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Chapter 1

Signals and systems

A signal is a function mapping an input variable to some output variable.
For example

sin(πt),
1

2
t3, e−t

2

all represent signals with real input variable t ∈ R and real output variable.
These signals are plotted in Figure 1.1. If x is a signal and t an input vari-
able we write x(t) for the output variable corresponding with t. Signals can
be multidimensional. This page is an example of a 2-dimensional signal, the
independent variables are the horizontal and vertical position on the page,
and the signal maps this position to a colour, in this case either black or
white. A moving image such as seen on your television or computer monitor
is an example of a 3-dimensional signal, the three independent variables be-
ing vertical and horizontal screen position and time. The signal maps each
position and time to a colour on the screen. In these notes we focus exclu-
sively on 1-dimensional signals such as those in Figure 1.1 and we will only
consider signals where the output variable is real or complex valued. Many
of the results presented here can be extended to deal with multidimensional
signals.

1.1 Properties of signals

A signal x is bounded if there exists a real number M such that

|x(t)| < M for all t ∈ R

where | · | denotes the (complex) magnitude. Both sin(πt) and e−t
2

are
examples of bounded signals because | sin(πt)| ≤ 1 and |e−t2 | ≤ 1 for all
t ∈ R. However, 1

2 t
3 is not bounded because its magnitude grows indefinitely

as t moves away from the origin.
A signal x is periodic if there exists a positive real number T such that

x(t) = x(t+ kT ) for all k ∈ Z and t ∈ R.

1
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Figure 1.1: 1-dimensional signals

If there exists a smallest such positive T it is called the fundamental pe-
riod or simply the period. For example, the signal sin(πt) is periodic with
period T = 2. Neither 1

2 t
3 or e−t

2
are periodic.

A signal x is right sided if there exists a T ∈ R such that x(t) = 0 for
all t < T . Correspondingly x is left sided if x(t) = 0 for all T > t. For
example, the step function

u(t) =

{
1 t ≥ 0

0 t < 0
(1.1.1)

is right-sided. Its reflection in time u(−t) is left sided (Figure 1.2). A signal
x is said to be finite if it is both left and right sided, that is, if there exits
a T ∈ R such that x(t) = x(−t) = 0 for all t > T . The signals sin(πt) and
e−t

2
are not finite, but the rectangular pulse

Π(t) =

{
1 |t| < 1

2

0 otherwise
(1.1.2)

is finite.
A signal x is even (or symmetric) if

x(t) = x(−t) for all t ∈ R

and odd (or antisymmetric) if

x(t) = −x(−t) for all t ∈ R.

For example, sin(πt) and 1
2 t

3 are odd and e−t
2

is even.
A signal x is locally integrable if∫ b

a
|x(t)| dt <∞

for all finite constants a and b, where by < ∞ we mean that the integral
evaluates to a finite number. An example of a signal that is not locally
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Figure 1.2: The right sided step function u(t), its left sided reflection u(−t), the
finite rectangular pulse Π(t) and the signal 1

2 + 1
2 cos(x) that is not finite.

integrable is x(t) = 1
t (Exercise 1.2). A signal x is absolutely integrable

if

‖x‖1 =

∫ ∞
−∞
|x(t)| dt <∞. (1.1.3)

Here we introduce the notation ‖x‖1 called the L1-norm of x. For example
sin(πt) and 1

2 t
3 are not absolutely integrable, but e−t

2
is because [Nicholas

and Yates, 1950] ∫ ∞
−∞
|e−t2 |dt =

∫ ∞
−∞

e−t
2
dt =

√
π. (1.1.4)

It is common to denote the set of absolutely integrable signals by L1 or
L1(R). So, e−t

2 ∈ L1 and 1
2 t

3 /∈ L1. A signal x is called is square inte-
grable if

‖x‖22 =

∫ ∞
−∞
|x(t)|2 dt <∞.

The real number ‖x‖2 is called the L2-norm of x. Square integrable signals
are also called energy signals, and the squared L2-norm ‖x‖22 is called the
energy of x. For example sin(πt) and 1

2 t
3 are not energy signals, but e−t

2

is (Exercise 1.5). The set of square integrable signals is often denoted by L2

or L2(R).

We write x = y to indicate that two signals x and y are equal pointwise,
that is, x(t) = y(t) for all t ∈ R. This definition of equality is often stronger
than we desire. For example, the step function u and the signal

z(t) =

{
1 t > 0

0 t ≤ 0
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are not equal pointwise because they are not equal at t = 0, that is, u(0) = 1
and z(0) = 0. It is useful to identify signals that differ only at isolated points
and for this we use a weaker definition of equality. We say that two signals
x and y are equal almost everywhere if∫ b

a
|x(t)− y(t)| dt = 0

for all finite constants a and b. So, in the previous example, while u 6= z
pointwise we do have u = z almost everywhere. Typically the term almost
everywhere is abbreviated to a.e. and one writes

x = y a.e. or x(t) = y(t) a.e.

to indicate that the signals x and y are equal almost everywhere.

1.2 Systems (functions of signals)

A system is a function that maps a signal to another signal. For example

x(t) + 3x(t− 1),

∫ 1

0
x(t− τ)dτ,

1

x(t)
,

d

dt
x(t)

represent systems, each mapping the signal x to another signal. Consider
the electric circuit in Figure 1.3 called a voltage divider. If the voltage at
time t is x(t) then, by Ohm’s law, the current at time t satisfies

i(t) =
1

R1 +R2
x(t),

and the voltage over the resistor R2 is

y(t) = R2i(t) =
R2

R1 +R2
x(t). (1.2.1)

The circuit can be considered as a system mapping the signal x representing
the voltage to the signal i = 1

R1+R2
x representing the current, or a system

mapping x to the signal y = R2
R1+R2

x representing the voltage over resistor
R2.

We denote systems with capital letters such as H and G. A system H is
a function that maps a signal x to another signal denoted H(x). We call x
the input signal and H(x) the output signal or the response of system
H to signal x. The value of the signal H(x) at t is denoted by H(x, t) or
H(x, t) and we do not distinguish between these notations. It is sometimes
useful to depict systems with a block diagram. Figure 1.4 is a simple block
diagram showing the input and output signals of a system H.
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i(t)

R2

R1

x(t) y(t)

Figure 1.3: A voltage divider circuit.

H
x H(x)

Figure 1.4: System block diagram with input signal x and output signal H(x).

The electric circuit in Figure 1.3 corresponds with the system

H(x) =
R2

R1 +R2
x = y.

This system multiplies the input signal x by R2
R1+R2

. This brings us to our
first practical test.

Test 1 (Voltage divider) In this test we construct the voltage divider from
Figure 1.3 on a breadboard with resistors R1 ≈ 100Ω and R2 ≈ 470Ω with
values accurate to within 5%. Using a computer soundcard (an approxima-
tion of) the voltage signal

x(t) = sin(2πf1t) with f1 = 100

is passed through the circuit. The approximation is generated by sampling
x(t) at rate F = 1

P = 44100Hz to generate samples

x(nP ) n = 0, . . . , 2F

corresponding to approximately 2 seconds of signal. These samples are
passed to the soundcard which starts playback. The voltage over resis-
tor R2 is recorded (also using the soundcard) that returns a list of samples
y1, . . . , yL taken at rate F . The voltage over R2 can be (approximately)
reconstructed from these samples as

ỹ(t) =

L∑
`=1

y` sinc(Ft− `) (1.2.2)

where

sinc(t) =
sin(πt)

πt
(1.2.3)
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is the called the sinc function and is plotted in Figure 5.1. We will justify
this reconstruction in Section 5.4. Simultaneously the (stereo) soundcard is
used to record the input voltage x producing samples x1, . . . , xL taken at
rate F . An approximation of the input signal is

x̃(t) =

L∑
`=1

x` sinc(Ft− `). (1.2.4)

In view of (1.2.1) we would expect the approximate relationship

ỹ ≈ R2

R1 +R2
x̃ =

47

57
x̃.

A plot of ỹ, x̃ and 47
57 x̃ over a 20ms period from 1s to 1.02s is given in Fig-

ure 1.5. The hypothesised output signal 47
57 x̃ does not match the observed

output signal ỹ. A primary reason is that the circuitry inside the soundcard
itself cannot be ignored. When deriving the equation for the voltage divider
we implicitly assumed that current flows through the output of the sound-
card without resistance (a short circuit), and that no current flows through
the input device of the soundcard (an open circuit). These assumptions are
not realistic. Modelling the circuitry in the sound card wont be attempted
here. In Section 2.2 we will construct circuits that contain external sources
of power (active circuits). These are less sensitive to the circuitry inside the
soundcard.

Not all signals can be input to all systems. For example, the system

H(x, t) =
1

x(t)

is not defined at those t where x(t) = 0 because we cannot divide by zero.
Another example is the system

I∞(x, t) =

∫ t

−∞
x(τ)dτ, (1.2.5)

called an integrator. The signal x(t) = 1 cannot be input to the integrator
because the integral

∫ t
−∞ dt is not finite for any t.

When specifying a system it is necessary to also specify a set of signals
that can be input. This is called a domain for the system. We are free
to choose the domain at our convenience. For example, a domain for the
system H(x, t) = 1

x(t) is a the set of signals x(t) which are not zero for any

t. An example of a domain for the integrator I∞ is the set L1 of absolutely
integrable signals because, if x is absolutely integrable, then

|I∞(x, t)| ≤
∣∣∣∣∫ t

−∞
x(τ)dτ

∣∣∣∣ ≤ ∫ t

−∞
|x(τ)| dτ <

∫ ∞
−∞
|x(τ)| dτ = ‖x‖1 <∞
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and so, I∞(x, t) is finite for all t. In this text, the domain used for a given
system will usually be obvious from the context in which the system is
defined. For this reason we will not usually state the domain explicitly. We
will only do so if there is chance for confusion.

1.3 Some important systems

The system
Tτ (x, t) = x(t− τ)

is called a time-shifter. This system shifts the input signal along the t axis
(‘time’ axis) by τ . When τ is positive Tτ delays the input signal by τ . The
time-shifter will appear so regularly in this course that we use the special
notation Tτ to represent it. Figure 1.6 depicts the action of time-shifters
T1.5 and T−3 on the signal x(t) = e−t

2
. When τ = 0 the time-shifter is the

identity system
T0(x) = x

that maps the signal x to itself.
Another important system is the time-scaler that has the form

H(x, t) = x(αt), α ∈ R.

Figure 1.7 depicts the action of a time-scaler with a number of values for
α. When α = −1 the time-scaler reflects the input signal in the time axis.
When α = 1 the time-scaler is the identity system T0.

Another system we regularly encounter is the differentiator

D(x, t) =
d

dt
x(t),

that returns the derivative of the input signal. We also define a kth differ-
entiator

Dk(x, t) =
dk

dtk
x(t)

that returns the kth derivative of the input signal.
A related system is the integrator

Ia(x, t) =

∫ t

−a
x(τ)dτ.

The parameter a describes the lower bound of the integral. In this course
it will often be that a =∞. For example, the response of the integrator I∞
to the signal tu(t) where u is the step function (1.1.1) is∫ t

−∞
τu(τ)dτ =

{∫ t
0 τdτ = t2

2 t > 0

0 t ≤ 0.
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Figure 1.5: Plot of reconstructed input signal x̃ (solid line), output signal ỹ (solid
line with circle) and hypothesised output signal 47

57 x̃ (solid line with dot) for the
voltage divider circuit in Figure 1.3. The hypothesised signal does not match ỹ.
One reason is that the model does not take account of the circuitry inside the
soundcard.

t

x T1.5(x)

1.5

T−3(x)

−3

Figure 1.6: Time-shifter system T1.5(x, t) = x(t − 1.5) and T−3(x, t) = x(t + 3)

acting on the signal x(t) = e−t
2

.

t

α = 1

2

α = −1

−2

α = 2

1

α = 1/2

4

Figure 1.7: Time-scaler system H(x, t) = x(αt) for α = −1, 12 , 1 and 2 acting on

the signal x(t) = e−(t−2)2 .
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Observe that the integrator I∞ cannot be applied to the signal x(t) = t
because

∫ t
−∞ τdτ is not finite for any t. A domain for I∞ would not contain

the signal x(t) = t.

1.4 Properties of systems

In this section we define a number of important properties that systems can
possess. In what follows H will be a system and the phrase “for all signals”
will mean for all signals inside some domain for H.

A system H is called memoryless if the output signal H(x) at time
t depends only on the input signal x at time t. For example 1

x(t) and the
identity system T0 are memoryless, but

x(t) + 3x(t− 1) and

∫ 1

0
x(t− τ)dτ

are not. A time-shifter Tτ with τ 6= 0 is not memoryless.
A system H is causal if the output signal H(x) at time t depends on

the input signal only at times less than or equal to t. Memoryless systems
such as 1

x(t) and T0 are also causal. Time-shifters Tτ are causal when τ ≥ 0,
but are not causal when τ < 0. The systems

x(t) + 3x(t− 1) and

∫ 1

0
x(t− τ)dτ

are causal, but the systems

x(t) + 3x(t+ 1) and

∫ 1

0
x(t+ τ)dτ

are not causal.
A system H is called bounded-input-bounded-output (BIBO) sta-

ble or just stable if the output signal H(x) is bounded whenever the input
signal x is bounded. That is, H is stable if for every positive real number M
there exists a positive real number K such that for all signals x satisfying

|x(t)| < M for all t ∈ R,

it also holds that
|H(x, t)| < K for all t ∈ R.

For example, the system x(t) + 3x(t − 1) is stable with K = 4M since if
|x(t)| < M then

|x(t) + 3x(t− 1)| ≤ |x(t)|+ 3 |x(t− 1)| < 4M = K.

The integrator Ia for any a ∈ R and differentiator D are not stable (Exer-
cises 1.6 and 1.7).
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H

a
x

b
y

H(ax+ by)

aH
x

bH
y

aH(x) + bH(y)

Figure 1.8: If H is a linear system the outputs of these two diagrams are the same
signal, i.e. H(ax+ by) = aH(x) + bH(y).

A system H is linear if

H(ax+ by) = aH(x) + bH(y)

for all signals x and y and all complex numbers a and b. That is, a linear
system has the property: If the input consists of a weighted sum of signals,
then the output consists of the same weighted sum of the responses of the
system to those signals. Figure 1.8 indicates the linearity property using a
block diagram. For example, the differentiator is linear because

D(ax+ by, t) =
d

dt

(
ax(t) + by(t)

)
= a

d

dt
x(t) + b

d

dt
y(t)

= aD(x, t) + bD(y, t)

whenever both x and y are differentiable. However, the systemH(x, t) = 1
x(t)

is not linear because

H(ax+ by, t) =
1

ax(t) + by(t)
6= a

x(t)
+

b

y(t)
= aH(x, t) + bH(y, t)

in general.
The property of linearity trivially generalises to more than two signals.

For example, if x1, . . . , xk are signals and a1, . . . , ak are complex numbers
for some finite k, then

H(a1x1 + · · ·+ akxk) = a1H(x1) + · · ·+ akH(xk).

A system H is time invariant if

H
(
Tτ (x), t

)
= H(x, t− τ)

for all signals x and all time-shifts τ ∈ R. That is, a system is time-invariant
if time shifting the input signal results in the same time-shift of the output
signal. Equivalently, H is time-invariant if it commutes with the time-shifter
Tτ , that is, if

H
(
Tτ (x)

)
= Tτ

(
H(x)

)
for all τ ∈ R and all signals x. Figure 1.9 represents the property of time-
invariance with a block diagram.
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x
H Tτ

Tτ
(
H(x)

)
x

Tτ H
H
(
Tτ (x)

)
Figure 1.9: If H is a time-invariant system the outputs of these two diagrams are
the same signal, i.e. H

(
Tτ (x)

)
= Tτ

(
H(x)

)
.

1.5 Exercises

1.1. State whether the step function u(t) is bounded, periodic, absolutely
integrable, an energy signal.

1.2. Show that the signal t2 is locally integrable, but that the signal 1
t2

is
not.

1.3. Plot the signal

x(t) =

{
1
t+1 t > 0

1
t−1 t ≤ 0.

State whether it is: bounded, locally integrable, absolutely integrable,
square integrable.

1.4. Plot the signal

x(t) =

{
1√
t

0 < t ≤ 1

0 otherwise.

Show that x is absolutely integrable, but not square integrable.

1.5. Compute the energy of the signal e−α
2t2 (Hint: use equation (1.1.4)

on page 3 and a change of variables).

1.6. Show that the integrator Ia for any a ∈ R is not stable.

1.7. Show that the differentiator system D is not stable.

1.8. Show that the time-shifter is linear and time-invariant and that the
time-scaler is linear, but not time invariant

1.9. Show that the integrator Ic with c finite is linear, but not time-
invariant.

1.10. Show that the integrator I∞ is linear and time invariant.

1.11. State whether the system H(x) = x+1 is linear, time-invariant, stable.

1.12. State whether the system H(x) = 0 is linear, time-invariant, stable.

1.13. State whether the system H(x) = 1 is linear, time-invariant, stable.

1.14. Let x be a signal with period T that is not equal to zero almost ev-
erywhere. Show that x is not absolutely integrable.
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Chapter 2

Systems modelled by
differential equations

Systems of particular interest in this text are those where the input signal x
and output signal y are related by a linear differential equation with constant
coefficients, that is, an equation of the form

m∑
`=0

a`
d`

dt`
x(t) =

k∑
`=0

b`
d`

dt`
y(t),

where a0, . . . , am and b0, . . . , bk are real or complex numbers. In what follows
we use the differentiator system D rather than the notation d

dt to represent

differentiation. To represent the `th derivative we write D` instead of d`

dt`
.

Using this notation the differential equation above is

m∑
`=0

a`D
`(x) =

k∑
`=0

b`D
`(y). (2.0.1)

Equations of this form can be used to model a large number of electrical,
mechanical and other real world devices. For example, consider the resis-
tor and capacitor (RC) circuit in Figure 2.1. Let the signal vR represent
the voltage over the resistor and i the current through both resistor and
capacitor. The voltage signals satisfy

x = y + vR,

and the current satisfies both

vR = Ri and i = CD(y).

Combining these equations,

x = y +RCD(y) (2.0.2)

13
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C

R

x(t) y(t)

Figure 2.1: An electrical circuit with resistor and capacitor in series, otherwise
known as an RC circuit.

mass M

K BB

p(t)f(t)

Figure 2.2: A mechanical mass-spring-damper system

that is in the form of (2.0.1).
As another example, consider the mass-spring-damper in Figure 2.2. A

force represented by the signal f is externally applied to the mass, and
the position of the mass is represented by the signal p. The spring exerts
force −Kp that is proportional to the position of the mass, and the damper
exerts force −BD(p) that is proportional to the velocity of the mass. The
cumulative force exerted on the mass is

fm = f −Kp−BD(p)

and by Newton’s law the acceleration of the mass D2(p) satisfies

MD2(p) = fm = f −Kp−BD(p).

We obtain the differential equation

f = Kp+BD(p) +MD2(p) (2.0.3)

that is in the form of (2.0.1) if we put x = f and y = p. Given p we can
readily solve for the corresponding force f . As a concrete example, let the
spring constant, damping constant and mass be K = B = M = 1. If the
position satisfies p(t) = e−t

2
, then the corresponding force satisfies

f(t) = e−t
2
(4t2 − 2t− 1).
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Figure 2.3: A solution to the mass-spring-damper system with K = B = M = 1.
The position is p(t) = e−t

2

with corresponding force f(t) = e−t
2

(4t2 − 2t− 1).

Figure 2.3 depicts these signals.
What happens if a particular force signal f is applied to the mass? For

example, say we apply the force

f(t) = Π(t− 1
2) =

{
1 0 < t ≤ 1

0 otherwise.

What is the corresponding position signal p? We are not yet ready to answer
this question, but will be later (Exercise 4.12).

In both the mechanical mass-spring-damper system in Figure 2.2 and
the electrical RC circuit in Figure 2.1 we obtain a differential equation re-
lating the input signal x with the output signal y. The equations do not
specify the output signal y explicitly in terms of the input signal x, that
is, they do not explicitly define a system H such y = H(x). As they are,
the differential equations do not provide as much information about the be-
haviour of the system as we would like. For example, is the system stable?
We will be able to obtain much more information about these systems when
the Laplace transform is introduced in Chapter 4. The remainder of this
chapter details the construction of differential equations that model vari-
ous mechanical, electrical, and electro-mechanical systems. We will use the
systems constructed here as examples throughout the course.

