
= 2 |A`| eRe β`t cos

(
Imβ`t+ ∠A`

)
,

and so, the impulse response is

h2(t) = u(t)
∑
`∈Kr

A`
r`!
tr`−1eβ`t + u(t)

∑
`∈Ki

2 |A`|
r`!

tr`−1eRe β`t cos
(

Imβ`t+ ∠A`
)
.
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This expression can be simplified by putting

B` =

{
A`
r`!

Imβ` = 0

2A`r`! Imβ` > 0

so that
h2(t) = u(t)

∑
`∈Kr∪Ki

B`t
r`−1eRe β`t cos

(
Imβ`t+ ∠B`

)
. (4.16)

Observe that the impulse response is a real valued signal (as expected).
The system H mapping x to y is the sum of the regular system H2 and

nonregular system H1, that is,

y = H(x) = H1(x) +H2(x).

Observe that H is regular only if the system H1 = 0, that is, only if H1 maps
all input signals to the signal x(t) = 0 for all t ∈ R. This occurs only when the
polynomial p(s) = 0, that is, only when the number of poles exceeds the number
of zeros. The system H will be stable if both H1 and H2 are stable. Because
the differentiator D` is not stable (Exercise 1.7) the system H1 is stable if only
if the order of the polynomial p(s) is zero, that is, if p(s) = γ0 is a constant
(potentially γ0 = 0). In this case H1(x) = γ0T0(x) is the identity system
multiplied by a constant. The polynomial p(s) is a constant only when the
order of the denominator polynomial is greater than or equal to the order of
the numerator polynomial, that is, when the number of poles is greater than or
equal to the number of zeros. The regular system H2 is stable if and only if its
impulse response h2 is absolutely integrable. This occurs only when the terms
eRe β`t inside the sum (4.16) are decreasing as t → ∞, that is, only if the real
part of the poles Reβ` are negative. Thus, the system H2 is stable if and only
if the real part of the poles are strictly negative.

The stability of the system H can be immediately determined from its pole-
zero plot. The system is stable if and only if:

1. the number of poles is greater than or equal to the number of zeros (there
are at least as many crosses on the pole-zero plot as circles),

2. all of the poles (crosses) lie strictly in the left half plane.

The pole-zero plots in Figure 37 all represent stable systems with the exception
of the plot on the bottom right (a PID controller). This system has two zeros
and only one pole. The single pole is contained on the imaginary axis. It is not
strictly in the left half plane.

4.5.1 Two masses, a spring, and a damper

Consider the system involving two masses a spring, and a damper in Figure 21.
From (2.16), the equation relating the force applied to the first mass f and the
position of the second mass p is

f = BD(p) + (M1 +M2)D2(p)− BM2

K
D3(p) +

M1M2

K
D4(p),
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where B is the damping coefficient, K is the spring constant, and M1 and M2

are the masses. Taking Laplace transforms

L(f) = s

(
B + (M1 +M2)s− BM2

K
s2 +

M1M2

K
s3

)
L(p),

from which, we obtain the transfer function of a system H that maps f to p,

λ(H) =
L(p)

L(f)
=

1

s
(
B + (M1 +M2)s− BM2

K s2 + M1M2

K s3
) .

The system has no zeros and 4 poles. One of these poles always exists at the
origin. The system is not stable because this pole is not strictly in the left half
of the complex plane.

Consider the specific case when B = K = M1 = M2 = 1. Factorising the
denominator polynomial gives

λ(H) =
1

s(s− β1)(s− β2)(s− β∗2)
,

where

β1 =
1

3

(
γ − 5

γ
− 1

)
≈ −0.56984,

β2 =
1

6

(
5(1 + j

√
3)

γ
− (1− j

√
3)γ − 1

2

)
≈ −0.21508 + 1.30714j,

and γ =
(

3
√

69−11
2

)1/3
. Applying partial fractions (Exercise 4.8) gives

λ(H) =
1

s(s− β1)(s− β2)(s− β∗2)
=
A0

s
+

A1

s− β1
+

A2

s− β2
+

A∗2
s− β∗2

,

where

A0 = − 1

β1|β2|2
= 1, A1 =

1

β1|β1 − β2|2
≈ −0.956611,

A2 =
1

β2(β2 − β1)(β2 − β∗2)
≈ −0.0216944 + 0.212084j.

From (4.16), the impulse response of H is

h(t) = u(t)
(
A0 +A1e

β1t + 2 |A2| eRe β2t cos(Imβ2t+ ∠A2)
)
.

