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Chapter 1

Signals and systems

It is assumed that the reader is familiar with the concept of a function! That
is, a map from the elements in a set X to the elements in another set Y .
Consider sets

X =


Mario
Link
Ness

 Y =


Freeman

Ryu
Sephiroth

Conker
Ness

 .

An example of a function from X to Y is

f(x) =


Conker x = Mario

Sephiroth x = Link

Sephiroth x = Ness.

The function f maps Mario to Conker, Link to Sephiroth, and Ness to
Sephiroth. The value of f for input x is denoted by f(x) and so, for example,
f(Mario) = Conker and f(Link) = Sephiroth. The set X is called the
domain of the function f and the set of values that the functions takes,
that is, the set {f(x), x ∈ X}, is called the range. In the above example
the range is the set {Conker,Sephiroth}. Observe that the range is a subset
of Y . The set of all functions mapping X to Y is denoted by X → Y and
so f ∈ X → Y in the example above.

A signal is a function that maps a real number to a complex number,
that is, a function from the set R→ C. For example

sin(πt),
1

2
t3, e−t

2

all represent signals with t ∈ R. The real part of these signals is plotted
in Figure 1.1. Many physical phenomena, such as sound, light, weather,
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Figure 1.1: Plots of three signals.

and motion, can be modelled using signals. In this text we primarily focus
on examples from electrical and mechanical engineering where signals are
use to model changes in quantities such as voltage, current, position, angle,
force, and torque, over time. In these examples, the independent variable t
represents “time”. However, there is no fundamental reason for this and the
techniques developed here can be applied equally well when t represents a
quantity other than time. An example where this occurs is image processing.

1.1 Properties of signals

A signal x is bounded if there exists a real number M such that

|x(t)| < M for all t ∈ R

where | · | denotes the (complex) magnitude. Both sin(πt) and e−t
2

are
examples of bounded signals because | sin(πt)| ≤ 1 and |e−t2 | ≤ 1 for all
t ∈ R. However, 1

2 t
3 is not bounded because its magnitude grows indefinitely

as t moves away from the origin.
A signal x is periodic if there exists a positive real number T such that

x(t) = x(t+ kT ) for all k ∈ Z and t ∈ R.

The smallest such positive T it is called the fundamental period. For
example, the signal sin(πt) is periodic with period T = 2. Neither 1

2 t
3 or

e−t
2

are periodic.
A signal x is right sided if there exists T ∈ R such that x(t) = 0 for

all t < T . Correspondingly x is left sided if x(t) = 0 for all T > t. For
example, the step function

u(t) =

{
1 t ≥ 0

0 t < 0
(1.1.1)

is right-sided. Its horizontal reflection u(−t) is left sided (Figure 1.2). A
signal x is said to be finite or to have finite support if it is both left and
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Figure 1.2: The right sided step function u(t), its left sided reflection u(−t), the
finite rectangular pulse Π(t) and the signal 1

2 + 1
2 cos(x) that is not finite.

right sided, that is, if there exists T ∈ R such that x(t) = x(−t) = 0 for
all t > T . The signals sin(πt) and e−t

2
do not have finite support, but the

rectangular pulse

Π(t) =

{
1 |t| < 1

2

0 otherwise
(1.1.2)

does.
A signal x is even (or symmetric) if

x(t) = x(−t) for all t ∈ R

and odd (or antisymmetric) if

x(t) = −x(−t) for all t ∈ R.

For example, sin(πt) and 1
2 t

3 are odd and e−t
2

is even. A signal x is con-
jugate symmetric if

x(t) = x(−t)∗ for all t ∈ R

and conjugate antisymmetric if

x(t) = −x(−t)∗ for all t ∈ R,

where ∗ denotes the complex conjugate of a complex number. Equivalently, x
is conjugate symmetric if its real part Rex is an even signal and its imaginary
part Imx is an odd signal, and x is conjugate antisymmetric if its real
part is odd and its imaginary part is even. For example, the signal e−t

2
+

j sin(πt) where j =
√
−1 is conjugate symmetric and the signal 1

2 t
3 + je−t

2

is conjugate antisymmetric.
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Figure 1.3: Derivatives of the signals sin(πt), 1
2 t

3, e−t
2

from Figure 1.1.

A signal x is continuous at t ∈ R if

lim
h→0

x(t+ h) = lim
h→0

x(t− h)

and x is said to be continuous if it is continuous at all t ∈ R. The sig-
nals sin(πt), 1

2 t
3, and e−t

2
are continuous, but the step function u is not

continuous at zero because

lim
h→0

u(h) = 1 6= 0 = lim
h→0

u(−h).