2.1 Passive electrical circuits

Passive electrical circuits require no sources of power other than the in-
put signal itself. For example, the voltage divider in Figure 1.3 and the RC
circuit in Figure 2.1 are passive circuits. Another common passive electri-
cal circuit is the resistor, capacitor and inductor (RLC) circuit depicted in
Figure 2.4. In this circuit we let the output signal y be the voltage over the
resistor. Let vC represent the voltage over the capacitor and vL the voltage
over the inductor and let i be the current. We have

y = Ri, i = CD(vC), vL = LD(i),



16 Signals and Systems

L

R

C

x(t) y(t)

Figure 2.4: An electrical circuit with resistor, capacitor and inductor in series,
otherwise known as an RLC circuit.

−

+v+

v−

v−−

v++

vo

v−

v+

Ri

+
− A(v+ − v−)

Ro
vo

Figure 2.5: Left: triangular component diagram of an operational amplifier. The
v++ and v−− connectors indicate where an external voltage source can be connected
to the amplifier. These connectors will usually be omitted. Right: model for an
operational amplifier including input resistance Ri, output resistance Ro, and open
loop gain A. The diamond shaped component is a dependent voltage source. This
model is usually only useful when the operational amplifier is in a negative feedback
circuit.

leading to the following relationships between y, vC and vL,

y = RCD(vC), RvL = LD(y).

Kirchhoff’s voltage law gives x = y + vC + vL and by differentiating both
sides

D(x) = D(y) +D(vC) +D(vL).

Substituting the equations relating y, vC and vL leads to

RCD(x) = y +RCD(y) + LCD2(y). (2.1.1)

We can similarly find equations relating the input voltage with vC and vL.

2.2 Active electrical circuits

Unlike passive electrical circuits, an active electrical circuit requires a
source of power external to the input signal. Active circuits can be modelled
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and constructed using operational amplifiers as depicted in Figure 2.5.
The left hand side of Figure 2.5 shows a triangular circuit diagram for an
operational amplifier, and the right hand side of Figure 2.5 shows a circuit
that can be used to model the behaviour of the amplifier. The v++ and v−−
connectors indicate where an external voltage source can be connected to the
amplifier. These connectors will usually be omitted. The diamond shaped
component is a dependent voltage source with voltage A(v+ − v−) that
depends on the difference between the voltage at the non-inverting input
v+ and the voltage at the inverting input v−. The dimensionless constant
A is called the open loop gain. Most operational amplifiers have large open
loop gain A, large input resistance Ri and small output resistance Ro.
As we will see, it can be convenient to consider the behaviour as A → ∞,
Ri →∞ and R0 → 0, resulting in an ideal operational amplifier.

As an example, an operational amplifier configured as a multiplier is
depicted in Figure 2.6. This circuit is an example of an operational amplifier
configured with negative feedback, meaning that the output of the ampli-
fier is connected (in this case by a resistor) to the inverting input v−. The
horizontal wire at the bottom of the plot is considered to be ground (zero
volts) and is connected to the negative terminal of the dependent voltage
source of the operational amplifier depicted in Figure 2.5. An equivalent cir-
cuit for the multiplier using the model in Figure 2.5 is shown in Figure 2.7.
Solving this circuit (Exercise 2.1) yields the following relationship between
the input voltage signal x and the output voltage signal y,

y =
Ri(Ro −AR2)

Ri(R2 +Ro) +R1(R2 +Ri +ARi +Ro)
x. (2.2.1)

For an ideal operational amplifier we let A→∞, Ri →∞ and Ro → 0. In
this case terms involving the product ARi dominate and we are left with
the simpler equation

y = −R2

R1
x. (2.2.2)

Thus, assuming an ideal operational amplifier, the circuit acts as a multiplier
with constant −R2

R1
.

The equation relating x and y is much simpler for the ideal operational
amplifier. Fortunately this equation can be obtained directly using the fol-
lowing two rules:

1. the voltage at the inverting and non-inverting inputs are equal,

2. no current flows through the inverting and non-inverting inputs.

These rules are only useful for analysing circuits with negative feedback. Let
us now rederive (2.2.2) using these rules. Because the non-inverting input
is connected to ground, the voltage at the inverting input is zero. So, the
voltage over resistor R2 is y = R2i. Because no current flows through the
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inverting input the current through R1 is also i and x = −R1i. Combining
these results, the input voltage x and the output voltage y are related by

y = −R2

R1
x.

In Test 2 the inverting amplifier circuit is constructed and the relationship
above is tested using a computer soundcard.

We now consider another circuit consisting of an operational amplifier,
two resistors and two capacitors depicted in Figure 2.8. Assuming an ideal
operational amplifier, the voltage at the inverting terminal is zero because
the non-inverting terminal is connected to ground. Thus, the voltage over
capacitor C2 and resistor R2 is equal to y and, by Kirchoff’s current law,

i =
y

R2
+ C2D(y).

Similarly, since no current flows through the inverting terminal,

i = − x

R1
− C1D(x).

Combining these equations yields

− x

R1
− C1D(x) =

y

R2
+ C2D(y). (2.2.3)

Observe the similarity between this equation and that for the passive RC
circuit (2.0.2) when R1 = R2 and C1 = 0 (an open circuit). In this case

x = −y −R1C2D(y). (2.2.4)

We call this the active RC circuit. This circuit is tested in Test 3.
Consider the circuit in Figure 2.9. Assuming an ideal operational am-

plifier, the input voltage x satisfies

−i =
x

R1
+ C1D(x).

The voltage over the capacitor C2 is y −R2i and so the current satisfies

i = C2D(y −R2i).

Combining these equations gives

− x

R1
− C1D(x) = C2D(y) +

R2C2

R1
D(x) +R2C2C1D

2(x),

and after rearranging,

D(y) = − 1

R1C2
x−

(
R2

R1
+
C1

C2

)
D(x)−R2C1D

2(x).
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+

R2

i(t)
R1

x(t)
y(t)

Figure 2.6: Inverting amplifier

R1 R2

Ri

Ro

+
−Avi

y(t)x(t)

v−

v+

Figure 2.7: An equivalent circuit for the inverting amplifier from Figure 2.6 using
the model for an operational amplifier in Figure 2.5. The symbol vi = v+ − v− is
the voltage over resistor Ri.
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R1
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y(t)

C2

C1

Figure 2.8: Operational amplifier configured with two capacitors and two resistors.
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Test 2 (Inverting amplifier) In this test we construct the inverting ampli-
fier circuit from Figure 2.6 with R2 ≈ 22kΩ and R1 ≈ 12kΩ that are accurate
to within 5% of these values. The operational amplifier used is the Texas
Instruments LM358P. Using a computer soundcard (an approximation of)
the voltage signal

x(t) = 1
3 sin(2πf1t) + 1

3 sin(2πf2t)

with f1 = 100 and f2 = 233 is passed through the circuit. As in previous
tests, the soundcard is used to sample the input signal x and the output
signal y. Approximate reconstructions of the input signal x̃ and output
signal ỹ are given according to (1.2.4) and (1.2.2). According to (2.1.1) we
expect the approximate relationship

ỹ ≈ −R2

R1
x̃ = −11

6
x̃.

Each of ỹ, x̃ and −11
6 x̃ are plotted in Figure 2.9.
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ỹ

− 11
6
x̃

Figure 2.9: Plot of reconstructed input signal x̃ (solid line), output signal ỹ (solid
line with circle) and hypothesised output signal − 11

6 x̃ (solid line with dot).
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Test 3 (Active RC circuit) In this test we construct the circuit from Fig-
ure 2.8 with R1 ≈ R2 ≈ 27kΩ and C2 ≈ 10nF accurate to within 5% of these
values and C1 = 0 (an open circuit). The operational amplifier used is a
Texas Instruments LM358P. Using a computer soundcard (an approximation
of) the voltage signal

x(t) = 1
3 sin(2πf1t) + 1

3 sin(2πf2t)

with f1 = 500 and f2 = 1333 is passed through the circuit. As in previous
tests, the soundcard is used to sample the input signal x and the output sig-
nal y and approximate reconstructions x̃ and ỹ are given according to (1.2.4)
and (1.2.2). According to (2.2.4) we expect the approximate relationship

x̃ ≈ −R1

R2
ỹ −R1CD(ỹ) = −ỹ − 27

105
D(ỹ).

The derivative of the sinc function is

D(sinc, t) =
1

πt2
(
πt cos(πt)− sin(πt)

)
, (2.2.5)

and so,

D(ỹ, t) =
d

dt

(
L∑
`=1

y` sinc(Ft− `)
)

= F
L∑
`=1

y`D(sinc, F t− `). (2.2.6)

Each of ỹ, x̃ and −ỹ − 27
105
D(ỹ) are plotted in Figure 2.9.
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−ỹ − 27
105

D(ỹ)

Figure 2.9: Plot of reconstructed input signal x̃ (solid line with circle), output signal
ỹ (solid line), and hypothesised input signal −ỹ − 27

105D(ỹ) (solid line with dot).
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Put

Ki =
1

R1C2
, Kp =

R2

R1
+
C1

C2
, Kd = R2C1

and now
D(y) = −Kix−KpD(x)−KdD

2(x). (2.2.7)

This equation models what is called a proportional-integral-derivative
controller or PID controller. The coefficients Ki,Kp and Kd are called
the integral gain, proportional gain, and derivative gain.

The final active circuit we consider is called a Sallen-Key [Sallen and
Key, 1955] and is depicted in Figure 2.10. Observe that the output of the
amplifier is connected directly to the inverting input and is also connected
to the noninverting input by a capacitor and resistor. This circuit has both
negative and positive feedback. It is not immediately apparent that we
can use the simplifying assumptions for an ideal operational amplifier with
negative feedback. However, we will do so, and will find that it works in
this case.

Let vR1, vR2, vC1, and vC2 be the voltages over the components R1, R2,
C1, and C2. Kirchoff’s voltage law leads to the equations

x = vR1 + vR2 + vC2, y = vC1 + vR2 + vC2.

The voltage at the inverting and noninverting terminals is y and so the
voltage over the capacitor C2 is y, that is, y = vC2. Using this, the equations
above simplify to

x = vR1 + vR2 + y, vC1 = −vR2.

The current i2 through capacitor C2 satisfies i2 = C2D(vC2) = C2D(y).
Because no current flows into the inverting terminal of the amplifier the
current through R2 is also i2 and so vR2 = R2i2 = R2C2D(y). Substituting
this into the equations above gives

x = vR1 +R2C2D(y) + y, vC1 = −R2C2D(y). (2.2.8)

Kirchoff’s current law asserts that i+ i1 = i2. The current i through capac-
itor C1 satisfies i = C1D(vC1) = −R2C1C2D

2(y) and the current through
resistor R1 satisfies

vR1 = R1i1 = R1(i2 − i) = R1C2D(y) +R1R2C1C2D
2(y).

Substituting this into the equation on the left of (2.2.8) gives

x = y + C2(R1 +R2)D(y) +R1R2C1C2D
2(y). (2.2.9)

The Sallen-Key will be useful when we consider the design of analogue elec-
trical filters in Section 5.2.
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Figure 2.9: Operational amplifier implementing a proportional-integral-
derivative controller.
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Figure 2.10: Operational amplifier implementing a Sallen-Key.
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Figure 2.11: Two masses, a spring and a damper
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2.3 Masses, springs, and dampers

A mechanical mass-spring-damper system was described in Section 2 and
Figure 2.2. We now consider another mechanical system involving a different
configuration of masses, a spring and a damper depicted in Figure 2.11. A
mass M1 is connected to a wall by a damper with constant B, and to another
mass M2 by a spring with constant K. A force represented by the signal f
is applied to the first mass. We will derive a differential equation relating f
with the position p of the second mass. Assume that the spring applies no
force (is in equilibrium) when the masses are distance d apart. The forces
due to the spring satisfy

fs1 = −fs2 = K(p− p1 − d)

where fs1 and fs2 are signals representing the force due to the spring on mass
M1 and M2 respectively. It is convenient to define the signal g(t) = p1(t)+d
so that forces due to spring satisfy the simpler equation

fs1 = −fs2 = K(p− g).

The only force applied to M2 is by the spring and so, by Newton’s law, the
acceleration of M2 satisfies

M2D
2(p) = fs2.

Substituting this into the previous equation gives a differential equation
relating g and p,

Kg = Kp+M2D
2(p). (2.3.1)

The force applied by the damper on mass M1 is given by the signal

fd = −BD(p1) = −BD(g)

where the replacement of p1 by g is justified because differentiation will
remove the constant d. The cumulative force on M1 is given by the signal

f1 = f + fd + fs1

= f −Kg +Kp−BD(g), (2.3.2)

and by Newton’s law the acceleration of M1 satisfies

M1D
2(p1) = M1D

2(g) = f1.

Substituting this into (2.3.2) and using (2.3.1) we obtain a fourth order
differential equation relating p and f ,

f = BD(p) + (M1 +M2)D2(p) +
BM2

K
D3(p) +

M1M2

K
D4(p). (2.3.3)



2.4 Direct current motors 25

Figure 2.12: Solution of the system describing two masses with a spring and damper
where B = K = 1 and M1 = M2 = 1

2 and the position of the second mass is

p(t) = e−t
2

.

Given the position of the second mass p we can readily solve for the
corresponding force f and position of the first mass p. For example, if the
constants B = K = 1 and M1 = M2 = 1

2 and d = 5
2 , and if the position of

the second mass satisfies
p(t) = e−t

2

then, by application of (2.3.3) and (2.3.1),

f(t) = e−t
2
(1 + 4t− 8t2 − 4t3 + 4t4), and p1(t) = 2e−t

2
t2 − 5

2 .

This solution is plotted in Figure 2.12.

2.4 Direct current motors

Direct current (DC) motors convert electrical energy, in the form of a volt-
age, into rotary kinetic energy [Nise, 2007, page 76]. We derive a differential
equation relating the input voltage v to the angular position of the motor
θ. Figure 2.13 depicts the components of a DC motor.

The voltages over the resistor and inductor satisfy

vR = Ri, vL = LD(i),

and the motion of the motor induces a voltage called the back electromo-
tive force (EMF),

vb = KbD(θ)
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that we model as being proportional to the angular velocity of the motor.
The input voltage now satisfies

v = vR + vL + vb = Ri+ LD(i) +KbD(θ).

The torque τ applied by the motor is modelled as being proportional to the
current i,

τ = Kτ i.

A load with inertia J is attached to the motor. Two forces are assumed to act
on the load, the torque τ applied by the current, and a torque τd = −BD(θ)
modelling a damper that acts proportionally against the angular velocity of
the motor. By Newton’s law, the angular acceleration of the load satisfies

JD2(θ) = τ + τd = Kτ i−BD(θ).

Combining these equations we obtain the 3rd order differential equation

v =

(
RB

Kτ
+Kb

)
D(θ) +

RJ + LB

Kτ
D2(θ) +

LJ

Kτ
D3(θ)

relating voltage and motor position. In many DC motors the inductance L
is small and can be ignored, leaving the simpler second order equation

v =

(
RB

Kτ
+Kb

)
D(θ) +

RJ

Kτ
D2(θ). (2.4.1)

Given the position signal θ we can find the corresponding voltage signal
v. For example, put the constants Kb = Kτ = B = R = J = 1 and assume
that

θ(t) = 2π(1 + erf(t))

where erf(t) = 2
π

∫ t
−∞ e

−τ2dτ is the error function. The corresponding
angular velocity D(θ) and voltage v satisfy

D(θ, t) = 4
√
πe−t

2
, v(t) = 8

√
πe−t

2
(1− t).

These signals are depicted in Figure 2.14. This voltage signal is sufficient to
make the motor perform two revolutions and then come to rest.

2.5 Exercises

2.1. Analyse the inverting amplifier circuit in Figure 2.7 to obtain the rela-
tionship between input voltage x and output voltage y given by (2.2.1).
You may wish to use a symbolic programming language (for example
Sage, Mathematica, or Maple).



2.5 Exercises 27

L

R
i

v motor Jvb

θ τ τd

Figure 2.13: Diagram for a rotary direct current (DC) motor

Figure 2.14: Voltage and corresponding angle for a DC motor with constants Kb =
Kτ = B = R = J = 1.
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Chapter 3

Linear time invariant
systems

In the previous section we derived differential equations that model mechan-
ical, electrical, and electro-mechanical systems. The equations themselves
often do not provide as much information about these system as we require.
For example, we were able to find a signal p representing the position of the
mass-spring-damper in Figure 2.2 given a particular force signal f is applied
to the mass. However, it is not immediately obvious how to find the force
signal f given a particular position signal p. We will be able to solve this
problem and, more generally, to describe properties of systems modelled by
linear differential equations with constant coefficient, if we make the added
assumptions that the systems are linear and time invariant. We study
linear time invariant systems in this chapter. Throughout this chapter H
will denote a linear time invariant system.

3.1 Convolution, regular systems and the delta “function”

A large number of linear time invariant systems can be represented by a
signal called the impulse response. The impulse response of a system H
is a signal h such that

H(x, t) =

∫ ∞
−∞

h(τ)x(t− τ)dτ,

that is, the response of H to input signal x can be represented as an integral
equation involving x and the impulse response h. The integral is called a
convolution and appears so often that a special notation is used for it. We
write h ∗ x to indicate the signal that results from convolution of signals h
and x, that is, h ∗ x is the signal satisfying

h ∗ x =

∫ ∞
−∞

h(τ)x(t− τ)dτ.

29
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Those systems that have an impulse response we call regular systems1.
Observe that regular systems are linear because

H(ax+ by) = h ∗ (ax+ by)

=

∫ ∞
−∞

h(τ)
(
ax(t− τ) + by(t− τ)

)
dτ

= a

∫ ∞
−∞

h(τ)x(t− τ)dτ + b

∫ ∞
−∞

h(τ)y(t− τ)dτ

= a(h ∗ x) + b(h ∗ y)

= aH(x) + bH(y).

(3.1.1)

The above equations show that convolution commutes with scalar multipli-
cation and distributes with addition, that is,

h ∗ (ax+ by) = a(h ∗ x) + b(h ∗ y).

Regular systems are also time invariant because

Tκ
(
H(x)

)
= Tκ(h ∗ x)

=

∫ ∞
−∞

h(τ)x(t− κ− τ)dτ

=

∫ ∞
−∞

h(τ)Tκ(x, t− τ)dτ

= h ∗ Tκ(x)

= H
(
Tκ(x)

)
.

We can define the impulse response of a regular system H in the following
way. First define the signal

pγ(t) =

{
γ, 0 < t ≤ 1

γ

0, otherwise,

that is, a rectangular shaped pulse of height γ and width 1
γ . The signal

pγ is plotted in Figure 3.1 for γ = 1
2 , 1, 2, 5. As γ increases the pulse gets

thinner and higher so as to keep the area under pγ equal to one. Consider
the response of the regular system H to the signal pγ ,

H(pγ) = h ∗ pγ

=

∫ ∞
−∞

h(τ)pγ(t− τ)dτ

= γ

∫ t

t−1/γ
h(τ)dτ.

1The name regular system is motivated by the term regular distribution [Zema-
nian, 1965]
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Taking limits as γ →∞,

lim
γ→∞

H(pγ) = lim
γ→∞

γ

∫ t

t−1/γ
h(τ)dτ = h(t) a.e.

Thus, we define the impulse response of a regular system H as the limit

h = lim
γ→∞

H(pγ). (3.1.2)

The limit exists when H is regular. If this limit does not exist, the system
is not regular and does not have an impulse response.

As an example, consider the integrator system

I∞(x) =

∫ t

−∞
x(τ)dτ (3.1.3)

described in Section 1.3. This systems response to pγ is

I∞(pγ , t) =

∫ t

−∞
pγ(τ)dτ =


0, t ≤ 0

γt, 0 < t ≤ 1
γ

1, t > 1
γ

The response is plotted in Figure 3.1. Taking the limit as γ → ∞ we find
that the impulse response of the integrator is the step function

u(t) = lim
γ→∞

H(pγ) =

{
0 t ≤ 0

1 t > 0.
a.e. (3.1.4)

Some important systems do not have an impulse response. For example,
the identity system T0 does not because

lim
γ→∞

T0(pγ) = lim
γ→∞

pγ

does not exist. Similarly, all the time shifters Tτ do not have impulse re-
sponses. However, it can be notationally useful to pretend that T0 does
have an impulse response and we denote it by the symbol δ called the delta
function. The idea is to assign δ the property∫ ∞

−∞
x(t)δ(t)dt = x(0)

so that convolution of x and δ satisfies

δ ∗ x =

∫ ∞
−∞

δ(τ)x(t− τ)dτ = x(t) = T0(x).
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Figure 3.1: The rectangular shaped pulse pγ for γ = 0.5, 1, 2, 5 and the response of
the integrator (3.1.3) to pγ for γ = 0.5, 1, 2, 5,∞.