This impulse response is plotted in Figure 38. Observe that h is not absolutely
integrable and the system is not stable. The impulse response h(t) does not
converge to zero as t → ∞, and correspondingly, the mass M2 does not come
come to rest at position zero in Figure 38. In the figure it is assumed that the
spring is at equilibrium when the two masses are d = 1 apart. From (2.14), the
position of mass M1 is given by the signal p1 = g − d where g = h+M2D

2(h).
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Figure 38: Impulse response of the system with two masses, a spring, and a damper,
where B = K = M1 = M2 = 1.
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4.5.2 Direct current motors

Recall the direct current (DC) motor from Figure 23 described by the differential
equation from (2.17),

v =

(
RB

Kτ
+Kb

)
D(θ) +

RJ

Kτ
D2(θ),

where v is the input voltage signal and θ is a signal representing the angle of
the motor. The constants R,B,Kτ ,Kb, and J are related to components of
the motor as described in Section 2.4. To simplify the differential equation put
a = RB

Kτ
+Kb and b = RJ

Kτ
and the equation becomes

v = aD(θ) + bD2(θ).

Taking Laplace transforms on both sides of this equation gives the transfer
function of a system H that maps input voltage v to motor angle θ,

λ(H) =
1

s(a+ bs)
.

This system has no zeros and two poles. One pole at −ab and the other at the
origin. The system is not stable because the pole at the origin is not strictly in
the left half of the complex plane.

Applying partial fractions we find that

λ(H) =
1

as
− 1

a(s− β)
, (4.17)

where β = −ab . Using (4.6), the impulse response of H is

h(t) =
1

a
u(t)

(
1− eβt

)
. (4.18)

Other signals with Laplace transform (4.17) are discarded because they do not
lead to a causal system. The step response H(u) is obtain by applying the
integrator system I∞ to the impulse response, that is

H(u) = I∞(h) =
1

aβ
u(t)

(
βt+ eβt − 1

)
.

The impulse response and step response are plotted in Figure 39 when Kb = 1
8 ,

Kτ = 8 and B = R = 1 and J = 2 so that a = 1
4 , b = 1

4 and β = −1.

4.6 Exercises

4.1. Sketch the signal
x(t) = e−2tu(t) + etu(−t)

where u(t) is the step function. Find the Laplace transform of x(t) and
the corresponding region of convergence (ROC). Sketch the region of con-
vergence on the complex plane.

63



Figure 39: Impulse response (top) and step response (bottom) of a DC motor with
constants Kb = 1

4
, Kτ = 8 and B = R = J = 1.
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4.2. Find the Laplace transform of the signal tnu(t) where n ≥ 0 is an integer.

4.3. Show that the Laplace transform of the signal tnu(−t) where n ≥ 0 is in
integer is the same as the Laplace transform of the signal tnu(t), but with
a different region of convergence.

4.4. Show that equation (4.11) on page 51 holds when the system H is the
differentiator Dk or the time shifter Tτ .

4.5. What is the transfer function of the integrator system I∞ and what is its
region of convergence?

4.6. By partial fractions, or otherwise, assert that

as

s+ b
= a− ab

s+ b

4.7. By partial fractions, or otherwise, assert that

s+ c

(s+ a)(s+ b)
=

a− c
(a− b)(s+ a)

+
c− b

(a− b)(s+ b)

4.8. By partial fractions, or otherwise, assert that

1

s(s− a)(s− b)(s− b∗) =
A0

s
+

A1

s− a +
A2

s− b +
A∗2

s− b∗

where a, b ∈ C and Re(b) 6= 0, and

A0 = − 1

a|b|2 , A1 =
1

a|a− b|2 , A2 =
1

b(b− a)(b− b∗) .

You might wish to check your solution using a symbolic programming
language (for example Sage, Mathematica, or Maple).

4.9. Let

L(y) =
2s+ 1

s2 + s− 2

be the Laplace transform of a signal y. By partial fractions, or otherwise,
find all possible signals y and their regions of convergence.

4.10. Consider the active electrical circuit from Figure 17 described be the dif-
ferential equation from (2.7). Derive the transfer function of this system.
Find an explicit system H that maps the input voltage x to the output
voltage y. State whether this system is stable and/or regular.