The set of continuous signals is typically denoted by C0(R) or just C0. A
signal x is continuously differentiable or just differentiable if

lim
h→0

x(t+ h)− x(t)

h
= lim

h→0

x(t)− x(t− h)

h
for all t ∈ R.

Considered as a function of t this limit is called the derivative of x at t and
is typically denoted by d

dtx(t). For example, the signals sin(πt), 1
2 t

3, e−t
2
,

and t2 are differentiable with derivatives

π cos(πt), 3
2 t

2, −2te−t
2
, 2t,

but the step function u and the rectangular pulse Π are not differentiable
(Exercise 1.7). The set of differentiable signals is denoted by C1 or C1(R).
A signal is k-times differentiable if its k−1 th derivative is differentiable.
The set of k-times differentiable signals is typically denoted by Ck or Ck(R).

A signal x is locally integrable if∫ b

a
|x(t)| dt <∞

for all finite constants a and b, where <∞ means that the integral evaluates
finite complex number. The signals sin(πt), 1

2 t
3, and e−t

2
are all locally

integrable. An example of a signal that is not locally integrable is x(t) = 1
t



1.1 Properties of signals 5

(Exercise 1.3). The set of locally integrable signals is typically denoted by
Lloc or Lloc(R).

A signal x is absolutely integrable or Lebesgue integrable if

‖x‖1 =

∫ ∞
−∞
|x(t)| dt <∞. (1.1.3)

Here we introduce the notation ‖x‖1 called the L1-norm of x. For example
sin(πt) and 1

2 t
3 are not absolutely integrable, but e−t

2
is because [Nicholas

and Yates, 1950] ∫ ∞
−∞
|e−t2 |dt =

∫ ∞
−∞

e−t
2
dt =

√
π. (1.1.4)

It is common to denote the set of absolutely integrable signals by L1 or
L1(R). So, e−t

2 ∈ L1 and 1
2 t

3 /∈ L1. A signal x is square integrable if

‖x‖22 =

∫ ∞
−∞
|x(t)|2 dt <∞.

The real number ‖x‖2 is called the L2-norm of x. Square integrable signals
are also called energy signals and the squared L2-norm ‖x‖22 is called the
energy of x. For example, sin(πt) and 1

2 t
3 are not energy signals, but e−t

2
is.

It has energy ‖e−t2‖22 =
√
π/2 (Exercise 1.6). The set of square integrable

signals is denoted by L2 or L2(R).
We write x = y to indicate that two signals x and y are equal pointwise,

that is, x(t) = y(t) for all t ∈ R. This definition of equality is often stronger
than we desire. For example, the step function u and the signal

z(t) =

{
1 t > 0

0 t ≤ 0

are not equal pointwise because they are not equal at t = 0 since u(0) = 1
and z(0) = 0. It is useful to identify signals that differ only at isolated
points and for this we use a weaker definition of equality. We say that two
signals x and y are equal almost everywhere if∫ b

a
|x(t)− y(t)| dt = 0

for all finite constants a and b. So, in the previous example, while u 6= z
pointwise we do have u = z almost everywhere. Typically the term almost
everywhere is abbreviated to a.e. and one writes

x = y a.e. or x(t) = y(t) a.e.

to indicate that the signals x and y are equal almost everywhere.
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1.2 Spaces of signals

We will regularly be interested in subsets of the set of all signals R → C.
Two important families of subsets are the linear spaces and the shift-
invariant spaces.

Let x and y be signals. We denote by x+y the signal that takes the value
x(t) + y(t) for each t ∈ R, that is, the signal that results from adding x and
y. For a ∈ C we denote by ax the signal that takes the value ax(t) for each
t ∈ R, that is, the signal that results from multiplying x by a (Figure 1.4).
For signals x and y and complex numbers a and b the signal

ax+ by

is called a linear combination of x and y.
Let X ⊆ R → C be a set of signals. The set X is a linear space (or

vector space) if for all signals x and y from X and all complex numbers
a and b the linear combination ax + by is also in X. The set of all signals
R→ C is a linear space. Another example is the set of differentiable signals,
because, if x and y are differentiable, then the linear combination ax + by
is differentiable. The derivative is aDx + bDy. The set of even signals is
another example of a linear space because if x and y are even then

ax(t) + by(t) = ax(−t) + by(−t)

and so the linear combination ax+ by is even. The set of locally integrable
signals Lloc, the set of absolutely integrable signals L1, and the set of square
integrable signals L2 are linear spaces (Exercise 1.9). The set of periodic
signals is not a linear space (Exercise 1.10).