We now treat δ as if it were a signal. So δ(t− τ) will represent the impulse
response of the time shifter Tτ because

Tτ (x) = δ(t− τ) ∗ x

=

∫ ∞
−∞

δ(κ− τ)x(t− κ)dκ

=

∫ ∞
−∞

δ(k)x(t− τ − k)dk (change variable k = κ− τ)

= x(t− τ).

For a ∈ R it is common to plot aδ(t− τ) using an arrow of height a at t = τ
as indicated in Figure 3.2. It is important to realise that δ is not actually
a signal. It is not a function. However, it can be convenient to treat δ
as if it were a function. The manipulations in the last set of equations,
such as the change of variables, are not formally justified, but they do lead
to the desired result Tτ (x) = x(t − τ) in this case. In general, there is no
guarantee that mechanical mathematical manipulations involving δ will lead
to sensible results.

The only other non regular systems that we have use of are differentiators
Dk, and it is convenient to define a similar notation for pretending that these
systems have an impulse response. In this case we use the symbol δk and
assign it the property

∫ ∞
−∞

x(t)δk(t)dt = Dk(x, 0),
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t

δ(t+ 2) + 2δ(t)− δ(t− 1)

1

−1 2

t

2 sin(πt) + δ(t− 3
2)

2

1
2

Figure 3.2: Plot of the “signal” δ(t + 2) + 2δ(t) − δ(t − 1) (left) and the “signal”
2 sin(πt) + δ(t− 3

2 ) (right).

so that convolution of x and δ is

δk ∗ x =

∫ ∞
−∞

δk(τ)x(t− τ)dτ = Dk(x, t).

As with the delta function the symbol δk must be treated with care. This
notation can be useful, but purely formal manipulations with δk may not
lead to sensible results in general.

The impulse response h immediately yields some properties of the corre-
sponding system H. For example, if h(t) = 0 for all t < 0, then H is causal
because

H(x) = h ∗ x =

∫ ∞
−∞

h(τ)x(t− τ)dτ =

∫ ∞
0

h(τ)x(t− τ)dτ

only depends on values of the input signal x at times less than or equal to
t, i.e., only times t− τ with τ > 0. The system H is stable if and only if h
is absolutely integrable (Exercise 3.3).

Another important signal is the step response of a system that is de-
fined as the response of the system to the step function u(t). For example,
the step response of the time shifter Tτ is the time shifted step function
Tτ (u, t) = u(t− τ). The step response of the integrator I∞ is

I∞(u) =

∫ t

−∞
u(τ)dτ =

{∫ t
0 dτ = t t > 0

0 t ≤ 0.

This signal is often called the ramp function. Not all systems have a step
response. For example, the system with impulse response u(−t) does not
because the convolution of the step u(t) and its reflection u(−t) does not
exist. If a system H has both an impulse response h and a step response
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H(u), then these two signals are related. To see this, observe that the step
response is

H(u) = h ∗ u =

∫ ∞
−∞

h(τ)u(t− τ)dτ =

∫ t

−∞
h(τ)dτ = I∞(h). (3.1.5)

Thus, the step response can be obtained by applying the integrator I∞ to
the impulse response.

3.2 Properties of convolution

The convolution x ∗ y of two signals x and y does not always exist. For
example, if x(t) = u(t) and y(t) = 1, then

x ∗ y =

∫ ∞
−∞

x(τ)y(t− τ)dτ =

∫ ∞
−∞

u(τ)dτ =

∫ ∞
0

dτ

is not finite for any t. We cannot convolve the step function u and the signal
that is equal to 1 for all time. On the other hand, if x(t) = y(t) = u(t), then

x ∗ y =

∫ ∞
−∞

u(τ)u(t− τ)dτ =

{∫ t
0 dτ = τ t > 0

0 t ≤ 0,

if finite for all t.
We have already shown in (3.1.1) that convolution commutes with scalar

multiplication and is distributive with addition, that is, for signals x, y, w
and complex numbers a, b,

a(x ∗ w) + b(y ∗ w) = (ax+ by) ∗ w.
Convolution is commutative, that is, x ∗ y = y ∗ x whenever these con-

volutions exist. To see this, write

x ∗ y =

∫ ∞
−∞

x(τ)y(t− τ)dτ

=

∫ ∞
−∞

x(t− κ)y(κ)dκ (change variable κ = t− τ)

= y ∗ x.
Convolution is also associative, that is, for signals x, y, z,

(x ∗ y) ∗ z = x ∗ (y ∗ z). (see Exercise 3.2)

By combining the associative and commutative properties we find that the
order in which the convolutions in x ∗ y ∗ z are performed does not mater,
that is

x ∗ y ∗ z = y ∗ z ∗ x = z ∗ x ∗ y = y ∗ x ∗ z = x ∗ z ∗ y = z ∗ y ∗ x
provided that all the convolutions involved exist. More generally, the order
in which any sequence of convolutions is performed does not change the final
result.
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3.3 Linear combining and composition

Let H1 and H2 be linear time invariant systems and let H be the system

H(x) = cH1(x) + dH2(x), c, d ∈ C

formed by a linear combination of H1 and H2. The system H is linear
because for signals x, y and complex numbers a, b,

H(ax+ by) = cH1(ax+ by) + dH2(ax+ by)

= acH1(x) + bcH1(y) + adH2(x) + bdH2(y) (linearity H1, H2)

= a
(
cH1(x) + dH2(x)

)
+ b
(
cH1(y) + dH2(y)

)
= aH(x) + bH(y).

The system is also time invariant because

H
(
Tτ (x)

)
= cH1

(
Tτ (x)

)
+ dH2

(
Tτ (x)

)
= cTτ

(
H1(x)

)
+ dTτ

(
H2(x)

)
(time-invariance H1, H2)

= Tτ
(
cH1(x) + dH2(x)

)
(linearity Tτ )

= Tτ
(
H(x)

)
.

So, we can construct linear time invariant systems by linearly combining
(adding and multiplying by constants) other linear time invariant systems.
If H1 and H2 are regular systems this linear combining property can be
expressed using their impulse responses h1 and h2. We have

H(x) = aH1(x) + bH2(x)

= ah1 ∗ x+ bh2 ∗ x
= (ah1 + bh2) ∗ x (distributivity of convolution)

= h ∗ x,
and so, H is a regular system with impulse response h = ah1 + bh2.

Another way to construct linear time invariant systems is by composi-
tion. Let H1 and H2 be linear time invariant systems and let

H(x) = H2

(
H1(x)

)
,

that is, H first applies the system H1 and then applies the system H2. The
composition H2

(
H1(x)

)
only applies to those signals x in the domain of H1

and such that the signal H1(x) is in the domain of H2. The system H is
linear because, for signals x, y and complex numbers a, b,

H(ax+ by) = H2

(
H1(ax+ by)

)
= H2

(
aH1(x) + bH1(y)

)
(linearity H1)

= aH2

(
H1(x)) + bH2

(
H1(y))

)
(linearity H2)

= aH(x) + bH(y).
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H(x) = cH1(x) + dH2(x)

cH1

dH2

x

H

Figure 3.3: Block diagram depicting the linear combining property of linear time
invariant systems. The system cH1(x) + dH2(x) can be expressed as a single linear
time invariant system H(x).

x H1 H2 H(x) = H2(H1(x))

H

Figure 3.4: Block diagram depicting the composition property of linear time in-
variant systems. The system H2(H1(x)) can be expressed as a single linear time
invariant system H(x).

The system is also time invariant because

H
(
Tτ (x)

)
= H2

(
H1(Tτ (x)

)
= H2

(
Tτ
(
H1(x)

))
(time-invariance H1)

= Tτ
(
H2

(
H1(x)

))
(time-invariance H2)

= Tτ
(
H(x)

)
.

If H1 and H2 are regular systems the composition property can be expressed
using their impulse responses h1 and h2. It follows that

H(x) = H2(H1(x))

= h2 ∗ (h1 ∗ x)

= (h2 ∗ h1) ∗ x (associativity of convolution)

= h ∗ x,
and so, H is a regular system with impulse response h = h2 ∗ h1.

A wide variety of linear time invariant systems can now be constructed
by linearly combining and composing simpler systems.

3.4 Eigenfunctions and the transfer function

Let s = σ + jω ∈ C. Complex exponential signals of the form

est = eσtejωt = eσt
(

cos(ωt) + j sin(ωt)
)
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Figure 3.5: The function cos(πt)eσt (top) and sin(πt)eσt (bottom) for σ =
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play an important role in the study of linear time invariant systems. The real
and imaginary parts of the signal e(σ+jπ)t with σ = − 1

10 , 0,
1
10 are plotted in

Figure 3.5. The signal is oscillatory when ω 6= 0. The signal converges to
zero as t→∞ when σ < 0 and diverges as t→∞ when σ > 0.

Let H be a linear time invariant system and let y = H(est) be the
response of H to the exponential signal est. Consider the response of H to
the time-shifted signal es(t+τ) for τ ∈ R. By time-invariance

H(es(t+τ), t) = H(est, t+ τ) = y(t+ τ) for all t, τ ∈ R,

and by linearity

H(es(t+τ), t) = esτH(est, t) = esτy(t) for all t, τ ∈ R.

Combining these equations we obtain

y(t+ τ) = esτy(t) for all t, τ ∈ R.

This equation is satisfied by signals of the form y(t) = λest where λ is a
complex number. That is, the response of a linear time invariant system
H to an exponential signal est is the same signal est multiplied by some
constant complex number λ. Due to this property exponential signals are
called eigenfunctions of linear time invariant systems. The constant λ does
not depend on t, but it does usually depend on the complex number s and
the system H. To highlight this dependence on H and s we write λ(H)(s)
or λ(H, s). Considered as a function of s, λ(H, s) is called the transfer
function of the system H. Thus, the transfer function satisfies

H(est) = λ(H, s)esτ . (3.4.1)

We can use these eigenfunctions to better understand the properties of
systems modelled by differential equations, such as those in Section 2. As an
example, consider the active electrical circuit from Figure 2.8. In the case
that the resistors R1 = R2, and the capacitor C1 = 0 (an open circuit) the
differential equation relating the input voltage x and output voltage y is

x = −y −R1C2D(y).

We called this the active RC circuit. To simplify notation put R = R1 and
C = C2 so that x = −y − RCD(y). Observe what occurs when y = cest is
a complex exponential signal with c ∈ C. We have

x = −cest − cRCsest = −(1 +RCs)cest = −(1 +RCs)y,

and so, x is also a complex exponential signal. We immediately obtain the
relationship

y = − 1

1 +RCs
x,
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that holds whenever y (or equivalently x) is of the form cest with c ∈ C. Let
H be a system that maps the input voltage x to the output voltage y, i.e.,
H is a system that describes the active RC circuit. Putting x = est in the
equation above, we find that

y = H(x) = H(est) = − 1

1 +RCs
est,

and so, the transfer function of the system H describing the active RC circuit
is

λ(H, s) = − 1

1 +RCs
. (3.4.2)

3.5 The spectrum

It is often of interest to focus on the transfer function when s is purely
imaginary, that is, when s = jω. In this case the complex exponential signal
takes the form

ejωt = cos(ωt) + j sin(ωt).

This signal is oscillatory when ω 6= 0 and does not decay or explode as
|t| → ∞. The function

Λ(H, f) = λ
(
H, j2πf

)
is called the spectrum of the system H. It follows from (3.4.1) that the
response of the system to the complex exponential signal ej2πft satisfies

H(ej2πft) = λ(H, j2πf)ej2πft = Λ(H, f)ej2πft, f ∈ R.

It is of interest to consider the magnitude spectrum |Λ(H)| and the phase
spectrum ∠Λ(H) separately. The notation ∠ denotes the argument (or
phase) of a complex number. We have,

Λ(H, f) = |Λ(H, f)| ej∠Λ(H,f)

and correspondingly

H(ej2πft) = |Λ(H, f)| ej(2πft+∠Λ(H,f)).

By taking real and imaginary parts we obtain the pair of real valued solutions

H
(

cos(2πft)
)

= |Λ(H, f)| cos
(
2πft+ ∠Λ(H, f)

)
,

H
(

sin(2πft)
)

= |Λ(H, f)| sin
(
2πft+ ∠Λ(H, f)

)
. (3.5.1)
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Figure 3.6: Magnitude spectrum (top) and phase spectrum (bottom) of the active
RC circuit with R = 27× 103 and C = 10× 10−9.

Consider again the active RC circuit with H the system mapping the input
voltage x to the output voltage y. According to (3.4.2) the spectrum of H
is

Λ(H, f) = − 1

1 + 2πRCfj
. (3.5.2)

The magnitude and phase spectrum is

|Λ(H, f)| =
(
1 + 4π2R2C2f2

)−1
2 , ∠Λ(H, f) = π − atan(2πRCf

)
.

The magnitude and phase spectrum are plotted in Figure 3.6 when R = 27×
103 and C = 10× 10−9. Observe from the plot of the magnitude spectrum
that a low frequency sinusoidal signal, say 100Hz or less, input to the active
RC circuit results in a sinusoidal output signal with the same frequency and
approximately the same amplitude. However, a high frequency sinusoidal
signal, say greater than 1000Hz, input to the circuit results in a sinusoidal
output signal with the same frequency, but smaller amplitude. For this
reason RC circuits are called low pass filters.

Test 4 (Spectrum of the active RC circuit) We test the hypothesis
that the active RC circuit satisfies (3.5.1). To do this sinusoidal signals at
varying frequencies of the form

xk(t) = sin(2πfkt), fk =
⌈
110× 2k/2

⌋
, k = 0, 1, . . . , 12
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are input to the active RC circuit constructed as in Test 3 with R = R1 =
27kΩ and C = C2 = 10nF. The notation d·c denotes rounding to the nearest
integer with half integers rounded up. In view of (3.5.1) the expected output
signals are of the form

yk(t) = |Λ(H, fk)| sin
(
2πfkt+ ∠Λ(H, fk)

)
, k = 0, 1, . . . , 12.

This equality can also be shown directly using the differential equation for
the active RC circuit.

Using the soundcard each signal xk is played for a period of approxi-
mately 1 second and approximately F = 44100 samples are obtained. On
the soundcard hardware used for this test samples near the beginning and
end of playback are distorted. This appears to be an unavoidable feature
of the soundcard. To alleviate this we discard the first 104 samples and use
only the L = 8820 samples that follow (corresponding to 200ms of signal).
After this process we have samples xk,1, . . . , xk,L and yk,1, . . . , yk,L of the
input and output signals corresponding with the kth signal xk. The samples
are expected to take the form

xk,` ≈ xk(P`− τ) = ρ sin(2πfkP`− θ)
and

yk,` ≈ yk(`P − τ) = |Λ(H, fk)| ρ sin
(
2πfkP`− θ + ∠Λ(H, fk)

)
where P = 1

F is the sample period, the positive real number ρ corresponds
with the gain on the input and output of the soundcard, and θ = 2πfkτ
corresponds with delays caused by discarding the first 104 samples and also
unavoidable delays that occur when starting soundcard playback and record-
ing.

We will not measure the gain ρ nor the delay θ, but will be able to
test the properties of the circuit without knowledge of these. To simplify
notation put γ = 2πfkP . From the samples of the input signal xk,1, . . . , xk,L
compute the complex number

A =
2j

L

L∑
`=1

xk,`e
−jγ`

≈ 2j

L

L∑
`=1

ρ sin(γ`− θ)e−jγ`

= α+ α∗C

where α = ρe−jθ and α∗ denotes the complex conjugate of α and

C = e−γ(L+1) sin(γL)

L sin(γ)
(Excersize 3.6).
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Similarly, from the samples of the output signal yk,1, . . . , yk,L we compute
the complex number

B =
2j

L

L∑
`=1

yk,`e
−jγ` ≈ β + β∗C

where β = ρe−jθΛ(H, fk) = αΛ(H, fk). Now compute the quotient

Qk =
B −B∗C
A−A∗C ≈

β(1 + |C|2)

α(1 + |C|2)
=
β

α
= Λ(H, fk).

Thus, we expect the quotient Qk to be close to the spectrum of the active RC
circuit evaluated at frequency fk. We will test this hypothesis by observing
the magnitude and phase of Qk individually, that is, we will test the expected
relationships

|Qk| ≈ |Λ(H, fk)| =
√

1

1 + 4π2R2C2f2
k

and
∠Qk ≈ ∠Λ(H, fk) = π − atan(2πRCfk

)
for each k = 0, . . . , 12. Figure 3.7 plots the hypothesised magnitude and
phase spectrum alongside the measurements Qk for k = 0, . . . , 12.

3.6 Exercises

3.1. Show that convolution distributes with addition and commutes with
scalar multiplication, that is, show that a(x∗w)+b(y∗w) = (ax+by)∗w.

3.2. Show that convolution is associative. That is, if x, y, z are signals then
x ∗ (y ∗ z) = (x ∗ y) ∗ z.

3.3. Show that a regular system is stable if and only if its impulse response
is absolutely integrable.

3.4. Show that the system H(x) =
∫ 1
−1 sin(πτ)x(t + τ)dτ is linear time

invariant and regular. Find and sketch the impulse response and the
step response.

3.5. Show that
∑L

`=1 e
β` = eβ(L+1)−eβ

eβ−1
(Hint: sum a geometric progression).

3.6. Show that

2j

L

L∑
`=1

sin(γ`− θ)e−jγ` = α+ α∗C
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Figure 3.7: Hypothesised magnitude spectrum |Λ(H, f)| (top) and phase spectrum
∠Λ(H, f) (bottom) and the measured magnitude and phase spectrum |Qk| and
∠Qk for k = 0, . . . , 12 (dots).
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where α = e−jθ and C = e−jγ(L+1) sin(γL)
L sin(γ) . (Hint: solve Exercise 3.5

first and then use the formula 2j sin(x) = ejx − e−jx).



Chapter 4

The Laplace transform

Let x : R→ C be a complex valued function of the real line (a signal). The
function

L(x) =

∫ ∞
−∞

x(t)e−stdt (4.0.1)

is called the Laplace transform of x. The Laplace transform is a function
of the complex parameter s and if we need to indicate this we write L(x)(s)
or L(x, s). The Laplace transform L(x) is not necessarily defined for all
values of s ∈ C. Let R be the set of real numbers such that x(t)e−σt is
absolutely integrable if and only if σ ∈ R, that is∫ ∞

−∞
|x(t)| e−σtdt <∞ if and only if σ ∈ R.

In this case, L(x, s) is finite for all s with real part satisfying Re(s) ∈ R
because

|L(x, s)| =
∣∣∣∣∫ ∞
−∞

x(t)e−stdt

∣∣∣∣ ≤ ∫ ∞
−∞
|x(t)| e−Re(s)tdt <∞.

The subset of the complex plane with real part from R is called the region
of convergence (ROC) of the signal x.

For example, the Laplace transform of the right sided signal eαtu(t) is

L(eαtu(t)) =

∫ ∞
−∞

eαte−stu(t)dt

=

∫ ∞
0

e(α−s)tdt

= lim
t→∞

e(α−s)t

α− s −
1

α− s.

The limit converges for all s with Re(α−s) < 0. Thus, the Laplace transform
of eαtu(t) is

L(eαtu(t)) =
1

s− α Re(s) > Re(α)

45
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The region of convergence of eαtu(t) is the subset of the complex plane with
real part greater than Re(α). Figure 4.1 shows the region of convergence
when Re(α) = −2. Now consider the left sided signal eβtu(−t) with Laplace
transform

L(eβtu(−t)) = lim
t→−∞

e(β−s)t

β − s +
1

β − s.

The limit converges when Re(β − s) > 0, and so,

L(eβtu(−t)) =
1

β − s Re(s) < Re(β).

The region of convergence of eβtu(−t) is those s ∈ C such that Re(s) <
Re(β). The signal aeαtu(t) + beβtu(−t) has Laplace transform

L
(
aeαtu(t) + beβtu(−t)

)
=

∫ ∞
−∞

(
aeαtu(t) + beβtu(−t)

)
e−stdt

= a

∫ ∞
−∞

eαtu(t)e−stdt+ b

∫ ∞
−∞

eβtu(−t)e−stdt

= aL(eαtu(t)) + bL(eβtu(−t))

that is finite only when Re(α) < Re(s) < Re(β). The corresponding ROC
is shown in Figure 4.1 when Re(α) = −2 and Re(β) = 3. In the previous
equation we have discovered that the Laplace transform is linear, that is,
for signals x and y and constants a and b,

L(ax+ by) = aL(x) + bL(y). (4.0.2)

In words: the Laplace transform of a linear combination of signals is the
same linear combination of the Laplace transforms of those signals.