4.11. Given the mass spring damper system described by (4.14), find the posi-
tion signal p given that the force signal

f(t) = Π
(
t− 1

2

)
=

{
1 0 < t ≤ 1

0 otherwise

is the rectangular function time shifted by 1
2 . Consider three cases:
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(a) M = 1, K = π2

4 and B = π
3 ,

(b) M = 1, K = π2

4 and B = π,

(c) M = 1, K = π2

4 and B = 2π,

Plot the solution in each case, and comment on whether the system is
underdamped, overdamped, or critically damped.
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5 The Fourier transform

The Fourier transform of an absolutely integrable signal x is defined as

F(x) =

∫ ∞
−∞

x(t)e−j2πftdt. (5.1)

The Fourier transform is a function of the real number f , and if we need to
indicate this we write F(x)(f) or F(x, f). For example, the rectangular pulse
Π(t) from (1.4) is absolutely integrable and has Fourier transform

F(Π) =

∫ ∞
−∞

Π(t)e−j2πftdt

=

∫ 1/2

−1/2

e−j2πftdt

=
ejπf − e−jπf

j2πf

=
sin(πf)

πf
= sinc(f). (5.2)

The sinc function is plotted in Figure 40.
The Fourier transform is closely related to the Laplace transform because

F(x, f) = L(x, j2πf)

for those signals x with region of convergence containing the imaginary axis, that
is, for absolutely integrable x. The Fourier transform inherits the properties of
the Laplace transform that were described in Section 4.1. For example, if H
is a regular system with impulse response h that has Fourier transform F(h),
then the spectrum of H satisfies

Λ(H, f) = L(h, j2πf) = F(h, f).

That is, the spectrum of a regular system (if it exists) is given by the Fourier
transform of its impulse response. Like the Laplace transform, the Fourier
transform obeys the convolution theorem (4.10), that is,

F(x ∗ y) = F(x)F(y). (5.3)

In words: the Fourier transform of a convolution of signals is given by the
multiplication of the Fourier transforms of those signals.

It follows from (4.11) that if H is a regular system with spectrum Λ(H)
and if x is a signal with Fourier transform F(x), then the signal y = H(x) has
Fourier transform

F(y) = Λ(H)F(x).

This property also holds for the differentiator system D and the time shifter
system Tτ (Exercise 4.11). From (4.7) and (4.8) the spectrum of Tτ and the kth
differentiator Dk satisfy

Λ(Tτ , f) = e−j2πfτ , Λ(Dk, f) = (j2πf)k
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t

42−2−4

1

Figure 40: The sinc function sinc(t) = sin(πt)
πt

.

from which we obtain the time shift property,

F
(
Tτ (x)

)
= Λ(Tτ )F(x) = e−j2πfτF(x),

and the differentiation property,

F
(
Dk(x)

)
= Λ(Dk)F(x) = (j2πf)kF(x),

of the Fourier transform. These results motivate assigning the following Fourier
transforms to the delta “function” and its derivatives

F(δ, f) = 1, L(δk, f) = (j2πf)k. (5.4)

These conventions are common in the engineering literature [Oppenheim et al.,
1996].

Similarly to the Laplace transform (4.5), the Fourier transform obeys a fre-
quency shift rule that relates the transform of a signal x(t) to that of the
signal e2πjγftx(t) where γ ∈ R. From (4.5), the frequency shift rule asserts that

F
(
e2πjγtx(t), f

)
= F(x, f − γ). (5.5)

Since cos(2πγt) = 1
2e

2πjγt + 1
2e
−2πjγt we also have

F
(

cos(2πγt)x(t), f
)

=
1

2
F(x, f − γ) +

1

2
F(x, f + γ). (5.6)

This is sometimes called the modulation property of the Fourier trans-
form [Papoulis, 1977, page 61]. This property is of particular importance in
communications engineering [Proakis, 2007].

5.1 Duality and the inverse transform

Given a signal x we will often denote its Fourier transform by x̂ = F(x). Observe
that x̂, like x, is a function that maps a real number to a complex number.
Thus, the Fourier transform x̂ is a signal with independent variable representing
frequency. It is usual to call x the time domain representation of the signal
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and x̂ the frequency domain representation. If x̂ is absolutely integrable, then
x can be recovered using the inverse Fourier transform

x(t) = F−1(x̂, t) =

∫ ∞
−∞

x̂(f)ej2πftdf. (5.7)

For example, let x̂ = F(x) = Π be the rectangular pulse. By working analogous
to that from (5.2),

x(t) =

∫ ∞
−∞

Π(f)ej2πftdf = sinc(−t) = sinc(t).