For a real number τ the signal x(t − τ) is called a time-shift or shift
or sometimes translation of the signal x(t). Figure 1.5 depicts the shift
x(t−τ) for different values of τ in the case that x(t) = e−t

2
. A set of signals

X ⊆ R → C is a shift-invariant space if for all x ∈ X and all τ ∈ R the
shift x(t − τ) is also in X. Examples of shift-invariant spaces are the set
of differentiable signals, the set of periodic signals (Exercise 1.10), and Lloc,
L1, and L2 (1.9). The set of even signals and the set of odd signals are not
shift-invariant spaces.

Linear spaces and shift-invariant spaces of signals will act as domains for
the next type of function that we consider called systems.

1.3 Systems (functions of signals)

A system is a function that maps a signal to another signal. For example,

x(t) + 3x(t− 1),

∫ 1

0
x(t− τ)dτ,

1

x(t)
,

d

dt
x(t)
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2
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i(t)

R2

R1

x(t) y(t)

Figure 1.6: A voltage divider circuit.

H
x Hx

Figure 1.7: System block diagram with input signal x and output signal H(x).

represent systems, each mapping the signal x to another signal. Consider
the electric circuit in Figure 1.6 called a voltage divider. If the voltage at
time t is x(t) then, by Ohm’s law, the current at time t satisfies

i(t) =
1

R1 +R2
x(t),

and the voltage over the resistor R2 is

y(t) = R2i(t) =
R2

R1 +R2
x(t). (1.3.1)

The circuit can be considered as a system mapping the signal x representing
the voltage to the signal i = 1

R1+R2
x representing the current, or a system

mapping x to the signal y = R2
R1+R2

x representing the voltage over resistor
R2.

Let X ⊆ R→ C and Y ⊆ R→ C be sets of signals. We denote systems
with capital letters such as H and G. A system is a function H ∈ X → Y
that maps each signal from the domain X to a signal from Y . Given input
signal x ∈ X the output signal of the system is denoted by H(x). The
output signal is often called the response of system H to signal x. We
will often drop the brackets and write simply Hx for the response of H to
x1. The value of the output signal Hx at t ∈ R is denoted by Hx(t) or
H(x)(t) or H(x, t) and we do not distinguish between these notations. It is
sometimes useful to depict systems with a block diagram as in Figure 1.7.
The electric circuit in Figure 1.6 corresponds with the system

Hx =
R2

R1 +R2
x = y.

1In the literature it is customary to drop the brackets only when H is a linear system
(Section 1.5). In this text the we occasionally drop the brackets even when H is not linear.
Since we deal primarily with linear systems this faux pas will occur rarely.
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This system multiplies the input signal x by R2
R1+R2

. This brings us to our
first practical test.

Test 1 (Voltage divider) In this test we construct the voltage divider from
Figure 1.6 on a breadboard with resistors R1 ≈ 100Ω and R2 ≈ 470Ω with
values accurate to within 5%. Using a computer soundcard (an approxima-
tion of) the voltage signal

x(t) = sin(2πf1t) with f1 = 100

is passed through the circuit. The approximation is generated by sampling
x(t) at rate F = 1

P = 44100Hz to generate samples

x(nP ) n = 0, . . . , 2F

corresponding to approximately 2 seconds of signal. These samples are
passed to the soundcard which starts playback. The voltage over resis-
tor R2 is recorded (also using the soundcard) that returns a list of samples
y1, . . . , yL taken at rate F . The voltage over R2 can be (approximately)
reconstructed from these samples as

ỹ(t) =
L∑
`=1

y` sinc(Ft− `) (1.3.2)

where

sinc(t) =
sin(πt)

πt
(1.3.3)

is the called the sinc function and is plotted in Figure 5.1. We will justify
this reconstruction in Section 5.4. Simultaneously the (stereo) soundcard is
used to record the input voltage x producing samples x1, . . . , xL taken at
rate F . An approximation of the input signal is

x̃(t) =

L∑
`=1

x` sinc(Ft− `). (1.3.4)

In view of (1.3.1) we would expect the approximate relationship

ỹ ≈ R2

R1 +R2
x̃ =

47

57
x̃.