In the previous example the Laplace transform is guaranteed to be finite
for any s if Re(α) ≥ Re(β), and the region of convergence is correspondingly
the empty set. Other signals also have this property. For example, the signal
x(t) = 1 because

L(1) =

∫ ∞
∞

e−stdt = lim
t→−∞

e−st

s
− lim
t→∞

e−st

s

and the limit as t→ −∞ converges only when Re(s) < 0 while the limit as
t→∞ converges only when Re(s) > 0.

As a final example, consider the rectangular pulse

Π(t) =

{
1 −1

2 < t ≤ 1
2

0 otherwise.

Its Laplace transform is

L(Π) =

∫ ∞
−∞

Π(t)e−stdt =

∫ 1/2

−1/2
e−stdt =

es/2 − e−s/2
s

(4.0.3)
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Figure 4.1: Regions of convergence (unshaded) for the signal e−2tu(t) (top left),
the signal e−2tu(t) + e3tu(−t) (top right), the rectangular pulse Π (bottom left),
and the constant signal x(t) = 1 (bottom right).

and is finite for all s ∈ C. The region of convergence of the rectangular
pulse Π is the entire complex plane. The examples just given exhibit all the
possible types of regions of convergence. The region of convergence is either
the entire complex plane, a left or right half plane, a vertical strip, or the
empty set.

Given the Laplace transform L(x) the signal x can be recovered by the
inverse Laplace transform

x(t) =
1

2πj
lim
ω→∞

∫ σ−jω

σ−jω
L(x, s)estds,

where σ is a real number that is inside the region of convergence of x.
Solving the integral above typically requires a special type of integration
called contour integration that we will not consider here [Stewart and
Tall, 2004]. For our purposes, and for many engineering purposes, it suffices
to remember only the following Laplace transform pair

L
(
tnu(t)

)
=

n!

sn+1
Re(s) > 0, (4.0.4)
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where n ≥ 0 is an integer (Exercise 4.2). Let x(t) be a signal with region of
convergence Rx. The Laplace transforms of the signal x(t) and the signal
eαtx(t) are related. To see this write

L
(
eαtx(t), s

)
=

∫ ∞
−∞

eαtx(t)e−stdt

=

∫ ∞
−∞

x(t)e−(s−α)tdt

= L(x, s− α) s− α ∈ Rx. (4.0.5)

This is called the frequency shift rule. Combining the frequency shift
rule with (4.0.4) we obtain the transform pair

L
(
tneαtu(t)

)
= L

(
tnu(t), s− α

)
=

n!

(s− α)n+1
Re(s) > Re(α), (4.0.6)

where n ≥ 0 is an integer. This is the only Laplace transform pair we require
here.

A useful relationship exists between the Laplace transform of a signal x
and its time scaled version x(αt) where α 6= 0. If x is a signal with region
of convergence R then the time scaled signal x(αt) with α 6= 0 has Laplace
transform

L
(
x(αt), s

)
=

1

|α|L(x, s/α), Re(s/α) ∈ R. (4.0.7)

This is called the time scaling property (Excercise 4.10).

4.1 The transfer function and the Laplace transform

Recall from Section 3.4 that exponential signals are eigenfunctions of lin-
ear time invariant systems. That is, if s ∈ C such that the complex exponen-
tial signal est is in the domain of H, then response of H to est is λest where
λ ∈ C is a constant that does not depend on t, but may depend on s and
the system H. To highlight this dependence on H and s we write λ(H, s) or
λ(H)(s) and do not distinguish between these notations. Considered as a
function of s, λ(H, s) is called the transfer function of the system H. For
a given system H, we would like to understand how λ(H, s) behaves as s
changes. In what follows we regularly drop the argument “(s)” and simply
write λ(H) as the transfer function of H.
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Assume that H is a regular system with impulse response h. In this case,

H(est) = estλ(H, s) = h ∗ est

=

∫ ∞
−∞

h(τ)es(t−τ)dτ

= est
∫ ∞
−∞

h(τ)e−sτdτ

= estL(h, s),

and so λ(H) = L(h). That is, the transfer function of a regular system
is precisely the Laplace transform of its impulse response. The region of
convergence of the impulse response describes a set of complex exponential
signals est in the domain of the system and we refer to this as the region
of convergence of the system. In this way, both signals and systems have
regions of convergence.

The transfer functions of the time-shifter and differentiator can be ob-
tained by inspection. For the time-shifter

Tτ (est) = es(t−τ) = e−sτest and so λ(Tτ ) = e−sτ . (4.1.1)

The region of convergence is the whole complex plane s ∈ C. For the special
case of the identity system T0 we obtain λ(T0) = 1. For the differentiator

D(est) =
d

dt
est = sest and so λ(D) = s.

The region of convergence is the whole complex plane s ∈ C. More generally,
for the kth differentiator

Dk(est) =
dk

dtk
est = skest and so λ(Dk) = sk. (4.1.2)

The region of convergence is again the whole complex plane. These results
motivate assigning the following Laplace transforms to the delta “function”
and its derivatives

L(δ) = 1, L(δk) = sk.

These conventions are common in the literature [Oppenheim et al., 1996].
Let H1 and H2 be linear time invariant systems with regions of conver-

genence R1 ⊆ C and R2 ⊆ C. Let H = aH1 + bH2 be a linear combination
of H1 and H2. The response of H to the complex exponential signal est is

H(est) = aH1(est) + bH2(est)

= aλ(H1)est + bλ(H2)est s ∈ R1 ∩R2,

=
(
aλ(H1) + bλ(H2)

)
est s ∈ R1 ∩R2,

= λ(H)est s ∈ R1 ∩R2,
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and so,

λ(H) = aλ(H1) + bλ(H2) s ∈ R1 ∩R2.

That is, the transfer function of a linear combination of systems is the same
linear combination of the transfer functions. The region of convergence of
the linear combination is the intersection of the regions of convergence of
the systems being combined.

Now let H be the system given by the composition of H1 and H2, that
is, H(x) = H1

(
H2(x)

)
. The response of H to the signal est is

H(est) = H1

(
H2(est)

)
= H1

(
λ(H2)est

)
s ∈ R2

= λ(H2)H1(est) s ∈ R2

= λ(H2)λ(H1)est s ∈ R1 ∩R2

= λ(H)est s ∈ R1 ∩R2,

and so,

λ(H) = λ(H1)λ(H2) s ∈ R1 ∩R2. (4.1.3)

That is, the transfer function of a composition of linear time invariant sys-
tems is the multiplication of the transfer functions of those systems. The
region of convergence of the composition is the intersection of the regions of
convergence of the systems being composed.

We showed in Section 3.3 that if H1 and H2 are regular systems with
impulse responses h1 and h2, then the impulse of the system H(x) =
H1

(
H2(x)

)
is given by the convolution h = h1 ∗ h2. Because,

λ(H) = L(h) λ(H1) = L(h1) λ(H2) = L(h2),

and using (4.1.3), we obtain,

L(h1 ∗ h2) = L(h) = λ(H) = λ(H1)λ(H2) = L(h1)L(h2), s ∈ R1 ∩R2.

Putting x = h1, y = h2, Rx = R1, and Ry = R2 we obtain the convolution
theorem,

L(x ∗ y) = L(x)L(y), s ∈ Rx ∩Ry. (4.1.4)

In words: the Laplace transform of a convolution of signals is the multipli-
cation of their Laplace transforms.

Let y = H(x) be the response of the system H to input signal x. Suppose
that x has region of convergence Rx and that y has region of convergence
Ry. In the case that H is regular with impulse response h we have y = h ∗x
and the convolution theorem asserts that

L(y) = L(h)L(x) = λ(H)L(x), s ∈ Rx ∩Ry (4.1.5)
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where, in this case, Ry = Rh ∩Rx where Rh is the region of convergence of
the impulse response h. Thus, the Laplace transform of the output signal
y = H(x) is the transfer function of the system H multiplied by the Laplace
transform of the input signal x. This result also holds when H is a time
shifter or a differentiator (Exercise 4.4).

4.2 Solving differential equations

Assume we have a system modelled by a differential equation of the form

m∑
`=0

a`D
`(x) =

k∑
`=0

b`D
`(y), (4.2.1)

where x and y are signals. Taking Laplace transforms of both sides of this
equation,

L
(

m∑
`=0

a`D
`(x)

)
= L

(
k∑
`=0

b`D
`(y)

)
m∑
`=0

a`L
(
D`(x)

)
=

k∑
`=0

b`L
(
D`(y)

)
(linearity (4.0.2))

m∑
`=0

a`λ(D`)L(x) =
k∑
`=0

b`λ(D`)L(y) (using (4.1.5))

m∑
`=0

a`s
`L(x) =

k∑
`=0

b`s
`L(y). (since λ(D`) = s` by (4.1.2))

We have obtained an equation relating the Laplace transforms of x and y,

L(x)(a0 + a1s+ . . . ams
m) = L(y)(b0 + b1s+ . . . bks

k).

Rearranging this equation we obtain

L(y) =
a0 + a1s+ . . . ams

m

b0 + b1s+ . . . bksk
L(x).

Let H be a linear time invariant system such that y = H(x) whenever x and
y satisfy the differential equation (4.2.1). According to (4.1.5) the transfer
function of H is

λ(H) =
L(y)

L(x)
=
a0 + a1s+ . . . ams

m

b0 + b1s+ . . . bksk
.

Properties of H can be obtained by inspecting this transfer function. For
example, the impulse response of H (if it exists) can be obtained by applying
the inverse Laplace transform.
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We now apply these results to the differential equations that model the
RC electrical circuit from Figure 2.1 and the mass spring damper from Fig-
ure 2.2. The RC circuit is an example of what is called a first order system
and the mass spring damper is an example of what is called a second order
system.

4.3 First order systems

Recall the passive electrical RC circuit from Figure 2.1. The differential
equation modelling this circuit is (2.0.1),

x = y +RCD(y)

where x is the input voltage signal, y is the voltage over the capacitor, and R
and C are the resistance and capacitance. The RC circuit is an example of
a first order system. Let H be a system mapping the input voltage signal
x to the output voltage signal y. We will discover the impulse response of
H. Taking the Laplace transform on both sides of the differential equation
gives

L(x) = (1 +RCs)L(y)

and it follows that the transfer function of H is

λ(H) =
L(y)

L(x)
=

1

1 +RCs
=

r

r + s

where r = 1
RC . The value 1

r = RC is called the time constant. The
impulse response of H is given by the inverse of this Laplace transform.
There are two signals with Laplace transform r

r+s : the right sided signal
re−rtu(t) with region of convergence Re(s) > −r, and the left sided signal
−re−rtu(−t) with region of convergence Re(s) < −r. The RC circuit (and
in fact all physically realisable systems) are expected to be causal. For this
reason, the left sided signal −re−rtu(−t) cannot be the impulse response of
H. The impulse response is the right sided signal

h(t) = re−rtu(t).

Given an input voltage signal x we can now find the corresponding output
signal y = H(x) by convolving x with the impulse response h. That is,

y = H(x) = h ∗ x =

∫ ∞
−∞

re−rτu(τ)x(t− τ)dτ = r

∫ ∞
0

e−rτx(t− τ)dτ.
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If r ≥ 0 the impulse response is absolutely integrable, that is,

‖h‖1 =

∫ ∞
−∞

∣∣re−rtu(t)
∣∣ dt

= r

∫ ∞
0

e−rtdt

= 1− lim
t→∞

e−rt = 1,

and the system is stable (Exercise 3.3). However, if r < 0 the impulse
response is not absolutely integrable and the system is not stable. Figure 4.3
shows the impulse response when r = −1

5 ,−1
3 ,−1

2 , 1, 2. In a passive electrical
RC circuit the resistance R and capacitance C are always positive and r =

1
RC is positive. For this reason, passive electrical RC circuits are always
stable.

From (3.1.5), the step response H(u) is given by applying the integrator
I∞ to the impulse response, that is,

H(u) = I∞(h) =

∫ t

−∞
re−rτu(τ)dτ =

{
r
∫ t

0 e
−rτdτ t > 0

0 otherwise

or more simply

H(u) =
(
1− e−rt

)
u(t). (4.3.1)

This step response in plotted in Figure 4.3.

Test 5 (The impulse response of the active RC circuit) In this test
we again use the active RC circuit from Test 3 with resistors R = R1 = R2 =
27kΩ and capacitor C = C2 = 10nF. In Test 3 we applied the differential
equation (2.2.4) to the reconstructed output signal ỹ and asserted that the
resulting signal was close to the reconstructed input signal x̃. In this test
we instead convolve the input signal x̃ with the impulse response

h(t) = − 1
RC e

−t/RCu(t) = −re−rtu(t), r = 1
RC =

105

27

and assert that the resulting signal is close to the output signal ỹ. That is,
we test the expected relationship

ỹ ≈ h ∗ x̃ =

∫ ∞
−∞

h(τ)x̃(t− τ)dτ.



54 Signals and Systems

From (1.2.4),

ỹ(t) ≈
∫ ∞
−∞

h(τ)
L∑
`=1

x` sinc(Ft− Fτ − `)dτ

=

L∑
`=1

x`

∫ ∞
−∞

h(τ) sinc(Ft− Fτ − `)dτ

=
L∑
`=1

x`g(Ft− `)

where the function

g(t) =

∫ ∞
−∞

h(τ) sinc(t− Fτ)dτ = −r
∫ ∞

0
e−rτ sinc(t− Fτ)dτ.

An approximation of g(t) is made using the trapezoidal sum

f(t) ≈ K

2N

(
p(0) + p(K) + 2

N−1∑
n=1

p(∆n)

)
,

where p(τ) = h(τ) sinc(t− Fτ) and

K = −RC log
(
10−3

)
, N = d10FKe, ∆ = K/N.

Figure 4.2 plots the input signal x̃, output signal ỹ, and hypothesised output
signal h ∗ x̃ over a 4ms window.
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x̃

ỹ

h ∗ x̃

Figure 4.2: Plot of reconstructed input signal x̃ (solid line), output signal ỹ (solid
line with circle), and hypothesised output signal h ∗ x̃ (solid line with dot).
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4.4 Second order systems

Consider the mass spring damper system from Figure 2.2 that is described
by the equation

f = Kp+BD(p) +MD2(p) (4.4.1)

where f is the force applied to the mass M and p is the position of the mass
and K and B are the spring and damping coefficients. The mass spring
damper is an example of a second order system. Another example of
a second order system is the Sallen-Key active electrical circuit depicted in
Figure 2.10. In Section 2 we were able to find the force f corresponding with
a given position signal p. Suppose that H is a linear time invariant system
mapping f to p, that is, such that p = H(f). We will find the impulse
response of H. Taking Laplace transforms on both sides of the differential
equation gives

L(f) = (K +Bs+Ms2)L(p).

Rearranging gives the transfer function of H,

λ(H) =
L(p)

L(f)
=

1

K +Bs+Ms2
.

We can invert this Laplace transform to obtain the impulse response. There
are three cases to consider depending on whether the quadraticK+Bs+Ms2

has two distinct real roots, is irreducible (does not have real roots), or has
two identical real roots.

Case 1: (Distinct real roots) In this case, the roots are

β − α, −β − α,

where

α =
B

2M
, β =

√
B2 − 4KM

2M

and B2 − 4KM > 0. By a partial fraction expansion (Exercise 4.7),

λ(H) =
1

M(s− β + α)(s+ β + α)

=
1

2βM

(
1

s− β + α
− 1

s+ β + α

)
.

From (4.0.6) we obtain the transform pairs

L(e(β−α)tu(t)) =
1

s− β + α
, L(e−(β+α)tu(t)) =

1

s+ β + α
.

As in Section 4.3, other signals with these Laplace transforms are discarded
because they do not lead to an impulse response that is zero for t < 0. That



56 Signals and Systems

t

h

2

1

1
2

− 1
2 − 1

3

− 1
5

1

2

−1

1 2 3 4 5

t

H(u)

2
1
2

1
4

− 1
2 − 1

4

− 1
8

1

−1

2 3 4 5
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is, they do not lead to a causal system H. The impulse response of H is
thus

h(t) =
1

2βM
u(t)e−αt

(
eβt − e−βt

)
.

This is a sum of the impulse responses of two first order systems.

Case 2: (Distinct imaginary roots) The solution is as in the previous
case, but now 4KM −B2 > 0 and β is imaginary. Put θ = β/j so that

eβt − e−βt = ejθt − e−jθt = 2j sin(θt).

The impulse response of H is

h(t) =
1

θM
u(t)e−αt sin(θt).

Case 3: (Identical roots) In this case, the two roots are equal to −α
and

λ(H) =
1

M(s+ α)2
.

From (4.0.6) we obtain the transform pair

L
(
te−αtu(t)

)
=

1

(s+ α)2

and this is the only signal with this Laplace transform that leads to a causal
impulse response. The impulse response of H is thus

h(t) =
1

M
te−αtu(t).

A second order system is called overdamped when there are two distinct
real roots, underdamped when their are two distinct imaginary roots, and
critically damped when the roots are identical. The different types of
impulse responses for are plotted in Figure 4.4.

With no damping (i.e. damping coefficient B = 0) the roots are of the
form ±β and have no real part. In this case, the impulse response is

h(t) =
1

θM
u(t) sin(θt),

where θ = β/j =
√
KM is called the natural frequency of the second

order system. This impulse response oscillates for all t > 0 without decay
or explosion. Two identical roots occur when the damping coefficient B =√

4KM and this is sometimes called the critical damping coefficient.
The impulse response of a second order system is absolutely integrable

when α = B
2M > 0, but not when α ≤ 0. Thus, the system is stable when
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α > 0 and not stable when α ≤ 0. For the mass spring damper both the
mass M and damping coefficient B are positive and so mass spring dampers
are always stable.

From (3.1.5) the step response H(u) is given by applying the integrator
I∞ to the impulse response. There are three cases to consider depending
on whether the system is overdamped, underdamped, or critically damped.
When the system is overdamped the step response is

H(u) = I∞(h) =
1

2βM

∫ t

−∞
e−ατ

(
eβτ − e−βτ

)
u(τ)dτ

=
1

2βM

∫ t

0
e−ατ

(
eβτ − e−βτ

)
dτ

=
1

2βM
u(t)

(
e(β−α)t − 1

β − α +
e−(β+α)t − 1

β + α

)
.

When the system is underdamped the step response is

H(u) = I∞(h) =
1

θM

∫ t

0
e−ατ sin(θτ)dt

= u(t)

(
θ − e−tα

(
θ cos(tθ) + α sin(tθ)

)
Mθ(α2 + θ2)

)
.

When the system is critically damped the step response is

H(u) = I∞(h) =
1

θM

∫ t

0

1

M
te−αtdt

=
1

Mα2
u(t)

(
1− e−tαs(1 + tα)

)
.

These step responses are plotted in Figure 4.5.

4.5 Poles, zeros, and stability

As discussed in Section 4.2 the transfer function of a system described by a
linear differential equation with constant coefficients is of the form

λ(H) =
L(y)

L(x)
=
a0 + a1s+ . . . ams

m

b0 + b1s+ . . . bksk
.

Factorising the polynomials on the numerator and denominator we obtain

λ(H) = C
(s− α0)(s− α1) · · · (s− αm)

(s− β0)(s− β1) · · · (s− βk)
,

where α0, . . . , αm are the roots of the numerator polynomial a0 + a1s +
· · · + ams

m, and β0, . . . , βk are the roots of the denominator polynomial
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Figure 4.4: Impulse response of the mass spring damper with M = 1, K = π2

4 and

damping constant B = π
3 (underdamped), B =

√
4KM = π (critically damped),

and B = 2π (overdamped).
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Figure 4.5: Step response of the mass spring damper with M = 1, K = π2

4 and

damping constant B = π
3 (underdamped), B =

√
4KM = π (critically damped),

and B = 2π (overdamped).
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b0+b1s+· · ·+bksk, and C = am
bm

. That such a factorisation is always possible
is called the fundamental theorem of algebra [Fine and Rosenberger,
1997]. If the numerator and denominator polynomials share one or more
roots, then these roots cancel leaving the simpler expression

λ(H) = C
(s− αd)(s− αd+1) · · · (s− αm)

(s− βd)(s− βd+1) · · · (s− βk)
, (4.5.1)

where d is the number of shared roots, these shared roots being

α0 = β0, α1 = β1, . . . , αd−1 = βd−1.