We are lead to the conclusion that the Fourier transform of sinc(t) is the rect-
angular pulse Π(f).

The rectangular pulse Π is finite in time and absolutely integrable. The sinc
function is not absolutely integrable (Exercise 5.3). Because of this the integral
equation that we have used to define the Fourier transform (5.1) cannot be
directly applied to the sinc function. The inverse transform provides a method
for assigning Fourier transforms to signals even when the formula (5.1) does
not apply. Although sinc is not absolutely integrable, it is square integrable
(Exercise 5.3). It can be shown that all square integrable signals have a Fourier
transform, and that the Fourier transform is itself square integrable. This is
called the Plancherel theorem [Rudin, 1986, Th. 9.13]. For our purposes it
suffices to remember only that the Fourier transform of the sinc function is the
rectangular pulse Π.

Let x be a signal with Fourier transform

x̂(f) = F(x, f) =

∫ ∞
−∞

x(τ)e−j2πfτdτ.

Evaluating x̂ at −t we find that

x̂(−t) =

∫ ∞
−∞

x(τ)ej2πtτdτ = F−1(x, t).

That is, if x̂ is the Fourier transform of x, then x is the Fourier transform of x̂
reflected in time. Another way to write this is

F(x̂, t) = F(F(x), t) = x(−t).
Equivalently, if we define

R(x, t) = x(−t) (5.8)

as the system that reflects its input signal, then

F(F(x)) = F2(x) = R(x),

where we use the notation F2 to denote application of the Fourier transform
twice. This is the called the duality property of the Fourier transform. Apply-
ing the Fourier transform three times to a signal x we obtain

F3(x) = F
(
F
(
F(x)

))
= R

(
F(x)

)
= F

(
R(x)

)
. (5.9)
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It follows that the Fourier transform commutes with the reflection system R.
This is called the reflection property of the Fourier transform. Informally
stated: a reflection in the time domain causes a corresponding reflection in the
frequency domain.

The duality property and (5.4) motivates assigning a Fourier transform the
signal 1, that is,

F(1) = R(δ) = δ,

where we treat the delta function as if it were even, i.e., we assign it the property
δ(t) = δ(−t) so that R(δ) = δ. Combinging this with the frequency shift rule
motivates assigning the following Fourier transform to the complex exponential
signal ej2πγt,

F(ej2πγt) = δ(f − γ),

and, similarly, motivates assigning the Fourier transforms

F
(

cos(2πt)
)

= F( 1
2e
j2πγt + 1

2e
−j2πγt) = 1

2δ(f − γ) + 1
2δ(f + γ)

and

F
(

sin(2πt)
)

= F( 1
2j e

j2πγt − 1
2j e
−j2πγt) = 1

2j δ(f − γ)− 1
2j δ(f + γ)

to the signals sin(2πt) and cos(2πt). These conventions are common in the
literature [Oppenheim et al., 1996]. It is important remember that δ is not a
signal. It is not a function. The signals 1, e2πjt, cos(2πt), and sin(2πt) are
neither absolutely integrable nor square integrable and do not formally have
Fourier transforms. You cannot, for example, apply the integral equation (4.1)
to cos(2πt) and expect a meaningful result. Nevertheless, these conventions will
often lead to valid results when applied with discretion.

Let x̂ = F(x) and ŷ = F(y) be the Fourier transforms of signals x and y.
By duality

F(x̂) = F2(x) = R(x), F(ŷ) = F2(y) = R(y).

Because the product R(x)R(y) = R(xy) we have

R(xy) = R(x)R(y) = F(x̂)F(ŷ) = F(x̂ ∗ ŷ),

where the last inequality follows from the convolution theorem (5.3). Apply-
ing the Fourier transform to both sides and using the duality and reflection
properties we obtain

R
(
F(xy)

)
= R(x̂ ∗ ŷ).

Applying the reflection system R to both sides and using the fact that R2 = T0

is the identity system we obtain

F(xy) = x̂ ∗ ŷ = F(x) ∗ F(y).

Thus, the Fourier transform of a product of signals is the product of the Fourier
transforms. This is called the multiplication theorem. The multiplication
theorem often goes by the phrase: “Multiplication in the time domain is convo-
lution in the frequency domain”.
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5.2 Parseval’s identity

Let x be a signal with Fourier transform x̂ = F(x). The Fourier transform of
x∗, the complex conjugate of x, satisfies

F(x∗, f) =

∫ ∞
−∞

x(t)∗e−j2πftdt

=

∫ ∞
−∞

(
x(t)ej2πft

)∗
dt

=

(∫ ∞
−∞

x(t)ej2πftdt

)∗
= F(x,−f)∗

= x̂(−f)∗. (5.10)

It follows that if x is a real valued signal so that x = x∗, then x̂(f) = x̂(−f)∗.
That is, the Fourier transform of a real valued signal is conjugate symmetric.