A plot of ỹ, x̃ and 47
57 x̃ over a 20ms period from 1s to 1.02s is given in Fig-

ure 1.8. The hypothesised output signal 47
57 x̃ does not match the observed

output signal ỹ. A primary reason is that the circuitry inside the soundcard
itself cannot be ignored. When deriving the equation for the voltage divider



10 Testable linear shift-invariant systems

we implicitly assumed that current flows through the output of the sound-
card without resistance (a short circuit), and that no current flows through
the input device of the soundcard (an open circuit). These assumptions are
not realistic. Modelling the circuitry in the sound card wont be attempted
here. In Section 2.2 we will construct circuits that contain external sources
of power (active circuits). These are less sensitive to the circuitry inside the
soundcard.

When specifying a system we are free to choose the domain X at our con-
venience. In cases such as the voltage divider it is reasonable to choose the
domain X = R → C, that is, the domain can contain all signals. However,
this is not always convenient or possible. For example, the system

Hx(t) =
1

x(t)

is not defined at those t where x(t) = 0 because we cannot divide by zero.
To avoid this we might choose the domain as the set of signals x(t) that are
not zero for any t ∈ R.

Another example is the system I∞ defined by

I∞x(t) =

∫ t

−∞
x(τ)dτ, (1.3.5)

called an integrator. The signal x(t) = 1 cannot be input to the integrator
because the integral

∫ t
−∞ dt is not finite for any t. However, the integrator

I∞ can operate on absolutely integrable signals because, if x is absolutely
integrable, then

I∞x(t) =

∫ t

−∞
x(τ)dτ ≤

∫ t

−∞
|x(τ)| dτ <

∫ ∞
−∞
|x(τ)| dτ = ‖x‖1 <∞

for all t ∈ R. We might then choose a domain for I∞ as the set of absolutely
integrable signals L1. The integrator can also be applied to signals that are
right sided and locally integrable because, for any right sided signal x there
exists T ∈ R such that x(t) = 0 for all t < T and so,

I∞x(t) =

∫ t

−∞
x(τ)dτ =

∫ t

T
x(τ)dτ <∞

for all t ∈ R if x is locally integrable. So another possible domain for I∞ is
the set of right sided locally integrable signals. A final possible domain is
the subset of locally integrable signals for which

∫ 0
−∞ |x(t)| dt is finite. This

last example will be the domain we usually choose for the integrator I∞.
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Figure 1.8: Plot of reconstructed input signal x̃ (solid line), output signal ỹ (solid
line with circle) and hypothesised output signal 47

57 x̃ (solid line with dot) for the
voltage divider circuit in Figure 1.6. The hypothesised signal does not match ỹ.
One reason is that the model does not take account of the circuitry inside the
soundcard.
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.
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1.4 Some important systems

The system

Tτx(t) = x(t− τ)

is called a time-shifter or simply shifter. This system shifts the input
signal along the t axis (“time” axis) by τ . When τ is positive Tτ delays
the input signal by τ . The shifter will appear so regularly that we use the
special notation Tτ to represent it. Figure 1.5 depicts the action of shifters
T1.5 and T−3 on the signal x(t) = e−t

2
. When τ = 0 the shifter is the

identity system T0x = x that maps a signal to itself. Another important
system is the time-scaler that has the form

Hx(t) = x(αt), α ∈ R.

Figure 1.9 depicts the action of time-scalers with different values for α.
When α = −1 the time-scaler reflects the input signal in the t axis. When
α = 1 the time-scaler is the identity system T0. Both the shifter and time-
scaler are well defined for all signals and so it is reasonable to choose their
domains to be the entire set of signals R → C. We always assume this is
the case unless otherwise stated.

Another regularly encountered system is the differentiator

Dx(t) =
d

dt
x(t)

that returns the derivative of the input signal. We also define a kth differ-
entiator

Dkx(t) =
dk

dtk
x(t)

that returns the kth derivative of the input signal. The differentiator is only
defined for differentiable signals. A domain for D is the set of differentiable
signals C1 and a domain for Dk is the set of k-times differentiable signals
Ck. Unless otherwise stated we will always assume the domain of Dk to be
Ck.

Another important system is the integrator

Iax(t) =

∫ t

−a
x(τ)dτ.

The parameter a describes the lower bound of the integral. In this course
it will often be that a =∞. For example, the response of the integrator I∞
to the signal tu(t) where u is the step function (1.1.1) is∫ t

−∞
τu(τ)dτ =

{∫ t
0 τdτ = t2

2 t > 0

0 t ≤ 0.
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Observe that the integrator I∞ cannot be applied to the signal x(t) = t
because

∫ t
−∞ τdτ is not finite for any t. A domain for I∞ cannot contain the

signal x(t) = t. Unless otherwise stated we will assume the domain of I∞ to
be the subset of locally integrable signals Lloc for which

∫ 0
−∞ |x(t)| dt < ∞

(Exercise 1.15). For finite a < ∞ we will assume, unless otherwise stated,
that the domain of Ia is the set of locally integrable signals Lloc.