The roots from the numerator αd, . . . , αm are called the zeros and the roots
from the denominator βd, . . . , βm are called the poles. A pole-zero plot
is constructed by marking the complex plane with a cross at the location of
each pole and a circle at the location of each zero. Pole-zero plots for the first
order system from Section 4.3, the second order system from Section 4.4,
and the system describing the PID controller (2.2.7) are shown in Figure 4.6.

It is always possible to apply partial fractions and write (4.5.1) in the
form

λ(H) = p(s) +
∑
`∈K

A`
(s− β`)r`

,

where r` are positive integers, A` are complex constants, K is a subset of
the indices from {d, d+ 1, . . . , k}, and p(s) is a polynomial of degree m− k.
If k > m then p(s) = 0. The integer r` is called the multiplicity of the
pole β`. We see that the transfer function contains the summation of two
parts: the polynomial p(s), and a sum of terms of the form A

(s−β)r . Let

p(s) = γ0 + γ1s+ · · ·+ γm−ks
m−k. This polynomial is the transfer function

of the nonregular system

H1 = γ0T0 + γ1D + γ2D
2 + · · ·+ γm−kD

m−k.

This system is a linear combination of the identity system T0 and differen-
tiators of order at most m− k. From (4.0.6),

L
(
A

r!
tr−1eβtu(t)

)
=

A

(s− β)r
Re(s) > Re(β)

and so the terms of the form A
(s−β)r correspond with the transfer function

of a regular system with impulse response A
r! t

r−1eβtu(t). Other signals with
Laplace transform A

(s−β)r are discarded because they do not correspond with

the impulse response of a causal system. Thus,
∑

`∈K
A`

(s−β`)r` is the transfer
function of the regular system H2 with impulse response

h2(t) = u(t)
∑
`∈K

A`
r`!
tr`−1eβ`t.
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Figure 4.6: Top left: pole zero plot for the first order system x = y +D(y). There
is a single pole at −1. Top right: pole zero plot for the overdamped second order
system x = 2y+ 3D(y) +D2(y) that has two real poles at −1 and −2. Bottom left:
pole zero plot for the underdamped second order system x = 5y + 2D(y) + D2(y)
that has two imaginary poles at −1 + 2j and −1− 2j. The poles form a conjugate
pair. Bottom right: pole zero plot for the equation D(y) = 5x − 2D(x) + D2(x)
that models a PID controller (2.2.7). The system has a single pole at the origin
and two zeros at 1 + 2j and 1− 2j.
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The system H mapping x to y is the sum of the regular system H2 and
nonregular system H1, that is,

y = H(x) = H1(x) +H2(x).

Observe that H is regular only if the system H1 = 0, that is, only if H1 maps
all input signals to the signal x(t) = 0 for all t ∈ R. This occurs only when
the polynomial p(s) = 0, that is, only when the number of poles exceeds
the number of zeros. The system H will be stable if both H1 and H2 are
stable. Because the differentiator D` is not stable (Exercise 1.7) the system
H1 is stable if only if the order of the polynomial p(s) is zero, that is, if
p(s) = γ0 is a constant (potentially γ0 = 0). In this case H1(x) = γ0T0(x)
is the identity system multiplied by a constant. The polynomial p(s) is a
constant only when the order of the denominator polynomial is greater than
or equal to the order of the numerator polynomial, that is, when the number
of poles is greater than or equal to the number of zeros. The regular system
H2 is stable if and only if its impulse response h2 is absolutely integrable.
This occurs only when the terms eReβ`t inside the sum (??) are decreasing
as t→∞, that is, only if the real part of the poles Reβ` are negative. Thus,
the system H2 is stable if and only if the real part of the poles are strictly
negative.

The stability of the system H can be immediately determined from its
pole-zero plot. The system is stable if and only if:

1. the number of poles is greater than or equal to the number of zeros
(there are at least as many crosses on the pole-zero plot as circles),

2. No poles (crosses) line on the imaginary axis or in the right half of the
complex plane.

The pole-zero plots in Figure 4.6 all represent stable systems with the ex-
ception of the plot on the bottom right (a PID controller). This system has
two zeros and only one pole. The single pole is contained on the imaginary
axis.

4.5.1 Two masses, a spring, and a damper

Consider the system involving two masses, a spring, and a damper in Fig-
ure 2.11. From (2.3.3), the equation relating the force applied to the first
mass f and the position of the second mass p is

f = BD(p) + (M1 +M2)D2(p) +
BM2

K
D3(p) +

M1M2

K
D4(p),

where B is the damping coefficient, K is the spring constant, and M1 and
M2 are the masses. Taking Laplace transforms

L(f) = s

(
B + (M1 +M2)s+

BM2

K
s2 +

M1M2

K
s3

)
L(p),
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from which, we obtain the transfer function of a system H that maps f to
p,

λ(H) =
L(p)

L(f)
=

1

s
(
B + (M1 +M2)s+ BM2

K s2 + M1M2
K s3

) .
The system has no zeros and 4 poles. One of these poles always exists at
the origin. The system is not stable because this pole is not strictly in the
left half of the complex plane.

Consider the specific case when B = K = M1 = M2 = 1. Factorising
the denominator polynomial gives

λ(H) =
1

s(s− β1)(s− β2)(s− β∗2)
,

where

β1 =
1

3

(
γ − 5

γ
− 1

)
≈ −0.56984,

β2 =
1

6

(
5(1 + j

√
3)

γ
− (1− j

√
3)γ − 1

2

)
≈ −0.21508 + 1.30714j,

and γ =
(

3
√

69−11
2

)1/3
. Applying partial fractions (Exercise 4.8) gives

λ(H) =
1

s(s− β1)(s− β2)(s− β∗2)
=
A0

s
+

A1

s− β1
+

A2

s− β2
+

A∗2
s− β∗2

,

where

A0 = − 1

β1|β2|2
= 1, A1 =

1

β1|β1 − β2|2
≈ −0.956611,

A2 =
1

β2(β2 − β1)(β2 − β∗2)
≈ −0.0216944 + 0.212084j.

From (??), the impulse response of H is

h(t) = u(t)
(
A0 +A1e

β1t + 2 |A2| eReβ2t cos(Imβ2t+ ∠A2)
)
.

This impulse response is plotted in Figure 4.7. Observe that h is not abso-
lutely integrable and the system is not stable. The impulse response h(t)
does not converge to zero as t→∞ and correspondingly the mass M2 does
not come come to rest at position zero in Figure 4.7. In the figure it is
assumed that the spring is at equilibrium when the two masses are d = 1
apart. From (2.3.1), the position of mass M1 is given by the signal p1 = g−d
where g = h+M2D

2(h).
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Figure 4.7: Impulse response of the system with two masses, a spring, and a damper,
where B = K = M1 = M2 = 1.

4.5.2 Direct current motors

Recall the direct current (DC) motor from Figure 2.13 described by the
differential equation from (2.4.1),

v =

(
RB

Kτ
+Kb

)
D(θ) +

RJ

Kτ
D2(θ),

where v is the input voltage signal and θ is a signal representing the angle of
the motor. The constants R,B,Kτ ,Kb, and J are related to components of
the motor as described in Section 2.4. To simplify the differential equation
put a = RB

Kτ
+Kb and b = RJ

Kτ
and the equation becomes

v = aD(θ) + bD2(θ).

Taking Laplace transforms on both sides of this equation gives the transfer
function of a system H that maps input voltage v to motor angle θ,

λ(H) =
1

s(a+ bs)
.

This system has no zeros and two poles. One pole is at −a
b and the other is

at the origin. The system is not stable because the pole at the origin is not
strictly in the left half of the complex plane.
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Applying partial fractions we find that

λ(H) =
1

as
− 1

a(s− β)
, (4.5.2)

where β = −a
b . Using (4.0.6), the impulse response of H is

h(t) =
1

a
u(t)

(
1− eβt

)
. (4.5.3)

Other signals with Laplace transform (4.5.2) are discarded because they do
not lead to a causal system. The step response H(u) is obtained by applying
the integrator system I∞ to the impulse response, that is

H(u) = I∞(h) =
1

aβ
u(t)

(
βt+ eβt − 1

)
.

The impulse response and step response are plotted in Figure 4.8 when
Kb = 1

8 , Kτ = 8 and B = R = 1 and J = 2 so that a = 1
4 , b = 1

4 and
β = −1.

4.6 Exercises

4.1. Sketch the signal

x(t) = e−2tu(t) + etu(−t)
where u(t) is the step function. Find the Laplace transform of x(t)
and the corresponding region of convergence (ROC). Sketch the region
of convergence on the complex plane.

4.2. Find the Laplace transform of the signal tnu(t) where n ≥ 0 is an
integer.

4.3. Let n ≥ 0 be an integer. Show that the Laplace transform of the signal
−tnu(−t) is the same as the Laplace transform of the signal tnu(t),
but with a different region of convergence.

4.4. Show that equation (4.1.5) on page 50 holds when the system H is the
differentiator Dk or the time shifter Tτ .

4.5. What is the transfer function of the integrator system I∞ and what is
its region of convergence?

4.6. By partial fractions, or otherwise, assert that

as

s+ b
= a− ab

s+ b
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Figure 4.8: Impulse response (top) and step response (bottom) of a DC motor with
constants Kb = 1

4 , Kτ = 8 and B = R = J = 1.
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4.7. By partial fractions, or otherwise, assert that

s+ c

(s+ a)(s+ b)
=

a− c
(a− b)(s+ a)

+
c− b

(a− b)(s+ b)

4.8. By partial fractions, or otherwise, assert that

1

s(s− a)(s− b)(s− b∗) =
A0

s
+

A1

s− a +
A2

s− b +
A∗2

s− b∗

where a ∈ R and b ∈ C and Im(b) 6= 0 and

A0 = − 1

a|b|2 , A1 =
1

a|a− b|2 , A2 =
1

b(b− a)(b− b∗) .

You might wish to check your solution using a symbolic programming
language (for example Sage, Mathematica, or Maple).

4.9. Let

L(y) =
2s+ 1

s2 + s− 2

be the Laplace transform of a signal y. By partial fractions, or other-
wise, find all possible signals y and their regions of convergence.

4.10. Let x be a signal with region of convergence R. Show that the time
scaled signal x(αt) with α 6= 0 satisfies equation (4.0.7) on page 48.

4.11. Consider the active electrical circuit from Figure 2.8 described by the
differential equation from (2.2.3). Derive the transfer function of this
system. Find an explicit system H that maps the input voltage x
to the output voltage y. State whether this system is stable and/or
regular.

4.12. Given the mass spring damper system described by (4.4.1), find the
position signal p given that the force signal

f(t) = Π
(
t− 1

2

)
=

{
1 0 < t ≤ 1

0 otherwise

is the rectangular function time shifted by 1
2 . Consider three cases:

(a) M = 1, K = π2

4 and B = π
3 ,

(b) M = 1, K = π2

4 and B = π,

(c) M = 1, K = π2

4 and B = 2π,

Plot the solution in each case, and comment on whether the system is
underdamped, overdamped, or critically damped.
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4.13. Plot the signal x(t) = sin(tet)u(t) and find and plot its derivative
D(x). Show that the region of convergence of x contains those complex
numbers s with Re(s) > 0 and that the region of convergence of D(x)
contains those with Re(s) > 1.
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Chapter 5

The Fourier transform

The Fourier transform of an absolutely integrable signal x is defined as

F(x) =

∫ ∞
−∞

x(t)e−j2πftdt. (5.0.1)

The Fourier transform is a function of the real number f . We indicate its
value at f by F(x)(f) or F(x, f). For example, the rectangular pulse Π(t)
from (1.1.2) is absolutely integrable and has Fourier transform

F(Π) =

∫ ∞
−∞

Π(t)e−j2πftdt

=

∫ 1/2

−1/2
e−j2πftdt

=
ejπf − e−jπf

j2πf
=

sin(πf)

πf
= sinc(f). (5.0.2)

The sinc function is plotted in Figure 5.1.
The Fourier transform is closely related to the Laplace transform because

F(x, f) = L(x, j2πf)

for those signals x with region of convergence containing the imaginary axis,
that is, for absolutely integrable x. The Fourier transform inherits the prop-
erties of the Laplace transform that were described in Section 4.1. For ex-
ample, if H is a stable regular system with absolutely integrable impulse
response h having Fourier transform F(h), then the spectrum of H satisfies

Λ(H, f) = λ(H, j2πf) = L(h, j2πf) = F(h, f),

that is, the spectrum of a stable regular system is given by the Fourier
transform of its impulse response. Like the Laplace transform, the Fourier
transform obeys the convolution theorem (4.1.4), that is,

F(x ∗ y) = F(x)F(y) (5.0.3)

71
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when each of the signals x, y, and x ∗ y are absolutely integrable. In words:
the Fourier transform of a convolution of signals is given by the multiplica-
tion of the Fourier transforms of those signals.

It follows from (4.1.5) that if H is a regular system with spectrum Λ(H)
and if x is a signal with Fourier transform F(x), then the signal y = H(x)
has Fourier transform

F(y) = Λ(H)F(x).

This property also holds for the differentiator system D and the time shifter
system Tτ (Exercise 4.1.5). From (4.1.1) and (4.1.2) the spectrum of Tτ and
the kth differentiator Dk satisfy

Λ(Tτ ) = e−j2πfτ , Λ(Dk) = (j2πf)k

from which we obtain the time shift property,

F
(
Tτ (x)

)
= Λ(Tτ )F(x) = e−j2πfτF(x),

and the differentiation property,

F
(
Dk(x)

)
= Λ(Dk)F(x) = (j2πf)kF(x),

of the Fourier transform. These results motivate assigning the following
Fourier transforms to the delta “function” and its derivatives

F(δ) = 1, L(δk) = (j2πf)k. (5.0.4)

These conventions are common in the literature [Oppenheim et al., 1996].
Similarly to the Laplace transform (4.0.5), the Fourier transform obeys

a frequency shift rule that relates the transform of a signal x(t) to that
of the signal e2πjγftx(t) where γ ∈ R. From (4.0.5), the frequency shift rule
asserts that

F
(
e2πjγtx(t), f

)
= F(x, f − γ). (5.0.5)

Since cos(2πγt) = 1
2e

2πjγt + 1
2e
−2πjγt we also have

F
(

cos(2πγt)x(t), f
)

=
1

2
F(x, f − γ) +

1

2
F(x, f + γ). (5.0.6)

This is sometimes called the modulation property of the Fourier trans-
form [Papoulis, 1977, page 61]. This property is of particular importance in
communications engineering [Proakis, 2007].

Like the Laplace transform (4.0.7), the Fourier transform obeys a time
scaling property. If x is an absolutely integrable signal then the time
scaled signal x(αt) with α 6= 0 has Fourier transform

F
(
x(αt), f

)
=

1

|α|F
(
x, f/α

)
. (5.0.7)
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t

42−2−4

1

Figure 5.1: The sinc function sinc(t) = sin(πt)
πt .

5.1 The inverse transform and the Plancherel theorem

Given a signal x we will often denote its Fourier transform by x̂ = F(x).
Observe that x̂, like x, is a function that maps a real number to a com-
plex number. Thus, the Fourier transform x̂ is a signal with independent
variable representing frequency. It is usual to call x the time domain
representation of the signal and x̂ the frequency domain representation.
If x̂ is absolutely integrable, then x can be recovered using the inverse
Fourier transform

x(t) = F−1(x̂) =

∫ ∞
−∞

x̂(f)ej2πftdf. (5.1.1)

For example, let x̂ = F(x) = Π be the rectangular pulse. By working
analogous to that from (5.0.2),

x(t) =

∫ ∞
−∞

Π(f)ej2πftdf = sinc(−t) = sinc(t).

We are lead to the conclusion that the Fourier transform of sinc is the
rectangular pulse Π.

The rectangular pulse Π is finite and absolutely integrable. The sinc
function is not absolutely integrable (Exercise 5.3). Because of this the in-
tegral equation that we have used to define the Fourier transform (5.0.1)
cannot be directly applied to the sinc function. Although sinc is not abso-
lutely integrable, it is square integrable (Exercise 5.3). It happens that all
square integrable signals can be assigned a Fourier transform by interpreting
the integral in (5.0.1) as what is called its Cauchy principal value. That
is, for x a square integrable signal, we assign the Fourier transform

x̂ = F(x) = lim
T→∞

∫ T

−T
x(t)e−j2πftdt.

This Fourier transform x̂ is itself a square integrable signal and the orignal
time domain signal x can be recovered almost everywhere by taking the
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Cauchy principal value of the integral in (5.1.1), that is,

x = F−1(x̂) = lim
T→∞

∫ T

−T
x̂(f)ej2πftdf a.e..

Infact, the energy of x and its Fourier transform x̂ are the same, that is,

‖x‖22 =

∫ ∞
−∞
|x(t)|2 dt =

∫ ∞
−∞
|x̂(f)|2 dt = ‖x̂‖22. (5.1.2)

These results are known as the Plancherel theorem [Rudin, 1986, Th. 9.13].
The equality of energies in (5.1.2) is often called Parseval’s identity. For
our purposes it will suffice to remember only that the Fourier transform of
the sinc function is the rectangular pulse Π.

A result more general than (5.1.2) holds. If x and y are square integrable
signals with Fourier transforms x̂ and ŷ, then∫ ∞

−∞
x(t)y∗(t)dt =

∫ ∞
−∞

x̂(f)ŷ∗(f)dt (5.1.3)

where the superscript ∗ denotes the complex cojugate. One obtains (5.1.2)
by putting y = x in (5.1.3). This more general result often also goes by the
name of Parseval’s identity.

Let x be a signal with Fourier transform

F(x, f) =

∫ ∞
−∞

x(τ)e−j2πfτdτ.

Evaluating the Fourier transform at −t we find that

F(x,−t) =

∫ ∞
−∞

x(τ)ej2πtτdτ = F−1(x, t). (5.1.4)

This is the called the duality property of the Fourier transform. In words, if
x̂ is the Fourier transform of x, then x is the Fourier transform of x̂ reflected
in time.

5.2 Analogue filters

For many engineering purposes it is desirable to construct systems that will
pass (have little affect on) a complex exponential signal ej2πft for certain
frequencies f , but will reject (significantly attenuate) these signals for other
frequencies. Such systems are called frequency dependent filters. Those
frequencies that the filter intends to pass unaffected are said to be in the
pass band and those frequencies that the filter intends to reject are said to
be in the stop band.



5.2 Analogue filters 75

An ideal lowpass filter with cuttoff frequency c is the system Lc
with spectrum

Λ(Lc) =

{
1 |f | < c

0 otherwise
= Π

(
f

2c

)
.

Applying the inverse Fourier transform to Π
( f

2c

)
gives∫ ∞

−∞
Π
( f

2c

)
ej2πtfdf =

∫ c

−c
ej2πtfdf =

sin(2cπt)

πt
= 2c sinc(2ct).

We conclude that the ideal lowpass filter Lc is a regular linear time invariant
system with impulse response 2c sinc(2ct).

An ideal highpass filter with cuttoff frequency c is given by the linear
combination T0 − Lc where T0 is the identity system. The spectrum is

Λ(T0 − Lc) = Λ(T0)− Λ(Lc) = 1−Π

(
f

2c

)
=

{
0 |f | < c

1 otherwise.

This ideal highpass filter is not regular because the system T0 is not regular.
The system does not have an impulse response. Nevertheless, it is common
to represent one by δ(t)− 2c sinc(2ct) using the delta function as described
in Section 3.1.

An ideal bandpass filter with upper cuttoff frequency u and lower
cuttoff frequency ` is given by the linear combination Lu−L`. The spectrum
is

Λ(Lu − L`) = Π

(
f

2u

)
−Π

(
f

2`

)
=


1 −u < f ≤ −`
1 ` ≤ f < u

0 otherwise.

It follows that the ideal bandpass filter has impulse response 2u sinc(2ut)−
2` sinc(2`t). The spectrum and impulse response of the ideal lowpass, high-
pass, and bandpass filters are plotted in Figure 5.2.