The convolution theorem (5.3) asserts that F(x ∗ y) = F(x)F(y) = x̂ŷ.
Applying the inverse Fourier transform to both sides of this equation gives2

(x ∗ y)(t) =

∫ ∞
−∞

x(τ)y(t− τ)dτ =

∫ ∞
−∞

x̂(f)ŷ(f)ej2πftdf.

Setting t = 0 we obtain what is often called Parseval’s identity∫ ∞
−∞

x(τ)y(−τ)dτ =

∫ ∞
−∞

x̂(f)ŷ(f)df.

Putting y(t) = x(−t)∗ so that ŷ(f) = x̂(f)∗ we obtain the special case∫ ∞
−∞
|x(τ)|2 dτ =

∫ ∞
−∞
|x̂(f)|2 df,

or equivalently ‖x‖2 = ‖x̂‖2. In words: the energy of a signal is equal to the
energy of its Fourier transform.

In Tests 4 and 6 we made use the fact that sinc and its time shifts by a
nonzero integer Tm(sinc) are orthogonal. That is,∫ ∞

−∞
sinc(t) sinc(t−m)dt =

{
1 m = 0

0 m 6= 0.
(5.11)

where m ∈ Z. We now use Parseval’s identity to prove this. Applying the
frequency shift rule (5.5) to the rectangular pulse Π we have

F
(
e2πjmtΠ(t), f

)
= F(Π, f −m) = sinc(f −m).

2The product of two square integrable function is absolutely integrable [Rudin, 1986,
Thm 3.8].
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Putting x(t) = e2πjmtΠ(t) and y(t) = Π(t) in Parseval’s identity gives∫ ∞
−∞

sinc(f −m) sinc(f)df =

∫ ∞
−∞

e2πjmτΠ(τ)Π(−τ)dτ

=

∫ 1/2

−1/2

e2πjmτdτ

=
eπjm − eπjm

2πjm

=
sin(πm)

πm
= sinc(m).

The result (5.11) follows because sinc(m) is equal to one when m = 0 and equal
to zero when m is any other integer (Figure 40).

5.3 Ideal filters

For many engineering purposes it is desirable to construct systems that will pass
(have little affect on) a complex exponential signal ej2πft for certain frequencies
f , but will reject (significantly attenuate) these signals for other frequencies.
Such systems are called filters. Those frequencies that the filter intends to pass
unaffected are said to be in the pass band and those frequencies that the filter
intends to reject are said to be in the stop band.

For example, an ideal lowpass filter with cuttoff frequency c is the
system Lc with spectrum

Λ(Lc) =

{
1 −c < f ≤ c
0 otherwise

= Π

(
f

2c

)
.

Applying the inverse Fourier transform to Π
(
f
2c

)
gives∫ ∞

−∞
Π
(
f
2c

)
ej2πtfdf =

∫ c

−c
ej2πtfdf =

sin(2cπt)

πt
= 2c sinc(2ct).

We conclude that the ideal lowpass filter Lc is a regular linear time invariant
system with impulse response 2c sinc(2ct).

An ideal highpass filter with cuttoff frequency c is given by the linear
combination T0 − Lc where T0 is the identity system. The spectrum is

Λ(T0 + Lc) = Λ(T0) + Λ(Lc) = 1−Π

(
f

2c

)
=

{
0 −c < f ≤ c
1 otherwise.

This ideal highpass filter is not regular because the system T0 is not regular.
The system does not have a signal representing an impulse response, however,
it is common to represent it by δ(t) − 2c sinc(2ct) using the delta function as
described in Section 3.1.
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An ideal bandpass filter with upper cuttoff frequency u and lower cuttoff
frequency ` is given by the linear combination Lu − L`. The spectrum is

Λ(Lu − L`) = Π

(
f

2u

)
−Π

(
f

2`

)
=


1 −u < f ≤ −`
1 u < f ≤ `
0 otherwise.

It follows that the ideal bandpass filter has impulse response 2u sinc(2ut) −
2` sinc(2`t). The spectrum and impulse response of the ideal lowpass, highpass,
and bandpass filters are plotted in Figure 41.