1.5 Properties of systems

In this section we define a number of important properties that systems can
possess. In what follows X ⊆ R→ C and Y ⊆ R→ C are set of signals. A
system H ∈ X → Y with domain X is called memoryless if, for all input
signals x ∈ X, the output signal Hx at time t depends only on x at time t.
For example 1

x(t) with domain the set of signals that do not take the value
zero and the identity system T0 with domain the set of all signal R→ C are
memoryless, but

x(t) + 3x(t− 1) and

∫ 1

0
x(t− τ)dτ x ∈ Lloc

are not. A shifter Tτ with τ 6= 0 is not memoryless.
A system H ∈ X → Y is causal if, for all input signals x ∈ X, the

output signal Hx at time t depends on x at times less than or equal to t.
Memoryless systems such as 1

x(t) and T0 are also causal. The shifter Tτ is
causal when τ ≥ 0, but is not causal when τ < 0. The systems

x(t) + 3x(t− 1) and

∫ 1

0
x(t− τ)dτ x ∈ Lloc

are causal, but the systems

x(t) + 3x(t+ 1) and

∫ 1

0
x(t+ τ)dτ x ∈ Lloc

are not causal.
A system H ∈ X → Y is called bounded-input-bounded-output

(BIBO) stable or just stable if the output signal Hx is bounded whenever
the input signal x is bounded. That is, H is stable if for every positive real
number M there exists a positive real number K such that for all input
signals x ∈ X bounded below M , that is,

|x(t)| < M for all t ∈ R,

it holds that the output signal Hx is bounded below K, that is,

|Hx(t)| < K for all t ∈ R.
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H

a
x

b
y

H(ax+ by)

aH
x

bH
y

aHx+ bHy

Figure 1.10: If H is a linear system the outputs of these two diagrams are the same
signal, i.e. H(ax+ by) = aHx+ bHy.

For example, the system x(t) + 3x(t− 1) with domain R→ C is stable with
K = 4M since if |x(t)| < M , then

|x(t) + 3x(t− 1)| ≤ |x(t)|+ 3 |x(t− 1)| < 4M = K.

The integrator Ia for a ∈ R having domain Lloc and the differentiator D
with domain C1 are not stable (Exercises 1.16 and 1.17).

Let H ∈ X → Y be a system with both the domain X and Y being
linear spaces of signals. The system H is linear if

H(ax+ by) = aHx+ bHy

for all signals x, y ∈ X and all complex numbers a and b. That is, a linear
system has the property: if the input consists of a weighted sum of signals,
then the output consists of the same weighted sum of the responses of the
system to those signals. Figure 1.10 indicates the linearity property using a
block diagram. For example, the differentiator is linear because

D(ax+ by)(t) =
d

dt

(
ax(t) + by(t)

)
= a

d

dt
x(t) + b

d

dt
y(t) = aDx(t) + bDy(t)

whenever both x and y are differentiable, that is, when x, y ∈ C1. However,
the system Hx(t) = 1

x(t) is not linear because

H(ax+ by)(t) =
1

ax(t) + by(t)
6= a

x(t)
+

b

y(t)
= aHx(t) + bHy(t)

in general.
Let H ∈ X → Y be a system with both the domain X and Y being shift-

invariant spaces. The system H is shift-invariant (or time-invariant) if

HTτx(t) = Hx(t− τ)

for all signals x ∈ X and all shifts τ ∈ R. That is, a system is shift-invariant
if shifting the input signal results in the same shift of the output signal.
Equivalently, H is shift-invariant if it commutes with the shifter Tτ , that is,
if

HTτx = TτHx
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x
H Tτ

TτHx x
Tτ H

HTτx

Figure 1.11: If H is a shift-invariant system the outputs of these two diagrams are
the same signal, i.e. HTτx = TτHx.

for all τ ∈ R and all signals x ∈ X. Figure 1.11 represents the property
of shift-invariance with a block diagram. For example, the differentiator is
shift-invariant because

DTτx(t) =
d

dt
x(t− τ) = TτDx(t)

by the chain rule for differentiation. The integrator I∞ and shift-invariant
(Exercise 1.20) but the integrator Ia for finite a <∞ is not (Exercise 1.19).