Ideal filters are not realisable in practice. One reason for this is that
they are not causal because the sinc function is unbounded in time. We
now describe a popular practical low-pass filter discovered by Butterworth
[1930]. A normalised low pass Butterworth filter of order m, denoted
by Bm, has transfer function

λ(Bm) =
1∏m

i=1( s
2π − βi)

=
(2π)m∏m

i=1(s− 2πβi)
,

where β1, . . . , βm are the roots of the polynomial s2m+(−1)m that lie strictly
in the left half of the complex plane (have negative real part). It is convenient
to precisely define these roots as

βk =

{
exp

(
j π2 (1 + 2k−1

m )
)
, k = 1, . . . ,m

exp
(
j π2 (1− 2k−1

m )
)
, k = m+ 1, . . . , 2m
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f

Π
( f

2c

)

1

c−c
t

2c sinc(2ct)

2c

f

1−Π
( f

2c

)
1

c−c
t

δ(t)− 2c sinc(2ct)

−2c

1

f

Π
( f

2u

)
−Π

( f
2`

)

1

`−u u−`
t

2u sinc(2ut)− 2` sinc(2`t)

2(u− `)

Figure 5.2: Spectrum and impulse response of the ideal lowpass filter Lc (top),
the ideal highpass filter T0 − Lc (middle), and the ideal bandpass filter Lu − L`
(bottom). The ideal highpass filter is not regular and does not have an impulse
response. We plot the ‘pretend’ impulse response using the delta function described
in Section 3.1.
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or equivalently

βk =

{
j cos

(π(2k−1)
2m

)
− sin

(π(2k−1)
2m

)
, k = 1, . . . ,m

j cos
(π(2k−1)

2m

)
+ sin

(π(2k−1)
2m

)
, k = m+ 1, . . . , 2m.

The roots are plotted in Figure 5.3. Observe that the roots βm+1, . . . , β2m

are given by negating the real parts of β1, . . . , βm, that is, βm+i = j(βi/j)
∗.

The spectrum of Bm is

Λ(Bm) =
1∏m

i=1(jf − βi)
.

The squared magnitude of the polynomial on the denominator is∣∣∣∣∣
m∏
i=1

(jf − βi)
∣∣∣∣∣
2

=

(
m∏
i=1

(jf − βi)
)(

m∏
i=1

(jf − βi)
)∗

=
m∏
i=1

(jf − βi)(jf − βi)∗

=
m∏
i=1

(jf − βi)j∗(f − (βi/j)
∗)

and because j∗/j = −1 we have∣∣∣∣∣
m∏
i=1

(jf − βi)
∣∣∣∣∣
2

= (−1)m
m∏
i=1

(jf − βi)(jf − j(βi/j)∗)

= (−1)m
m∏
i=1

(jf − βi)(jf − βm+i)

= (−1)m
2m∏
i=1

(jf − βi).

Because β1, . . . , β2m are the roots of the polynomial s2m + (−1)m we have∣∣∣∣∣
m∏
i=1

(jf − βi)
∣∣∣∣∣
2

= (−1)m
(
(jf)2m + (−1)m

)
= f2m + 1.

It follows that the magnitude spectrum of Bm is

|Λ(Bm)| =
√

1

f2m + 1
.

The magnitude and phase spectrum of the filters B1, B2, B3, and B4 are
plotted in Figure 5.4.
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Figure 5.3: Roots of the polynomial s2m + (−1)m for m = 1 (top left), m = 2 (top
right), m = 3 (bottom left), and m = 4 (bottom right). All the roots lie on the com-
plex unit circle and have magnitude one. The poles of the normalised Butterworth
filter Bm are those roots from the left half of the complex plane (unshaded).
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Figure 5.4: Magnitude spectrum (top) and phase spectrum (bottom) of normalised
Butterworth filters B1, B2, B3 and B4.
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The cuttoff frequency of the lowpass filter Bm is defined as the positive
real number c such that |Λ(Bm, f)|2 < 1

2 for all f > c. The normalised
Butterworth filters have cuttoff frequency c = 1Hz. A lowpass Butterworth
filter of order m and cuttoff frequency c, denoted Bc

m, has transfer function

λ(Bc
m, s) = λ(Bm,

s
c ) =

1∏m
i=1( s

2πc − βi)
.

The magnitude spectrum satisfies

|Λ(Bc
m, f)|2 = |Λ(Bm,

f
c )|2 =

1(f
c

)2m
+ 1

=
c2m

f2m + c2m
. (5.2.1)

A first order Butterworth filter Bc
1 has spectrum

Λ(Bc
1) =

1

j fc + 1
=

c

jf + c
.

Putting 1
c = 2πRC we find that this is the same as the spectrum of the RC

electrical circuit (Figure 2.1) or the active RC circuit after negation (3.5.2).
Thus, the RC electrical circuit is a first order Butterworth filter with cuttoff
frequency c = 1

2πRC . In Test 4 we constructed the active RC circuit with
R ≈ 27kΩ and C ≈ 10nF and measured its magnitude spectrum. The
cuttoff frequency was c = 5×104

27π ≈ 589Hz.
A second order electrical Butterworth filter can be constructed using

the Sallen-Key circuit described in Section 2.2 and Figure 2.10. The input
voltage x and output voltage y of the Sallen-Key satisfy the differential
equation (2.2.9)

x = y + C2(R1 +R2)D(y) +R1R2C1C2D
2(y).

The transfer function is

L(y)

L(x)
=

1

1 + C2(R1 +R2)s+R1R2C1C2s2
.

The second order Butterworth filter Bc
2 has transfer function

Λ(Bc
2) =

1

( 1
2πcs− β1)( 1

2πcs− β2)
,

where β1 = β∗2 = ej3π/4. Expanding the quadratic on the denominator gives

Λ(Bc
2) =

1

1 + 1√
2πc

s+ 1
4π2c2

s2
.

Choosing the resistors and capacitors of the Sallen-Key to satisfy

C2(R1 +R2) =
1√
2πc

, R1R2C1C2 =
1

4π2c2
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leads to a second order Butterworth filter. A convenient solution is to put
C1 = 2C2 and R1 = R2. This gives a second order Butterworth filter with
cuttoff

c =
1√

2πC2(R1 +R2)
=

1

2
√

2πC2R2

.

In Test 6 we construct a second order Butterworth filter using a Sallen-Key
and measure its spectrum.

Butterworth filters of orders larger than m = 2 can be constructed by
concatenating Sallen-Key circuits and RC circuits. If m is even then m/2
Sallen-Key circuits are required. Each Sallen-Key is used to construct a
conjugate pair of poles, that is, the kth Sallen-Key would have poles 2πcβk
and 2πcβ∗k = 2πcβm−k+1. If m is odd then (m − 1)/2 Sallen-Key circuits
and a single RC circuit (or active RC circuit) can be used. The RC circuit
is designed to have the real valued pole β(m+1)/2 = 2πc.

Test 6 (Butterworth filter)
We construct a second order Butterworth filter using the Sallen-Key

circuit from Figure 2.10 with capacitors C2 ≈ 100nF, C1 ≈ 2C2 ≈ 200nF
and resistors R1 ≈ R2 ≈ 330Ω. The cuttoff frequency is

c =
1

2
√

2πC2R2

≈ 3410Hz.

Sinusoids of the form

sin(2πfkt), fk =
⌈
110× 2k/2

⌋
, k = 1, 2, . . . , 13

are input to the filter using a computer soundcard and the magnitude and
phase spectrum are measured using the procedure described in Test 4. Fig-
ure 5.5 shows the measurements (dots) plotted alongside the hypothesised
magnitude spectrum

|Λ(Bc
2)| =

√
1

(f/c)4 + 1

and the hypothesised phase spectrum ∠Λ(Bc
2).

5.3 Real and complex valued sequences

Let x be a signal with Fourier transform x̂ = F(x). The signal x is said to
be bandlimited if there exists a positive real number b such that

x̂(f) = F(x, f) = 0 for all |f | > b.
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Figure 5.5: Hypothesised magnitude spectrum |Λ(Bcm)| (top) and phase spectrum
∠Λ(Bcm) (bottom) of the second order Butterworth filter and the measured magni-
tude and phase spectrum of the filter implemented with a Sallen-Key active elec-
trical circuit (dots).
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n

sin
(
π
4n
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n

e−|n|/2

n

un

n

δn

Figure 5.6: Real valued sequences. The bottom plots show that step sequence u
and the delta sequence δ.

The value b is called the bandwidth of the signal x. For example, the sinc
function is bandlimited with bandwidth 1

2 because its Fourier transform
F(sinc, f) = Π(f) = 0 for all |f | > 1

2 . Bandlimited signals have a number of
properties that make them suitable for representation and manipulation by
a computer. They are of particular importance for this reason. Before we
can study bandlimited signals we first require some properties of real and
complex valued sequences.

A sequence is a function with domain given by the integers Z. The value
of the sequence corresponding with the integer n can be denoted by x(n)
but it is conventional to write xn. We are primarily interested in sequences
that take real or complex values, that is, xn ∈ R or xn ∈ C. For example,

sin(π4n), n3, e−|n|/2

each denote a real valued sequence. In what follows the term sequence
will always mean a real or complex valued sequence unless otherwise stated.
Real and complex valued sequences are commonly called discrete time
signals and the nth element in the sequence is denoted by x[n] using squared
brackets [Oppenheim et al., 1996]. Here, we use the subscript notation xn.
This notation is also common [Vetterli et al., 2014; Rudin, 1986]. Sequences
are plotted using vertical lines with dotted ends as in Figure 5.6 and have a
number of properties analogous to the properties of signals (Section 1.1).

A sequence x is bounded if there exists a real number M such that

|xn| < M for all n ∈ Z.
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Both sin(π4n) and e−|n|/2 are examples of bounded sequences, but n3 is not
bounded because its magnitude grows indefinitely as n moves away from the
origin. A sequence x is periodic if there exists a nonnegative integer T such
that

xn = xn+kT for all integers k and n.

The smallest such T is called the period. The sequence sin(π4n) is periodic

with period T = 8. Neither n3 or e−n
2/4 are periodic. A sequence x is even

(or symmetric) if xn = x−n for all n ∈ Z and odd (or antisymmetric) if
xn = −x−n for all n ∈ Z. Both sin(π4n) and n3 are odd and e−|n|/2 is even.

A sequence x is right sided if there exists a T ∈ R such that xn = 0
for all t < T . Correspondingly x is left sided if xn = 0 for all T > t. For
example, the step sequence u with nth element

un =

{
1 n ≥ 0

0 n < 0
(5.3.1)

is right sided (Figure 1.2). The reflected sequence u−n is left sided. A
sequence is said to be finite if it is both left and right sided. For example
the sequence δ with nth element

δn =

{
1 n = 0

0 otherwise,
(5.3.2)

called the delta sequence, is finite. The delta sequence is analogous to
the delta “function” introduced in Section 3.1. The delta “function” is not
actually function, but only a notational device. Contrastingly, the delta
sequence is a well defined sequence.

A sequence x is absolutely summable if

‖x‖1 =
∑
n∈Z
|xn| <∞,

that is, if the sum of absolute values of the elements in the sequence converges
to a finite number. The real number ‖x‖1 is commonly called the `1-norm of
x. The sequences sin(π4n) and n3 are not absolutely summable, but e−|n|/2

is because∑
n∈Z
|e−|n|/2| =

∑
n∈Z

e−|n|/2 = 1 +
2√
e− 1

. (Exercise 5.8)

It is common to denote the set of absolutely summable sequences by `1. So,
e−|n|/2 ∈ `1 and sin(π4n) /∈ `1.

A sequence x is square summable if

‖x‖22 =
∑
n∈Z
|xn|2 <∞,
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that is, if the sum of squared magnitudes of the elements converges to a
finite number. The real number ‖x‖2 is commonly called the `2-norm and
its square ‖x‖22 the energy of x. The sequences sin(π4n) and n3 are not

square summable, but e−|n|/2 is because∑
n∈Z
|e−|n|/2|2 =

∑
n∈Z

e−|n| = 1 +
2

e− 1
. (Exercise 5.8)

It is common to denote the set of square summable sequences by `2. So,
e−|n|/2 ∈ `2 and sin(π4n) /∈ `2. If a sequence is absolutely summable then
it is also square summable (Exercise 5.9). The corresponding property is
not true of signals, that is, absolutely integrable signals are not necessarily
square integrable (Exercise 1.4).

5.4 Bandlimited signals

Let b be a positive real number and let x be a signal with Fourier transform
x̂ = F(x). The signal x is said to be bandlimited with bandwidth b if

x̂(f) = F(x, f) = 0 for all |f | > b.

For example, the sinc function sinc(t) that has Fourier transform Π(f) is
bandlimited with bandwidth b ≥ 1

2 . Another example is the signal with
Fourier transform given by a raised cosine

x̂(f) = Π(f)
(
1 + cos(2πf)

)
=

{
1 + cos(2πf) |f | < 1

2

0 otherwise

that is bandlimited with bandwidth b ≥ 1
2 . The time domain signal is found

by applying the inverse Fourier transform

x(t) = sinc(t) + 1
2 sinc(t+ 1) + 1

2 sinc(t− 1). (Exercise 5.6)

Another example is the signal with Fourier transform given by the triangle
pulse

4(f) =


f + 1 −1 < f < 0

1− f 0 ≤ f < 1

0 otherwise

that is bandlimited with bandwidth b ≥ 1. The corresponding time domain
signal is given by the square of the sinc function sinc2(t) (Exercises 5.2).
These bandlimited signals and their Fourier transforms are plotted in Fig-
ure 5.7.
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It happens that bandlimited signals are not finite. We can reasonably
suppose that all signals ever encountered in practice are finite and so no sig-
nals encountered in practice are truely bandlimited. However, many practi-
cally occuring signals are approximately bandlimited, that is, their Fourier
transform is small for frequencies larger than some positive number b. For
example, in Test 7 the Fourier transform of an audio signal taken from a
lecture recording is plotted (Figure 5.8). This signal appears approximately
bandlimited with bandwidth a little larger than 8 kHz.

A surprising result is that every square integrable bandlimited signal x
with bandwidth b can be written as a sum of time scaled and time shifted
sinc functions, that is, in the form

x(t) =
∑
n∈Z

cn sinc(Ft− n) (5.4.1)

where c is a square integrable complex valued sequence and F = 2b. This
is a consequence of the Riesz-Fischer theorem [Rudin, 1986, page 91].
Evaluating the signal x at integer multiples of P = 1

F we find that

x(`P ) =
∑
n∈Z

cn sinc(`− n) = c`

because sinc(`−n) is equal to 1 when ` = n and 0 otherwise. So, the elements
of the sequence c correspond with samples of the signal x taken at integer
multiples of P = 1

F = 1
2b , that is, cn = x(nP ). The positive real number P

is called the sampling period and its reciprical F the sampling rate. It
follows that every square integrable bandlimited signal x with bandwidth b
can be reconstructed from samples taken at rate F = 2b, that is,

x(t) =
∑
n∈Z

x(nP ) sinc(Ft− n).

This result known as the Nyquist sampling theorem. This theorem
motivated use of this recontruction method in Tests 1, 2, 3, and 5.

5.5 The discrete time Fourier transform

Let x be a square integrable bandlimited signal with bandwidth b and let c
be the sequence containing samples of x at sampling rate F = 1

P = 2b, that
is, cn = x(nP ). From (5.4.1), the Fourier transform of x is

x̂(f) = F(x, f) =
∑
n∈Z

cnF
(

sinc(Ft− n)
)

= PΠ(fP )
∑
n∈Z

cne
−j2πPnf

= PΠ(fP )D(c, Pf) (5.5.1)
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where

D(c, f) =
∑
n∈Z

cne
−j2πnf

is called the discrete time Fourier transform of the sequence c. We
write ĉ = D(c) for the discrete time Fourier transform of c. The discrete
time Fourier transform ĉ = D(c) is a periodic signal with period 1. The
above equations relate the Fourier transform of the bandlimited signal x to
the discrete time Fourier transform of its sequence of samples c. In Test 7
we compute the Fourier transform of a 20 s segment of audio from a lecture
recording. In Test 8 we pass the audio signal through the Butterworth filter
constructed in Test 6 and plot the Fourier transform of the response.

The sequence of samples cn = x(nP ) can be recovered by evaluating the
inverse Fourier transform

cn = x(nP ) = F−1(x̂, nP )

=

∫ ∞
−∞

PΠ(Pf)D(c, Pf)ej2πfnPdf

= P

∫ F/2

−F/2
ĉ(Pf)ej2πfnPdf

=

∫ 1/2

−1/2
ĉ(γ)ej2πγndγ (change variable γ = fP ).

We obtain the following relationship between the square integrable sequence
c and its periodic discrete time Fourier transform ĉ = D(c),

cn =

∫ 1/2

−1/2
ĉ(f)ej2πfndf.

The right hand side of this expression is called the inverse discrete time
Fourier transform. The element c−n is also called the nth Fourier coef-
ficient of the periodic function ĉ.

Test 7 (The Fourier transform of a lecture recording)
In this test we consider a 20 s segment of audio taken from the lec-

ture video ch1sec3.mp4. This 34.8 MB file contains both compressed video
(H.264 codec) and audio (mp3 codec) of duration 23 min and 36 s. The au-
dio is mono and sampled at rate F = 22 050 Hz. The avconv program from
the libav library is used to extract a 20 s segment of audio starting at time
85 s and ending at time 105 s. The segment is decompressed to wav format.
The command used is:

avconv -i ch1sec3.mp4 -ss 85 -t 20 audio.wav

www.itr.unisa.edu.au/~mckillrg/videos/lectures/signalsandsystems2014/ch1sec3.mp4
https://libav.org


5.5 The discrete time Fourier transform 89

The resulting file audio.wav is 882 kB in size and contains N = 441216
samples that we denote by c0, c1, . . . , cN−1. Each sample takes a value in
the interval [−1, 1]. We put cn = 0 when n < 0 or n ≥ N . The reconstructed
audio signal is given by

x(t) =
∑
n∈Z

cn sinc(Ft− n) =

N−1∑
n=0

cn sinc(Ft− n).

From (5.5.1) the Fourier transform of this signal is x̂(f) = PΠ(Pf)ĉ(Pf)
where

ĉ(f) = D(c, f) =
∑
n∈Z

cne
−j2πnf =

N−1∑
n=0

cne
−j2πnf (5.5.2)

is the discrete time Fourier transform of the sequence of samples. Figure 5.8
shows a plot of the magnitude of the Fourier transform for frequencies in
the interval −12 kHz to 12 kHz. The plot is constructed by evaluting |ĉ(f)|
at all K = 1201 frequencies

fk = −12000 + 20k k = 0, . . . ,K − 1,

that is, from −12 kHz to 12 kHz in steps of 20 Hz. It takes approximately
137 s to compute the Fourier transform at all of these frequencies. Evaluating
the Fourier transform at a particular frequency requires calculating and
accumlating each of the N terms in the sum (5.5.2). We hypothesise it to
take approximately

137 s

NK
≈ 260 ns

to compute each term. The computer used is an Intel Core 2 running at
2.4 GHz and the software is written in the Scala programming language.

The audio recording contains human voice that primarily resides at lower
frequencies below 5 kHz. Audible in the recording is a faint high pitched
hum. The cause of this is unknown. It might be a feature of the (probably
low quality) webcam microphone used to record the audio. This hum is rep-
resented in Figure 5.8 by the spikes occurring at approximately ±8 kHz and
also by the region between 4900 Hz and 5900 Hz where the magnitude of the
Fourier transform is elevated. Figure 5.9 is a plot of the Fourier transform
for frequencies from 7998 Hz to 8002 Hz in steps of 5 mHz. This gives a high
resolution view of the spike that occurs near 8 kHz. The magnitude of the
Fourier transform is precisely zero for frequencies |f | > F/2 = 11 025 Hz due
to Π(Pf) occurring in the definition of x̂. However, in Figure 5.8 it is ap-
parent that the Fourier transform is small if |f | is a little larger than 8 kHz.
This audio signal appears approximately bandlimited with bandwidth a lit-
tle larger 8 kHz.

http://scala-lang.org/
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5.6 The fast Fourier transform

In Test 7 the Fourier transform of a 20 s audio signal consisting of N =
441216 consecutive samples was evaluated. This scenario where only a finite
number, say N , of consecutive samples of a signal is available is common in
practice. Let c be a sequence with elements c0, c1, . . . , cN−1 equal to the N
samples. A convenient assumption is that the remaining samples are equal
to zero, that is, cn = 0 when n < 0 or n ≥ N . This assumption was made
in Test 7.

With this assumption the discrete time Fourier transform of the sequence
c is given by the finite sum

ĉ(f) = D(c, f) =
∑
n∈Z

cne
−j2πnf =

N−1∑
n=0

cne
−j2πnf .