5.4 Butterworth filters

The ideal filters described in the previous section are not realisable in practice.
One reason for this is that they are not causal because the sinc function is un-
bounded in time. We now describe a popular practical low-pass filter discovered
by Butterworth [1930]. A normalised low pass Butterworth filter of order m,
denoted by Bm, has transfer function

λ(Bm) =
1∏m

i=1( s
2π − βi)

=
(2π)m∏m

i=1(s− 2πβi)
,

where β1, . . . , βm are the roots of the polynomial s2m + (−1)m that lie strictly
in the left half of the complex plane (have negative real part). It is convenient
to precisely define these roots as

βk =

{
exp

(
j π2 (1 + 2k−1

m )
)
, k = 1, . . . ,m

exp
(
j π2 (1− 2k−1

m )
)
, k = m+ 1, . . . , 2m

or equivalently

βk =

{
j cos

(π(2k−1)
2m

)
− sin

(π(2k−1)
2m

)
, k = 1, . . . ,m

j cos
(π(2k−1)

2m

)
+ sin

(π(2k−1)
2m

)
, k = m+ 1, . . . , 2m.

The roots are plotted in Figure 42. Observe that the roots βm+1, . . . , β2m are
given by negating the real parts of β1, . . . , βm, that is, βm+i = j(βi/j)

∗.
The spectrum of Bm is

Λ(Bm) =
1∏m

i=1(jf − βi)
.
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Figure 41: Spectrum and impulse response of the ideal lowpass filter Lc (top), the
ideal highpass filter T0−Lc (middle), and the ideal bandpass filter Lu−L` (bottom).
The ideal highpass filter is not regular and does not have an impulse response. We
plot the ‘pretend’ impulse response using the delta function described in Section 3.1.
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Figure 42: Roots of the polynomial s2m + (−1)m for m = 1 (top left), m = 2 (top
right), m = 3 (bottom left), and m = 4 (bottom right). All the roots lie on the complex
unit circle and have magnitude one. The poles of the normalised Butterworth filter
Bm are those roots from the left half of the complex plane (unshaded).

75



The squared magnitude of the polynomial on the denominator is∣∣∣∣∣
m∏
i=1

(jf − βi)
∣∣∣∣∣
2

=

(
m∏
i=1

(jf − βi)
)(

m∏
i=1

(jf − βi)
)∗

=

m∏
i=1

(jf − βi)(jf − βi)∗

=

m∏
i=1

(jf − βi)j∗(f − (βi/j)
∗)

and because j∗/j = −1 we have∣∣∣∣∣
m∏
i=1

(jf − βi)
∣∣∣∣∣
2

= (−1)m
m∏
i=1

(jf − βi)(jf − j(βi/j)∗)

= (−1)m
m∏
i=1

(jf − βi)(jf − βm+i)

= (−1)m
2m∏
i=1

(jf − βi).

Because β1, . . . , β2m are the roots of the polynomial s2m + (−1)m we have∣∣∣∣∣
m∏
i=1

(jf − βi)
∣∣∣∣∣
2

= (−1)m
(
(jf)2m + (−1)m

)
= f2m + 1.

It follows that the magnitude spectrum of Bm is

|Λ(Bm)| =
√

1

f2m + 1
.

The magnitude and phase spectrum of the filters B1, B2, B3, and B4 are plotted
in Figure 43.

The cuttoff frequency of the lowpass filterBm is defined as the positive real
number c such that |Λ(Bm, f)|2 < 1

2 for all f > c. The normalised Butterworth
filters have cuttoff frequency c = 1Hz. A lowpass Butterworth filter of order m
and cuttoff frequency c, denoted Bcm, has transfer function

λ(Bcm, s) = λ(Bm,
s
c ) =

1∏m
i=1( s

2πc − βi)
.

The magnitude spectrum satisfies

|Λ(Bcm, f)|2 = |Λ(Bm,
f
c )|2 =

1(
f
c

)2m
+ 1

=
c2m

f2m + c2m
. (5.12)
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Figure 43: Magnitude spectrum (top) and phase spectrum (bottom) of normalised
Butterworth filters B1, B2, B3 and B4.
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A first order Butterworth filter Bc1 has spectrum

Λ(Bc1) =
1

j fc + 1
=

c

jf + c
.