We will be primarily interested in systems that are both linear and shift-
invariant. Such systems are said to be linear shift-invariant or linear
time-invariant systems. The phrase “Let H ∈ X → Y be a linear shift-
invariant system” will occur regularly and it will always imply that both
sets X and Y are linear and shift-invariant spaces of signals.

Exercises

1.1. How many distinct functions from the set X = {Mario,Link} to the
set Y = {Freeman,Ryu,Sephiroth} exist? Write down each function,
that is, write down all functions from the set X → Y .

1.2. State whether the step function u(t) is bounded, periodic, absolutely
integrable, an energy signal.

1.3. Show that the signal t2 is locally integrable, but that the signal 1
t2

is
not.

1.4. Plot the signal

x(t) =

{
1
t+1 t > 0

1
t−1 t ≤ 0.

State whether it is: bounded, locally integrable, absolutely integrable,
square integrable.

1.5. Plot the signal

x(t) =

{
1√
t

0 < t ≤ 1

0 otherwise.

Show that x is absolutely integrable, but not square integrable.
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1.6. Compute the energy of the signal e−α
2t2 (Hint: use equation (1.1.4)

on page 5 and a change of variables).

1.7. Show that the signal t2 is differentiable, but the step function u and
rectangular pulse Π are not.

1.8. Plot the signal sin(t) + sin(πt). Show that this signal is not periodic.

1.9. Show that the set of locally integrable signals Lloc, the set of absolutely
integrable signals L1, and the set of square integrable signals L2 are
linear shift-invariant spaces.

1.10. Show that the set of periodic signals is a shift-invariant space, but not
a linear space.

1.11. Show that the set of bounded signals is a linear shift-invariant space.

1.12. LetK > 0 be a fixed real number. Show that the set of signals bounded
below K is a shift invariant space, but not a linear space.

1.13. Show that the set of even signals and the set of odd signals are not
shift invariant spaces.

1.14. Show that the integrator Ic with finite c ∈ R is not stable.

1.15. Show that if the signal x is locally integrable and
∫ 0
−∞ |x(t)| dt < ∞

then I∞x(t) =
∫ t
−∞ x(t)dt <∞ for all t ∈ R.

1.16. Show that the integrator I∞ is not stable.

1.17. Show that the differentiator system D is not stable.

1.18. Show that the shifter Tτ is linear and shift-invariant and that the
time-scaler is linear, but not time invariant.

1.19. Show that the integrator Ic with finite c ∈ R is linear, but not shift-
invariant.

1.20. Show that the integrator I∞ is linear and shift-invariant.

1.21. State whether the system Hx = x+ 1 is linear, shift-invariant, stable.

1.22. State whether the system Hx = 0 is linear, shift-invariant, stable.

1.23. State whether the system Hx = 1 is linear, shift-invariant, stable.

1.24. Let x be a signal with period T that is not equal to zero almost ev-
erywhere. Show that x is neither absolutely integrable nor square
integrable.



Chapter 2

Systems modelled by
differential equations

Systems of particular interest are those where the input signal x and output
signal y are related by a linear differential equation with constant coeffi-
cients, that is, an equation of the form

m∑
`=0

a`
d`

dt`
x(t) =

k∑
`=0

b`
d`

dt`
y(t),

where a0, . . . , am and b0, . . . , bk are real or complex numbers. In what follows
we use the differentiator system D rather than the notation d

dt to represent

differentiation. To represent the `th derivative we write D` instead of d`

dt`
.

Using this notation the differential equation above is

m∑
`=0

a`D
`x =

k∑
`=0

b`D
`y. (2.0.1)

Equations of this form can be used to model a large number of electrical,
mechanical and other real world devices. For example, consider the resis-
tor and capacitor (RC) circuit in Figure 2.1. Let the signal vR represent
the voltage over the resistor and i the current through both resistor and
capacitor. The voltage signals satisfy

x = y + vR,

and the current satisfies both

vR = Ri and i = CDy.

Combining these equations,

x = y +RCDy (2.0.2)

17
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C

R

x(t) y(t)

Figure 2.1: An electrical circuit with resistor and capacitor in series, otherwise
known as an RC circuit.

mass M

K BB

p(t)f(t)

Figure 2.2: A mechanical mass-spring-damper system

that is in the form of (2.0.1).
As another example, consider the mass-spring-damper in Figure 2.2. A

force represented by the signal f is externally applied to the mass, and the
position of the mass is represented by the signal p. The spring exerts force
−Kp that is proportional to the position of the mass, and the damper exerts
force −BDp that is proportional to the velocity of the mass. The cumulative
force exerted on the mass is

fm = f −Kp−BDp

and by Newton’s law the acceleration of the mass D2p satisfies

MD2p = fm = f −Kp−BDp.