The values of ĉ(f) for f a multiple of 1
N have a number of convenient prop-

erties. Denote these values by

DN (c, k) = D
(
c,
k

N

)
=

N−1∑
n=0

cne
−j2πnk/N k ∈ Z. (5.6.1)

This is called the discrete Fourier transform (as opposed to the discrete
time Fourier transform). The discrete Fourier transform DN (c) is a sequence
(a function of k ∈ Z) with elements given by the discrete time Fourier
transform D(c) evaluated at multiples of 1

N . We write either DN (c, k) or
DN (c)(k) to denote the value of DN (c) at k ∈ Z. The positive integer
N is called the length of the transform. In practical applications N often
corresponds with the number of samples of a signal that have been obtained.

The discrete Fourier transform is a periodic sequence with period N as a
result of the discrete time Fourier transform ĉ = D(c) having period 1, that
is,

DN (c, k) = ĉ

(
k

N

)
= ĉ

(
k +mN

N

)
= DN (c, k +mN) for all k,m ∈ Z.

Because of this it is sufficient to know only DN (c, k) for k = 0, . . . , N − 1 in
order to know the entire sequence DN (c). Given DN (c) the original samples
c0, . . . , cN−1 can be recovered by

cn = D−1
N (DN (c), n) =

1

N

N−1∑
k=0

DN (c, k)ej2πnk/N n = 0, . . . , N − 1.

This is called the inverse discrete Fourier transform (Excersise 5.11).
Taking complex conjugates on both sides gives

c∗n =
1

N

N−1∑
k=0

D∗N (c, k)e−j2πnk/N =
1

N
DN (D∗N (c), n) n = 0, . . . , N − 1.
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Figure 5.8: Magnitude of the Fourier transform of 20 s of audio from a lecture
recording. The human voice signal is primarily contained in the low frequency
region below 5 kHz. The spikes occurring at approximately ±8 kHz and the region
between 4900 Hz and 5900 Hz where the magnitude is elevated are audible in the
recording as a high pitched hum.
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Figure 5.9: A plot of the magnitude of the Fourier transform zoomed in on the
spike at 8 kHz.
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Test 8 (Butterworth filtered lecture recording)
We consider again the 20 s audio signal from Test 7. In this test we pass this
signal through the second order Butterworth filter from Test 6 with cuttoff
frequency approximately 3041 Hz. The output of the Butterworth filter is
fed back to the soundcard input and recorded at 22 050 Hz. The recorded
samples are written to the file filtered.wav. Listening to filtered.wav

confirms that the high pitched hum is weaker than it is in the original audio
signal contained in the file audio.wav from Test 7. The Fourier transform
of the Butterworth filtered signal is plotted in Figure 5.10. This figure is
constructed by the same procedure as used for Figure 5.8 from Test 7. Ob-
serve that the spikes occurring at approximately ±8 kHz are less prominent
than in Figure 5.8.
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Figure 5.10: Magnitude of the Fourier transform of 20 s of audio from Test 7 after
being passed through the second order Butterworth filter from Test 6 with cut-
toff frequency approximately 3041 Hz. The magnitude of the Fourier transform at
higher frequencies is attenuated when compared with the Fourier transform of the
original audio signal (Figure 5.8). In particular, the spikes occurring at approxi-
mately ±8 kHz are less prominent than in Figure 5.8. The high pitched hum that
is audible in the original audio signal is significantly weaker in the Butterworth
filtered audio signal.
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A practical consequence of this is that the inverse discrete Fourier trans-
form can be evaluted by applying the complex conjugate, taking the dis-
crete Fourier transform, applying the complex conjugate again, and finally
dividing by N . That is, if d is a sequence, then D−1

N (d) = 1
ND∗N (d∗).

Suppose that we wish to evaluate the discrete Fourier transform DN (c)
of the 20 s audio signal comprising of N = 441216 samples from Test 7. In
Test 7 we hypothesised that approximately 260 ns are required to compute
each term in the sum (5.5.2). We require to compute the sum for each
k = 0, . . . , N − 1 and so we might expect that

N2 × 260 ns ≈ 50 614 s ≈ 14 hours (5.6.2)

will be required to compute DN (c) for this 20 s audio signal! A primary cause
of this lengthy computation time is the quadratic term N2 that occurs in
the expression above. The amount of time required grows proportionally
with the square of the length of the transform. Suppose that instead of 20 s
of audio we have 1 hour and N = 60× 60× 22050 = 79380000 samples. The
amount of time required in this case is approximated by N2 × 260 ns ≈ 52
years!

Computing the discrete Fourier transform by direct application of the
formula (5.6.1) is too slow when N is large. Fortunately, much faster algo-
rithms exist. The algorithms are appropriately called fast Fourier trans-
forms. The specific algorithm used depends on N . The simplest case is
when N = 2m is a power of 2. In this case an algorithm attributed to Coo-
ley and Tukey [1965] can be used. When N = 2m is divisible by 2 the sum
in (5.6.1) can be split into two parts corresponding with n being even or
odd,

DN (c, k) =

N/2−1∑
n=0

c2ne
−j2π(2n)k/N +

N/2−1∑
n=0

c2n+1e
−j2π(2n+1)k/N . (5.6.3)

Put M = N/2 and let p be the sequence with elements pn = c2n, that is,
the elements of p are the even indexed elements of c. Now the first term
in (5.6.3) can be written in the form

N/2−1∑
n=0

c2ne
−j2π(2n)k/N =

M−1∑
n=0

pne
−j2πnk/M = DM (p, k),

that is, this term is the discrete Fourier transform of length M = N/2 of
the sequence p. Let q be the sequence with elements qn = c2n+1, that is, q
contains the odd indexed elements of c. The second term in (5.6.3) can be
written in the form

N/2−1∑
n=0

c2n+1e
−j2π(2n+1)k/N = e−j2πk/N

M−1∑
n=0

qne
−j2πnk/M

= e−j2πk/NDM (q, k),
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that is, this term is the discrete Fourier transform of length M = N/2 of
the sequence q multiplied by the term e−j2πk/N . Combining these results we
have

DN (c, k) = DN/2(p, k) + e−j2πk/NDN/2(q, k).

We see that the discrete Fourier transform DN (c) can be evaluated by
computing two smaller discrete Fourier transforms DN/2(p) and DN/2(q)
of length N/2. Both of these smaller transforms are sequences that are pe-
riodic with period N/2 and so it is sufficient to know their values only for
k = 0, . . . , N2 − 1. These N/2 length transforms can intern be computed
by two transforms of length N/4 and so on until transforms of length 1 are
obtained. In this case D1(c, k) =

∑0
n=0 cne

−j2πnk = c0 for all k ∈ Z.
The computational cost of this procedure can be analysed as follows.

Suppose that CN is the number of complex arithmetic operations (com-
plex additions and multiplications) required to compute the discrete Fourier
transform DN (c) of length N = 2m. The computation requires calculation
of two transforms of length N/2 followed by N complex multiplications and
N additions. The multiplications arise from the multiplication of DN/2(q, k)

by e−j2πk/N and the additions arise from summing the result of this product
with DN/2(p, k). The number of operations satisfies

CN = 2CN/2 + 2N N ≥ 2.

Because D1(c, k) = c0 we have C1 = 0, that is, computing a discrete Fourier
transform of length 1 requires no complex operations at all. Putting am =
C2m we have

a0 = C1 = 0 am = 2am−1 + 2m+1 m ≥ 1. (5.6.4)

This type of recursive equation is called a difference equation. Exer-
cise 6.8 shows that

CN = am = 2m+1m = 2N log2N.

Observe that the number of operations (and hence the amount of time
required) grows proportionally to N log2N rather than N2. Suppose that
each complex operation requires no more than 260 ns. For the 20 s audio
signal consisting of N = 441216 samples the amount of time required will
be less than

2N log2N × 260 ns ≈ 4.3 s. (5.6.5)

This is more reasonable than 14 hours! If instead we have 1 hour of audio and
N = 79380000 samples the amount of time required is hypothesised to be less
than 1084 s ≈ 18 min. This is very reasonable when compared with the 52
years hypothesised to be required by direct application of formula (5.6.1).
In practice the computation time will vary based on the computer used
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and the specific algorithm implementation. Nevertheless, these numbers
indicate that a fast Fourier transform of large length can be computed within
a reasonable amount of time. This is not possible by direct application
of formula (5.6.1). Test 9 compares the practical running time of various
discrete Fourier transform implementations.

In the above computation of run times we have neglected that the fast
Fourier transform we have described required the length N to be a power of
two. Other algorithms exist for the case whenN is not a power of two [Rader,
1968; Bluestein, 1968; Frigo and Johnson, 2005]. These algorithms deliver
similarly dramatic computational savings. Even so, the restriction of the
length to a power of 2 is often not a significant drawback in practical appli-
cations. Consider again the example from Test 7 with N = 441216 samples.
Denote by

L = 2dlog2Ne = 219 = 524288

the smallest power of 2 greater than N . We can use the fast Fourier trans-
form algorithm described to compute the discrete Fourier transform DL(c)
of length L. This transform is a sequence with period L and elements

DL(c, k) = ĉ

(
k

L

)
=

L−1∑
n=0

cne
−j2πnk/L =

N−1∑
n=0

cne
−j2πnk/L k ∈ Z.

The second sum follows from our assumption that cn = 0 for n ≥ N . The
elements of DL(c) are the values of the discrete time Fourier transform ĉ at
multiples of 1

L rather than 1
N . This fact is often of no significant consequence

and can even be of benefit for some applications [Quinn and Hannan, 2001;
Quinn et al., 2008]. The original samples c0, . . . , cN−1 can still be recovered
by application of the inverse transform of length L, that is,

cn = D−1
L (DL(c), n) n = 0, . . . , N − 1.

This procedure of increasing the length of the transform is often called zero
padding on account of the fact that the samples cN , cN+1, . . . , cL−1 are
assumed to be zero. Test 10 presents a practical example of zero padding
for the purpose of filtering the 20 s audio recording from Test 7.

Test 9 (Benchmarking the fast Fourier transform)
In this test we compare the computational complexity of practical im-

plementations of the discrete Fourier transform. Three differenent imple-
mentations are compared: a direct implementation by formula (5.6.1), an
implementation of the fast Fourier transform of Cooley and Tukey [1965]
when the length N = 2m is a power of 2 as described in Section 5.6, and
an implementation from an optimised fast Fourier transform library called
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JTransforms. The JTransforms library contains implementations of fast
Fourier transforms of all lengths, not just powers of 2.

Figure 5.10 shows the run-time in seconds versus transform length. For
the JTransforms library and formula (5.6.1) the length of the transforms
is given by the sequence Nk =

⌈
26+k/2

⌋
for k = 0, 1, 2, . . . . For our im-

plementation of the Cooley and Tukey [1965] algorithm the length must
be a power of two and is given by Nk = 26+k/2 for k = 0, 2, 4, . . . . The
dashed lines indicate the approximate running times given by (5.6.2) and
by (5.6.5). These approximations appear reasonably accurate on the log
scale used in Figure 5.10. The fast Fourier transform algorithms are con-
siderably faster than formula (5.6.1) as expected. For example, when the
length is N = 221 = 2097152 the JTransforms library required approxi-
mately 0.58 s whereas formula (5.6.1) is hypothesised by (5.6.2) to require
approximately N2 × 260 ns ≈ 13 days.

The optimised algorithms from the JTransforms library are considerably
faster than our implementation of the Cooley and Tukey [1965] algorithm.
Observe the jagged nature of the run-time with the JTransforms library.
The algorithms used by the library for length Nk and odd k appear slower
than when k is even so that the length is a power of 2. The computer used is
an Intel Core 2 running at 2.4 GHz and the software is written in the Scala

programming language.

Test 10 (Filtering a lecture recording by fast Fourier transform)
We again consider the 20 s segment of audio consisting of N = 441216

samples from Test 7. As in Test 7 we let c be the sequence with elements
c0, . . . , cN−1 equal to the audio samples and put cn = 0 for n < 0 or n ≥ N .
The reconstructed audio signal is given by

x(t) =
∑
n∈Z

cn sinc(Ft− n) =
N−1∑
n=0

cn sinc(Ft− n)

where P = 1
F is the sample period and F = 22 050 Hz is the sample rate.

The Fourier transform of x is x̂ = F(x) = PΠ(Pf)ĉ(Pf) where ĉ = D(c)
is the discrete time Fourier transform of the sequence of samples c. Au-
dible in the recording is a faint high pitched hum. This hum appears in
the Fourier transform as spikes occurring at ±8 kHz and also as the region
between 4900 Hz and 5900 Hz where the magnitude of the Fourier transform
is elevated (Figure 5.8).

In this test we use a fast Fourier transform to remove this hum from the
audio while minimally affecting the human voice. To do this we compute an

https://github.com/wendykierp/JTransforms
https://github.com/wendykierp/JTransforms
https://github.com/wendykierp/JTransforms
https://github.com/wendykierp/JTransforms
https://github.com/wendykierp/JTransforms
https://github.com/wendykierp/JTransforms
http://scala-lang.org/
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Figure 5.10: Comparison between run-times of the discrete Fourier transform com-
puted directly by formula (5.6.1), by an implementation of the fast Fourier trans-
form (FFT) of Cooley and Tukey [1965] described in Section 5.6, and by the opti-
mised JTransforms fast Fourier transform library.

approximation of the bandlimited signal y with Fourier transform

ŷ(f) = F(y, f) =


0 |f | > 7200

0 |f − 5400| < 500

0 |f + 5400| < 500

x̂(f) otherwise.

That is, y is the signal with Fourier transform equal to x̂ except for those fre-
quencies between 4900 Hz and 5900 Hz and above 7200 Hz where the Fourier
transform is zero. Because y is bandlimited with bandwidth less than F ,

y(t) =
∑
n∈Z

bn sinc(Ft− n)

where b is the sequence with elements bn = y(nP ) given by samples of y at
sample period P . Now ŷ = PΠ(Pf)b̂(Pf) where b̂ = D(b) is the discrete
time Fourier transform of b. For f inside the interval [−1

2 ,
1
2), the discrete

https://github.com/wendykierp/JTransforms
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time Fourier transforms ĉ and b̂ are related by

b̂(f) =


0 |f | > 7200P

0 |f − 5400P | < 500P

0 |f + 5400P | < 500P

ĉ(f) otherwise.

For f /∈ [−1
2 ,

1
2) a similar relationship can be obtained by appealing to the

periodicity of b̂ and ĉ. This is easiest to express by introducing the notation
〈a〉 = a− dac called the centered fractional part of a ∈ R. Now

b̂(f) =


0 |〈f〉| > 7200P

0 |〈f − 5400P 〉| < 500P

0 |〈f + 5400P 〉| < 500P

ĉ(f) otherwise

for all f ∈ R.
Let L = 219 = 524288 be the smallest power of 2 less than or equal to N .

Using the fast Fourier transform we compute the discrete Fourier transform
DL(c) of length L of the sequence c. This yields values of ĉ at multiples of
1
L , that is,

DL(c, k) = ĉ

(
k

L

)
k ∈ Z.

Let d be the sequence with elements

dk = D(b, k/L) =


0

∣∣〈 k
L

〉∣∣ > 7200P

0
∣∣〈 k
L − 5400P

〉∣∣ < 500P

0
∣∣〈 k
L + 5400P

〉∣∣ < 500P

DL(c, k) = ĉ(k/L) otherwise.

We do not necessarily have d = DL(b) because bn is not necessarily equal to
zero for n < 0 and n ≥ L. Nevertheless, we will suppose that d ≈ DL(b).
In this case, application of the inverse discrete Fourier transform yeilds the
periodic sequence b̃ = D−1

L (d) and we expect the first L elements of b̃ to be
an approximation of the first L elements of b, that is,

b̃n ≈ bn = y(nP ) for n = 0, . . . , L− 1.

An approximation of the signal y is now given by

y(t) ≈ ỹ(t) =
N−1∑
n=0

b̃n sinc(Ft− `).
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Figure 5.11: Plot of the magnitude of the Fourier transform F(ỹ). The plot looks
similar to that of the magnitude of the Fourier transform of the original audio
signal (Figure 5.8) except that the spikes at ±8 kHz and the elevated region between
4900 Hz and 5900 Hz no longer exist.

Figure 5.11 plots the magnitude of Fourier transform F(ỹ). Observe that
|F(ỹ)| looks similar to the magnitude of the Fourier transform of the original
audio signal x plotted in Figure 5.8 except that the spikes at ±8 kHz and the
elevated region between 4900 Hz and 5900 Hz no longer exist. The samples
b̃0, . . . , b̃N−1 are written to the audio file nohum.wav. Listening to the audio
confirms that the human voice signal remains, but the high pitched hum is
no longer audible.

5.7 Exercises

5.1. Plot the signal e−α|t| where α > 0 and find its Fourier transform.

5.2. Plot the signal

4(t) =


t+ 1 −1 < t < 0

1− t 0 ≤ t < 1

0 otherwise
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and find its Fourier transform.

5.3. Show that the sinc function is square integrable, but not absolutely
integrable.

5.4. Find and plot the impulse response of the normalised lowpass Butter-
worth filters B1, B2 and B3.

5.5. Plot the signal

tΠ(t) =

{
t −1

2 < t ≤ 1
2

0 otherwise

and find its Fourier transform.

5.6. Let x be the signal with Fourier transform x̂(f) = Π(f)
(

cos(2πf)+1
)
.

Plot the Fourier transform x̂ and find and plot x.

5.7. State whether the following signals are bandlimited and, if so, find the
bandwidth.

(a) sinc(4t),

(b) Π(t/4),

(c) cos(2πt) sinc(t),

(d) e−|t|.

5.8. Show that ∑
n∈Z

eα|n| = 1 +
2

e−α − 1

if α < 0 (Hint: solve Exercise 3.5 first).

5.9. Show that if a sequence absolutely summable then it is also square
summable.

5.10. Show that
∑N−1

k=0 ej2πnk/N is equal to N if n is a multiple of N and
zero if n is any integer not a multiple of N . (Hint: use the result from
Exersise 3.5)

5.11. Let d = DN (c) be the discrete Fourier transform of the sequence c.
Show that

cn =
1

N

N−1∑
k=0

dke
j2πnk/N n = 0, . . . , N − 1.

(Hint: use the result from Exersize 5.10)

5.12. Plot the sequence cos(n) and determine whether it is bounded or pe-
riodic.
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5.13. Find the discrete time Fourier transform of the sequence αnun where
|α| < 1 and un is the step sequence. Plot the sequence and the mag-
nitude of the discrete time Fourier transform when α = 4

5 ,
1
2 ,

1
10 .
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Chapter 6

Discrete time systems

We have so far studied linear time invariant systems and inparticular those
systems described by linear differential equations with constant coefficients.
Such systems are useful for modelling electrical circuits, mechanical ma-
chines, electro-mechanical devices, and many other real world devices. One
particular linear time invariant system has so far been absent. This is the
time shifter Tτ with non zero time shift τ 6= 0.

We now consider systems constructed from linear combinations of time
shifters of the form TPn where n ∈ Z and P is a positive real number called
the sample period or simply period. That is, we consider systems of the
form

H(x) =
∑
n∈Z

hnTPn(x)

where h is a real or complex valued sequence. Such systems are called
discrete time systems. Discrete time systems are not regular because the
time shifter is not regular. However, we will find that the sequence h plays
a role analogous to that of the impulse response of a regular system. For
this reason h is called the discrete impulse response of H.

6.1 The discrete time impulse response

The discrete impulse response h immediately yields some properties of the
corresponding discrete time system H. For example, if hn = 0 for all n < 0,
then H is causal because

H(x, t) =
∑
n∈Z

hnTPn(x, t) =

∞∑
n=0

hnx(t− Pn)

only depends on values of the input signal x at times less than or equal to t.
A discrete time system is stable if and only if its discrete impulse response
is absolutely summable (Exercise 6.2). This is analagous to the property

103
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of regular systems that are stable if and only if their impulse response is
absolutely integrable (Exercise 3.3).

Let F and G be discrete time systems with equal sample period P and
discrete impulse responses f and g. Let

H = aF + bG a, b ∈ C

be the system formed by a linear combination of F and G. The response of
H to input signal x is

H(x) = a
∑
n∈Z

fnTPn(x) + b
∑
n∈Z

gnTPn(x)

=
∑
n∈Z

(afn + bgn)TPn(x),

and so H is a discrete time system with discrete impulse response given by
the linear combination of sequences af + ag.

Now suppose that

H(x) = F
(
G(x)

)
is formed by the composition of discrete time systems F andG. The response
of H to x is

H(x) = F
(∑
n∈Z

gnTPn(x)
)

=
∑
m∈Z

fmTPm
(∑
n∈Z

gnTPn(x)
)

=
∑
m∈Z

∑
n∈Z

fmgnTPm
(
TPn(x)

)
=
∑
m∈Z

∑
n∈Z

fmgnTP (m+n)(x).