Putting 1
c = 2πRC we find that this is the same as the spectrum of the RC

electrical circuit (Figure 10) or the active RC circuit after negation (3.8). Thus,
the RC electrical circuit is a first order Butterworth filter with cuttoff frequency
c = 1

2πRC . In Test 4 we constructed the active RC circuit with R ≈ 27kΩ and
C ≈ 10nF and measured its magnitude spectrum. The cuttoff frequency was

c = 5×104

27π ≈ 589Hz.
A second order electrical Butterworth filter can be constructed using the

Sallen-Key circuit described in Section 2.2 and Figure 20. The input voltage x
and output voltage y of the Sallen-Key satisfy the differential equation (2.13)

x = y + C2(R1 +R2)D(y) +R1R2C1C2D
2(y).

The transfer function is

L(y)

L(x)
=

1

1 + C2(R1 +R2)s+R1R2C1C2s2
.

The second order Butterworth filter Bc2 has transfer function

Λ(Bcm) =
1

( 1
2πcs− β1)( 1

2πcs− β2)
,

where β1 = β∗2 = ej3π/4. Expanding the quadratic on the denominator gives

Λ(Bcm) =
1

1 + 1√
2πc

s+ 1
4π2c2 s

2
.

Choosing the resistors and capacitors of the Sallen-Key to satify

C2(R1 +R2) =
1√
2πc

, R1R2C1C2 =
1

4π2c2

leads to a second order Butterworth filter. A convenient solution is to put
C1 = 2C2 and R1 = R2. This gives a second order Butterworth filter with
cuttoff

c =
1√

2πC2(R1 +R2)
=

1√
2πC1R1

.

In Test 6 we construct a second order Butterworth filter using a Sallen-Key and
measure its magnitude spectrum.

Butterworth filters of orders larger than m = 2 can be constructed by
concatenating Sallen-Key circuits and RC circuits. If m is even then m/2
Sallen-Key circuits are required. Each Sallen-Key is used to construct a con-
jugate pair of poles, that is, the kth Sallen-Key would have poles 2πcβk and
2πcβ∗k = 2πcβm−k+1. If m is odd then (m − 1)/2 Sallen-Key circuits and a
single RC circuit (or active RC circuit) can be used. The RC circuit is designed
to have the real valued pole β(m+1)/2 = 2πc.
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Test 6 (Butterworth filter)
We construct a second order Butterworth filter using the Sallen-Key circuit
from Figure 20 with capacitors C2 ≈ 100nF, C1 ≈ 2C2 ≈ 200nF and resistors
R1 ≈ R2 ≈ 1000Ω. The cuttoff frequency is

c =
1√

2πC1R1

≈ 1125Hz.

Sinusoids of the form

sin(2πfkt), fk = 110× 2k/2, k = 0, 1, . . . , 12

are input to the filter using a computer soundcard and the magnitude spec-
trum is measured using the method described in Test 4. Figure 44 shows the
measurements (dots) plotted alongside the hypothesised spectrum

|Λ(Bc2)| =
√

1

(f/1125)4 + 1
.
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Figure 44: Plot of the hypothesised magnitude spectrum of the second order Butter-
worth filter |Λ(Bcm)| (solid line) and of the measured magnitude spectrum of the filter
implemented with a Sallen-Key active electrical circuit (dots).
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5.5 Sampling and interpolation

Let x be a signal with Fourier transform x̂ = F(x) and let

x̂p(f) =
∑
m∈Z

x̂(f −m). (5.13)

The signal x̂p is periodic with period one since for every integer k,

x̂p(f − k) =
∑
m∈Z

x̂(f − k −m) =
∑
m∈Z

x̂(f −m) = x̂p(f).

For this reason x̂p is sometimes called the periodised or wrapped version of
x̂ [Fisher and Lee, 1994]. We plot functions x̂ and their periodised versions x̂p
in Figure 44.

Assume that we can write the periodic signal x̂p(f) as a series

x̂p(f) =
∑
n∈Z

xne
−j2πfn. (5.14)

The coefficients xn in this series can be recovered by

xn =

∫ 1/2

−1/2

x̂p(f)e2πjfndf. (5.15)

To see this write∫ 1/2

−1/2

x̂p(f)e2πjfndf =

∫ 1/2

−1/2

( ∑
m∈Z

xme
−j2πfm)e2πjfndf

=
∑
m∈Z

xm

∫ 1/2

−1/2

e−j2πfmej2πfndf

=
∑
m∈Z

xm

∫ 1/2

−1/2

ej2πf(n−m)df

=
∑
m∈Z

xm sinc(n−m)

= xn

because sinc(n−m) = 1 when n = m and zero otherwise. The periodic function
x̂p is called the discrete Fourier transform of the sequence xn.