We obtain the differential equation

f = Kp+BDp+MD2p (2.0.3)

that is in the form of (2.0.1) if we put x = f and y = p. Given p we can
readily solve for the corresponding force f . As a concrete example, let the
spring constant, damping constant and mass be K = B = M = 1. If the
position satisfies p(t) = e−t

2
, then the corresponding force satisfies

f(t) = e−t
2
(4t2 − 2t− 1).
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Figure 2.3: A solution to the mass-spring-damper system with K = B = M = 1.
The position is p(t) = e−t

2

with corresponding force f(t) = e−t
2

(4t2 − 2t− 1).

Figure 2.3 depicts these signals.
What happens if a particular force signal f is applied to the mass? For

example, say we apply the force

f(t) = Π(t− 1
2) =

{
1 0 < t ≤ 1

0 otherwise.

What is the corresponding position signal p? We are not yet ready to answer
this question, but will be later (Exercise 4.14).

In both the mechanical mass-spring-damper system in Figure 2.2 and the
electrical RC circuit in Figure 2.1 we obtain a differential equation relating
the input signal x with the output signal y. The equations do not specify
the output signal y explicitly in terms of the input signal x, that is, they do
not explicitly define a system H such y = Hx. As they are, the differential
equations do not provide as much information about the behaviour of the
system as we would like. For example, is the system stable? Much more
information about these systems will be obtained when the Laplace trans-
form is introduced in Chapter 4. The remainder of this chapter details the
construction of differential equations that model various mechanical, electri-
cal, and electro-mechanical systems. The systems constructed will be used
as examples throughout the text.

2.1 Passive electrical circuits

Passive electrical circuits require no sources of power other than the in-
put signal itself. For example, the voltage divider in Figure 1.6 and the RC
circuit in Figure 2.1 are passive circuits. Another common passive electri-
cal circuit is the resistor, capacitor and inductor (RLC) circuit depicted in
Figure 2.4. In this circuit we let the output signal y be the voltage over the
resistor. Let vC represent the voltage over the capacitor and vL the voltage
over the inductor and let i be the current. We have

y = Ri, i = CDvC , vL = LDi,
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L

R

C

x(t) y(t)

Figure 2.4: An electrical circuit with resistor, capacitor and inductor in series,
otherwise known as an RLC circuit.

−

+v+

v−

v−−

v++

vo

v−

v+

Ri

+
− A(v+ − v−)

Ro
vo

Figure 2.5: Left: triangular component diagram of an operational amplifier. The
v++ and v−− connectors indicate where an external voltage source can be connected
to the amplifier. These connectors will usually be omitted. Right: model for an
operational amplifier including input resistance Ri, output resistance Ro, and open
loop gain A. The diamond shaped component is a dependent voltage source. This
model is usually only useful when the operational amplifier is in a negative feedback
circuit.

leading to the following relationships between y, vC and vL,

y = RCDvC , RvL = LDy.

Kirchhoff’s voltage law gives x = y + vC + vL and by differentiating both
sides

Dx = Dy +DvC +DvL.

Substituting the equations relating y, vC and vL leads to

RCDx = y +RCDy + LCD2y. (2.1.1)

We can similarly find equations relating the input voltage with vC and vL.

2.2 Active electrical circuits

Unlike passive electrical circuits, an active electrical circuit requires a
source of power external to the input signal. Active circuits can be modelled
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and constructed using operational amplifiers as depicted in Figure 2.5.
The left hand side of Figure 2.5 shows a triangular circuit diagram for an
operational amplifier, and the right hand side of Figure 2.5 shows a circuit
that can be used to model the behaviour of the amplifier. The v++ and v−−
connectors indicate where an external voltage source can be connected to the
amplifier. These connectors will usually be omitted. The diamond shaped
component is a dependent voltage source with voltage A(v+ − v−) that
depends on the difference between the voltage at the non-inverting input
v+ and the voltage at the inverting input v−. The dimensionless constant
A is called the open loop gain. Most operational amplifiers have large open
loop gain A, large input resistance Ri and small output resistance Ro.
As we will see, it can be convenient to consider the behaviour as A → ∞,
Ri →∞ and R0 → 0, resulting in an ideal operational amplifier.