By putting k = m+ n we have

H(x) =
∑
m∈Z

∑
k∈Z

fmgk−mTPk(x)

=
∑
k∈Z

∑
m∈Z

fmgk−mTPk(x) (interchange summation) (6.1.1)

=
∑
k∈Z

hkTPk(x)

where h is the sequence with elements given by

hn =
∑
m∈Z

fmgn−m = (f ∗ g)n.
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This is called the discrete convolution of sequences f and g. The special
notation f ∗ g is again used to denote the discrete convolution so that h =
f ∗g. The system H constructed by composition of the discrete time systems
F and G is a discrete time system. The discrete impulse response of H is the
discrete convolution of the discrete impulse responses of F and G. In what
follows we will often use the term convolution rather than the lengthier
term discrete convolution whenever there is no chance for confusion.

Consider the convolution u ∗ u of the step sequence (5.3.1) with itself.
The nth element of the convolution is

(u ∗ u)n =
∑
m∈Z

umun−m =
n∑

m=0

1 =

{
n+ 1 n ≥ 0

0 n < 0.

Not all sequences can be convolved. Denote by 1 the sequence with all
elements equal one. The convolution u ∗ 1 is not possible because

(u ∗ 1)n =
∑
m∈Z

um1n−m =
∞∑
m=0

1 =∞

is not finite for any n. The convolution u ∗ 1 is said not to exist. When
considering convolution of sequences it is important to make sufficient as-
sumptions for the convolution to exist. For example, the the convoltuion
f ∗ g always exists if both f and g are absolutely summable sequences (Ex-
ercise 6.4). Similarly, the interchange of summation in (6.1.1) only holds
under appropriate assumptions about the sequences f and g. For example,
the interchange is valid when f and g are absolutely summable.

Discrete convolution has many properties analogous to that of the convo-
lution of signals described in Section 3.2. For example, discrete convolution
is commutative, that is, f ∗ g = g ∗ f . Discrete convolution is associative,
that is, if f , g, and h are sequences then

(f ∗ g) ∗ h = f ∗ (g ∗ h). (Exercise 6.1)

Discrete convolution distributes with addition and commutes with scalar
multiplication, that is,

a(f ∗ h) + b(g ∗ h) = (af + bg) ∗ h

where a and b are real or complex constants.

6.2 The z-transform

Let c be a sequence. The function

Z(c) =
∑
n∈Z

cnz
−n
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is called the z-transform of c. The z-transform Z(c) is a function of the
complex plane. To indicate the value of Z(c) at z ∈ C we write either
Z(c, z) or Z(c)(z). The z-transform is not necessarily defined for all complex
numbers z. Let Rc be the set of nonnegative real numbers such that the
sequence cnr

−n is absolutely summable if and only if r ∈ Rc, that is,∑
n∈Z
|cn| r−n <∞ if and only if r ∈ Rc.

In this case, Z(c, z) is finite for all z with magnitude satisfying |z| ∈ Rc
because

|Z(c, z)| ≤
∑
n∈Z

∣∣cnz−n∣∣ ≤∑
n∈Z
|cn| r−n <∞.

The subset of the complex plane with magnitude fromRc is called the region
of convergence of the sequence c. The region of convergence of a sequence
is analogous to the region of convergence of a signal when considering its
Laplace transform. Recall that the region of convergence of a signal was
either a half plane, a vertical strip, the entire complex plane, or the empty
set (Section 4). We will find that the region of convergence of a sequence is
either a circular disk, an annular region in the complex plane, the complex
plane with a disc at the origin removed, the entire complex plane, or the
empty set.

The step sequence u has z-transform

Z(u) =
∑
n∈Z

unz
−n =

∞∑
n=0

z−n =
z

z − 1
|z| > 1. (Exercise 6.5)

This sum converges only if the magnitude of z is greater than one, that is,
only if |z| > 1. The region of convergence of the step sequence is the
set of complex numbers with magnitude greater than one. Graphically this
region of convergence is the complex plane with a disc of radius one centered
at the origin removed (Figure 6.2).

Consider the sequence with nth element (1
2)nun. The z-transform

Z
(
(1

2)nun
)

=
∑
n∈Z

(1
2)nunz

−n =
∞∑
n=0

(2z)−n =
2z

2z − 1
|z| > 1

2

converges only if |z| > 1
2 . The region of convergence is the complex plane

with a disc of radius 1
2 removed. Now consider the sequence with elements

(3
2)nu−n =

{
(3

2)n n ≤ 0

0 n > 0.

The z-transform

Z
(
(3

2)nu−n
)

=
∑
n∈Z

(3
2)nu−nz

−n =

∞∑
n=0

(2
3z)

n =
3

3− 2z
|z| < 3

2
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converges only if |z| < 3
2 . The region of convergence is an open disc of

radius 3
2 centered at the origin of the complex plane. The sequence with nth

element (1
2)nun + (3

2)nu−n has z-transform

Z
(
(1

2)nun + (3
2)nu−n

)
=

2z

2z − 1
+

3

3− 2z
1
2 < |z| < 3

2

that converges only if 1
2 < |z| < 3

2 . The region of convergence is an annulus
in the complex plane with inner radius 1

2 and outer radius 3
2 .

The delta sequence δ with elements

δn =

{
1 n = 0

0 otherwise

has z-transform

Z(δ) =
∑
n∈Z

δnz
−n = 1.

The region of convergence is the entire complex plane. Finally, consider the
sequence 1 that has every element equal to 1. In this case Z(1) =

∑
n∈Z z

−n

does not converge for any z ∈ C and the region of convergence is the empty
set. The sequence 1 is said not to have a z-transform.

Given the z-transform Z(c) the sequence c can be recovered by the in-
verse z-transform

cn =
1

2πj

∮
C
Z(c, z)zn−1dz

where C is a counterclockwise closed path encircling the origin and within
the region of convergence of c. Similarly to the inverse Laplace transform
(Section 4), direct calculation of the inverse z-transform requires a form of in-
tegration called contour integration that we will not consider here [Stew-
art and Tall, 2004]. For our purposes, and for many engineering purposes,
it suffices to remember only the following z-transform pair

Z
(
[n]kun

)
=

k!z

(z − 1)k+1
|z| > 1 (Exercise 6.6)

where

[n]k = n(n− 1) . . . (n− k + 1)

is called the falling factorial [Graham et al., 1994, p. 48]. In the case that
k = 0 the falling factorial is defined as [n]0 = 1 for all n ∈ Z.

Let a ∈ C. If c is a sequence with z-transform Z(c) and region of
convergence Rc then the sequence with nth element ancn has z-transform

Z(ancn) =
∑
n∈Z

ancnz
−n =

∑
n∈Z

cn(z/a)−n = Z(c, z/a)
z

a
∈ Rc.
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n
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2)nu−n

2

1

Figure 6.1: Real valued sequences. The top left plot show the step sequence u.
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Figure 6.2: Regions of convergence (unshaded) for the step sequence u (top left), the
sequence ( 1

2 )nun (top right), the sequence ( 3
2 )nu−n (bottom left), and the sequence

( 1
2 )nun+ ( 3

2 )nu−n (bottom right). The unit circle is indicated by the dashed circle.
The region of convergence takes the form of the complex plane with a disc at the
origin removed (top), a disc at the origin (bottom left), an annulus (bottom right),
the entire complex plane, or the empty set.
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This is called the scaling property of the z-transform. Using this property
the z-transform of the sequence an[n]kun is

Z
(
an[n]kun

)
=

k!akz

(z − a)k+1
|z| > |a| . (6.2.1)

This is the only z-transform pair we require here. We will have particular
use of the case when k is 0 or 1. In the case that k = 0 we obtain the
z-transform pair

Z
(
anun

)
=

z

z − a |z| > |a|

and in the case that k = 1 we obtain

Z
(
annun

)
=

az

(z − a)2
|z| > |a| .

Let g be a sequence with region of convergence Rg. The z-transform of the
shifted sequence with nth element gn−` where ` ∈ Z is related to that of g
by

Z(gn−`) =
∑
n∈Z

gn−`z
−n

=
∑
n∈Z

gnz
−(n+`)

= z−`
∑
n∈Z

gnz
−n = z−`Z(g) z ∈ Rg. (6.2.2)

This is called the time shift property of the z-transform.

The z-transform of a sequence is related to the transfer function of a
discrete time system. Let H be a discrete time system with discrete impulse
response h and period P . Because the transfer function of the time shifter
TPn is λ(TPn) = e−sPn (4.1.1) the transfer function of H is

λ(H, s) =
∑
n∈Z

hnλ(TPn) =
∑
n∈Z

hne
−sPn.

Putting z = ePs we have

Z(h, z) = λ(H, 1
P log z) =

∑
n∈Z

hnz
−n z ∈ Rh

where Rh is the region of convergence of h. We see that the transfer function
of a discrete time system with period P is related to the z-transform of its
discrete impulse response by the equation above or equivalently by

λ(H, s) = Z(h, ePs) esP ∈ Rh. (6.2.3)
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This relationship is analogous to the relationship between the transfer func-
tion of a regular linear time invariant system and the Laplace transform of
its impulse response (Section 4.1). The set of complex numbers s such that
esP ∈ Rh is called the region of convergence of the discrete time system
H. In this way, both sequences and discrete time systems have a region of
convergence.

Let F and G be discrete time systems with periods P and discrete im-
pulse responses f and g having regions of convergence Rf and Rg. Let
H(x) = F (G(x)) be the discrete time system formed by the composition F
and G. As shown in Section 6.1 the discrete impulse response of H is the
discrete convolution f ∗g. Recall from (4.1.3) that the transfer function of a
composition of linear time invariant systems is given by the product of the
transfer functions, that is,

λ(H) = λ(G)λ(F ) esP ∈ Rf ∩Rg.

Because

Z(f, esP ) = λ
(
F, s

)
, Z(g, esP ) = λ

(
G, s

)
, Z(f ∗ g, esP ) = λ(H, s)

when esP ∈ Rf ∩Rg we have

Z(f ∗ g) = Z(f)Z(g) z ∈ Rf ∩Rg.

That is, the z-transform of a convolution of sequences is the multiplication
of the z-transforms of those sequences. The region of convergence of the
convolution is the intersection of the regions of convergence. This is called
the convolution property of the z-transform.

Let H be discrete time system with discrete impulse response h having
region of convergence containing the complex unit circle. The spectrum of
H is

Λ(H, f) = λ(H, j2πf) =
∑
n∈Z

hne
−2πjfPn.

The spectrum is periodic with period equal to the reciprocal of the sample
period F = 1

P called the sample rate. The spectrum is related to the
discrete time Fourier transform of h by

D(h, f) = Λ(H, fP ) =
∑
n∈Z

hne
−2πjfn.

We have the following relationships between the transfer function, the spec-
trum, the discrete time Fourier transform, and the z-transform, of the dis-
crete time system H and its discrete impulse response h,

λ(H, j2πf) = Λ(H, f) = D(h, f) = Z(h, e2πjPf ).
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6.3 Difference equations

We have previously shown that interesting systems are found by consider-
ation of a linear differential equation with constant coefficients. We have
used these systems to model electrical and mechanical devices (Chapter 2).
We will find that interesting discrete time systems are found by considera-
tion of a linear difference equation with constant coefficients. That is, an
equation relating two sequences c and d of the form

m∑
`=0

a`cn−` =
k∑
`=0

b`dn−` n ∈ Z (6.3.1)

where a0, . . . , am and b0, . . . , bk are real or complex constants.

In order to study this equation it is useful to study the equation

m∑
`=0

a`TP`(x) =
k∑
`=0

b`TP`(y) (6.3.2)

that relates two signals x and y. Zemanian [1965, Sec. 9.5] calls (6.3.2) the
continuous variable case of a linear difference equation with constant
coefficients. If x and y are signals satisfying this equation then the samples
of x and y at multiples of P satisfy (6.3.1). That is, if we define sequences c
and d by cn = x(nP ) and dn = y(nP ) then c and d satisfy (6.3.1) whenever
x and y satisfy (6.3.2).

Suppose that H is a linear time invariant system with the property that
the response y = H(x) to input signal x is such that x and y satisfy (6.3.2).
The transfer function of H is found to be

λ(H, s) =

∑m
`=0 a`e

−sP`∑k
`=0 b`e

−sP`
= zk−m

∑m
`=0 a`z

m−`∑k
`=0 b`z

k−`
(Exercise 6.3)

where z = esP . Suppose that h is a sequence with z-transform

Z(h, z) = λ(H, s) = zk−m
a0z

m + a1z
m−1 + · · ·+ am

b0zk + b1zk−1 + · · ·+ bk
.

It follows from (6.2.3) that H is a discrete time system with discrete impulse
response h. By applying the inverse z-transform we can find an explicit
expression for h. This procedure is similar to how the impulse response of a
system described by a differential equation was found by application of the
inverse Laplace transform in Section 4.5. In the case that m > k the term
zk−m can be incorporated into the denominator obtaining

Z(h) =
a0z

m + a1z
m−1 + · · ·+ am

b0zm + b1zk−1 + · · ·+ bkzm−k
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and in the case that m < k the term zm−k can be incorporated into the
numerator obtaining

Z(h) =
a0z

k + a1z
k−1 + · · ·+ amz

k−m

b0zk + b1zk−1 + · · ·+ bk
.

In either case the order of the polynomials on the numerator and denomi-
nator are the same, that is, the order is w = max(m, k).

By factorising the polynomials on the numerator and denominator we
obtain

Z(h) =
a0

b0

(z − α0)(z − α1) · · · (z − αw)

(z − β0)(z − β1) · · · (z − βw)

where α0, . . . , αw are the roots of the numerator polynomial and β0, . . . , βw
are the roots of the denominator polynomial. If the numerator and denom-
inator polynomials share one or more roots, then these roots cancel leaving
the simpler expression

Z(h) =
a0

b0

(z − αd)(z − αd+1) · · · (z − αw)

(z − βd)(z − βd+1) · · · (z − βw)
, (6.3.3)

where d is the number of shared roots, these shared roots being

α0 = β0, α1 = β1, . . . , αd−1 = βd−1.

The roots from the numerator αd, . . . , αw are called the zeros and the roots
from the denominator βd, . . . , βw are called the poles. For a discrete time
system, the number of poles and zeros are equal. A pole-zero plot is con-
structed by marking the complex plane with a cross at the location of each
pole and a circle at the location of each zero (Figure 6.3).

The z-transform pair (6.2.1) has the term z on its numerator and so it
is convenient to write

Z(h) =
a0

b0
z

(z − αd)(z − αd+1) · · · (z − αw)

z(z − βd)(z − βd+1) · · · (z − βw)
.

Applying partial fraction to polynomial quotient yields

Z(h) =
a0

b0
z
∑
`∈K

A`
(z − β`)r`

where r` are positive integers, A` are complex constants, and K is a subset
of the indices from {d, d+1, . . . , w}. We need to consider those terms where
β` = 0 separately. Let K1 be the subset of indices from K such that β` = 0
when ` ∈ K1 and let K2 be the subset such that β` 6= 0 when ` ∈ K2. Now

Z(h) =
a0

b0

∑
`∈K1

A`
zr`−1

+
∑
`∈K

B`
βr`−1
` (r` − 1)!z

(z − β`)r`
.
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Figure 6.3: Pole zero plots for discrete time systems corresponding with first order
difference equations cn = dn− 2

3dn−1 (top left) and cn = dn+ 3
2dn−1 (top right) and

second order difference equations z2− 4
3x− 4

9 (bottom left) and z2+
√

2z+1 (bottom
right). The plots of the left correspond with stable systems because all poles are
contained inside the complex unit circle (dashed). Plots on the right correspond
with unstable systems because there exist poles on or outside the complex unit
circle. The small 2’s above the zero on the lower plots indicate the existence of two
zeros at the origin.
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where

B` =
a0A`

b0β
r`−1
` (r` − 1)!

.

Those terms of the form A`z
1−r` correspond with sequences A`δn+r`−1 where

δ is the delta sequence. From (6.2.1) with k = r`−1 those terms of the form

βr`−1
` (r` − 1)!z

(z − β`)r`

are found to correspond with sequences B`β
n
` [n]r`−1un where u is the step

sequence. Other sequences with the same z-transform are disregarded be-
cause they are not right sided and so do not correspond with a causal discrete
time system. Combing the above results we find that the discrete impulse
response h of the discrete time system H takes the form

hn =
a0

b0

∑
`∈K1

A`δn+r`−1 +
∑
`∈K2

B`β
n
` [n]r`−1un.

The discrete impulse response is absolutely summable only if the poles satisfy
|β`| < 1 for all ` = d, . . . , w as a result of the terms βn` that occur when
β` 6= 0. The system H is stable if and only if h is absolutely summable
(Exercise 6.2) and so a discrete time system is stable if and only if no poles
lie outside or on the complex unit circle.

We now consider some specific examples of difference equations and their
corresponding discrete time systems. Consider the difference equation

cn = dn + adn−1 n ∈ Z (6.3.4)

where a ∈ C. This is called a first order difference equation. Suppose
that H is a discrete time system such that the response y = H(x) to input
x satisfies

x = y − aTP (y).

The transfer function of H is

λ(H, s) =
1

1− ae−sP =
1

1− az−1
=

z

z − a
where z = esP . The system has a single zero at z = 0 and a single pole
at z = a. The system will be stable if and only if this pole lies strictly
inside the complex unit circle, that is, if and only if |a| < 1. The discrete
impulse response is found to be hn = anun by putting k = 0 in (6.2.1).
Other sequences with this z-transform are discarded because they do not
correspond with a causal system. When |a| < 1 the region of convergence
contains the unit circle and the system has spectrum

Λ(H, f) = λ(H, j2πf) = Z(h, e2πjPf ) =
e2πjPf

e2πjPf − a.
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The magnitude and phase spectrum are plotted in Figure 6.4 in the case
that a = 1

2 and 1
10 .

Now consider the difference equation

cn = dn − adn−1 − bdn−2 n ∈ Z.

where a, b ∈ C. This is called a second order difference equation.
Suppose that H is a discrete time system with reponse y = H(x) satisfying
the equation x = y − aTP (y)− bT2P (y). The transfer function is

λ(H) =
1

1− ae−sP − be−2sP
=

z2

z2 − az − b = Z(h)

where h is the discrete impulse response of H. The system has two zeros
at z = 0 and two poles given by the roots of the polynomial z2 − az − b.
The z-transform can be inverted to obtain h (Exercise 6.7). The system H
is stable if and only if both poles lie strictly inside the complex unit circle
(Figure 6.3). In this case, H has spectrum

Λ(H, f) = Z(h, e2πjPf ) =
e2πjPf

e4πjPf − ae2πjPf − b .

6.4 Exercises

6.1. Show that discrete convolution is associative.

6.2. Show that a discrete time system is stable if and only if its discrete
impulse response is absolutely summable.

6.3. Suppose thatH is a linear time invariant system such that the response
y = H(x) to input x satisfies (6.3.2). Find the transfer function of H.

6.4. Let f and g be absolutely summable sequences. Show that the discrete
convolution f ∗ g is also absolutely summable.

6.5. Show that the z-transform of the sequence anun is z/(z−a) with region
of convergence |z| > |a|.

6.6. Show that the z-transform of the sequence [n]kun where [n]k = n(n−
1) . . . (n− k + 1) is a falling factorial is

Z
(
[n]kun

)
=

k!z

(z − 1)k+1
|z| > 1.

6.7. Find the discrete impulse response of the discrete time system corre-
sponding with the second order difference equation cn = dn− adn−1−
bdn−2.
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f

|Λ(H, f)|
1
2

1
10

2

−F F

f

∠Λ(H, f)
1
2

1
10

π
6

−π
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F

Figure 6.4: Magnitude and phase spectrum of the discrete time H with discrete
implulse response hn = anun for a = 1

2 and 1
10 and period P = 1

F . The spectrum is
periodic with period F = 1

P . This system corresponds with the first order difference
equation cn = dn − 2dn−1.
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6.8. Let dn be a sequence satisfying dn = 2dn−1 + 2n+1 and suppose that
d0 = 0. Show that dn = 2n+1n for n = 1, 2, . . . .

6.9. The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . satisfies the recursive
equation d0 = 0, d1 = 1, and dn = dn−1 + dn−2 for n ≥ 2. Find a
closed form expression for the nth Fibonacci number.
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