Substituting (5.13) into (5.15) we obtain

xn =

∫ 1/2

−1/2

∑
m∈Z

x̂(f −m)e2πjfndf =
∑
m∈Z

∫ 1/2

−1/2

x̂(f −m)e2πjfndf.
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By the change of variable γ = f −m we obtain

xn =
∑
m∈Z

∫ 1/2−m

−1/2−m
x̂(γ)e2πjn(γ+m)dγ

=
∑
m∈Z

∫ 1/2−m

−1/2−m
x̂(γ)e2πjnγdγ (since e2πjm = 1)

=

∫ ∞
−∞

x̂(γ)e2πjnγdγ

= F−1(x̂, n)

= x(n).

Thus, the sequence xn corresponds with the signal x sampled at the integers,
that is xn = x(n).

A signal x is called bandlimited if there exists a positive real number b such
that F(x, f) = 0 for all |f | > b. For example, the sinc function is bandlimited
with bandwidth 1

2 because its Fourier transform F(sinc, f) = Π(f) = 0 for all
|f | > b. The value b is referred to as the bandwidth of the signal x. If x is
bandlimited with bandwidth b ≤ 1

2 , then x can be recovered from its samples
at the integers, that is, x can be recovered from the sequence xn. To see this,
first observe that

Π(f)x̂(f −m) =

{
x̂(f) m = 0

0 otherwise

since x̂(f) = 0 whenever |f | ≥ 1
2 . Now, multiplying x̂p(f) by the rectangle

function gives

Π(f)x̂p(f) =
∑
m∈Z

Π(f)x̂(f −m) = x̂(f).

Now consider the signal

x̃(t) =
∑
n∈Z

xn sinc(t− n).

Taking the Fourier transform on both sides gives

F(x̃) = F
(∑
n∈Z

xn sinc(t− n)
)

=
∑
n∈Z

xnF
(

sinc(t− n)
)

=
∑
n∈Z

xne
−j2πfnΠ(f) (time shift property of F)

= Π(f)x̂p(f) (from (5.14))

= x̂(f)

= F(x, f).
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Thus, F(x̃) = F(x) and application of the inverse Fourier transform reveals
that x̃ = x, that is

x(t) =
∑
n∈Z

xn sinc(t− n).

If instead of sampling at the integers we sample at rate Fs so that xn = x(Fsn),
then, by a similar argument, we find that x can be recovered as

x(t) =
∑
n∈Z

xn sinc(Fst− n)

provided that x is bandlimited with bandwidth Fs/2. This is called the Nyquist
criterion.

5.6 Exercises

5.1. Plot the signal e−α|t| where α > 0 and find its Fourier transform.

5.2. Plot the signal

4(t) =


t+ 1 −1 ≤ t < 0

1− t 0 ≤ t < 1

0 otherwise

and find its Fourier transform.

5.3. Show that the sinc function is square integrable, but not absolutely inte-
grable.

5.4. Find and plot the impulse response of the normalised lowpass Butterworth
filters B1, B2 and B3.

5.5. Plot the signal

tΠ(t) =

{
t − 1

2 < t ≤ 1
2

0 otherwise

and find its Fourier transform.

5.6. Plot the signal Π(t)(1 + cos(2πt)) and find its Fourier transform. Plot the
Fourier transform.

5.7. Let x be an absolutely integrable signal and let xp(t) =
∑
m∈Z x(t −m)

be its periodised version. Show that xp is a periodic signal satisfying∫ 1/2

−1/2
|xp(t)| dt <∞.

5.8. State whether the following signals are bandlimited and, if so, find the
bandwidth.

(a) sinc(4t),

(b) Π(t/4),

(c) cos(2πt) sinc(t),

(d) e−|t|.
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f

x̂(f) = e−4f2

1−1 2−2

f

x̂p(f)

1−1 2−2

f

x̂(f) = Π(f/2)
(
1 + cos(πf)

)

1−1 2−2

f

x̂p(f)

1−1 2−2

f

x̂(f) = Π(3f/2)
(
1 + cos(3πf)

)

1−1 2−2

f

x̂p(f)

1−1 2−2

Figure 44: Signals x̂ and their periodised versions x̂p. Aliasing occurs in the plot on
the top and middle. No aliasing occurs in the plot on the bottom.
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