As an example, an operational amplifier configured as a multiplier is
depicted in Figure 2.6. This circuit is an example of an operational amplifier
configured with negative feedback, meaning that the output of the ampli-
fier is connected (in this case by a resistor) to the inverting input v−. The
horizontal wire at the bottom of the plot is considered to be ground (zero
volts) and is connected to the negative terminal of the dependent voltage
source of the operational amplifier depicted in Figure 2.5. An equivalent cir-
cuit for the multiplier using the model in Figure 2.5 is shown in Figure 2.7.
Solving this circuit (Exercise 2.1) yields the following relationship between
the input voltage signal x and the output voltage signal y,

y =
Ri(Ro −AR2)

Ri(R2 +Ro) +R1(R2 +Ri +ARi +Ro)
x. (2.2.1)

For an ideal operational amplifier we let A→∞, Ri →∞ and Ro → 0. In
this case terms involving the product ARi dominate and we are left with
the simpler equation

y = −R2

R1
x. (2.2.2)

Thus, assuming an ideal operational amplifier, the circuit acts as a multiplier
with constant −R2

R1
.

The equation relating x and y is much simpler for the ideal operational
amplifier. Fortunately this equation can be obtained directly using the fol-
lowing two rules:

1. the voltage at the inverting and non-inverting inputs are equal,

2. no current flows through the inverting and non-inverting inputs.

These rules are only useful for analysing circuits with negative feedback. Let
us now rederive (2.2.2) using these rules. Because the non-inverting input
is connected to ground, the voltage at the inverting input is zero. So, the
voltage over resistor R2 is y = R2i. Because no current flows through the
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inverting input the current through R1 is also i and x = −R1i. Combining
these results, the input voltage x and the output voltage y are related by

y = −R2

R1
x.

In Test 2 the inverting amplifier circuit is constructed and the relationship
above is tested using a computer soundcard.

We now consider another circuit consisting of an operational amplifier,
two resistors and two capacitors depicted in Figure 2.8. Assuming an ideal
operational amplifier, the voltage at the inverting terminal is zero because
the non-inverting terminal is connected to ground. Thus, the voltage over
capacitor C2 and resistor R2 is equal to y and, by Kirchoff’s current law,

i =
y

R2
+ C2Dy.

Similarly, since no current flows through the inverting terminal,

i = − x

R1
− C1Dx.

Combining these equations yields

− x

R1
− C1Dx =

y

R2
+ C2Dy. (2.2.3)

Observe the similarity between this equation and that for the passive RC
circuit (2.0.2) when R1 = R2 and C1 = 0 (an open circuit). In this case

x = −y −R1C2Dy. (2.2.4)

We call this the active RC circuit. This circuit is tested in Test 3.
Consider the circuit in Figure 2.9. Assuming an ideal operational am-

plifier, the input voltage x satisfies

−i =
x

R1
+ C1Dx.

The voltage over the capacitor C2 is y −R2i and so the current satisfies

i = C2D(y −R2i).

Combining these equations gives

− x

R1
− C1Dx = C2Dy +

R2C2

R1
Dx+R2C2C1D

2x,

and after rearranging,

Dy = − 1

R1C2
x−

(
R2

R1
+
C1

C2

)
Dx−R2C1D

2x.
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−

+

R2

i(t)
R1

x(t)
y(t)

Figure 2.6: Inverting amplifier

R1 R2

Ri

Ro

+
−A(v+ − v−)

y(t)x(t)

v−

v+

Figure 2.7: An equivalent circuit for the inverting amplifier from Figure 2.6 using
the model for an operational amplifier in Figure 2.5.

−

+

R2

i(t)
R1

x(t)
y(t)

C2

C1

Figure 2.8: Operational amplifier configured with two capacitors and two resistors.
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Test 2 (Inverting amplifier) In this test we construct the inverting ampli-
fier circuit from Figure 2.6 with R2 ≈ 22kΩ and R1 ≈ 12kΩ that are accurate
to within 5% of these values. The operational amplifier used is the Texas
Instruments LM358P. Using a computer soundcard (an approximation of)
the voltage signal

x(t) = 1
3 sin(2πf1t) + 1

3 sin(2πf2t)

with f1 = 100 and f2 = 233 is passed through the circuit. As in previous
tests, the soundcard is used to sample the input signal x and the output
signal y. Approximate reconstructions of the input signal x̃ and output
signal ỹ are given according to (1.3.4) and (1.3.2). According to (2.1.1) we
expect the approximate relationship

ỹ ≈ −R2

R1
x̃ = −11

6
x̃.

Each of ỹ, x̃ and −11
6 x̃ are plotted in Figure 2.9.
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ỹ

− 11
6
x̃

Figure 2.9: Plot of reconstructed input signal x̃ (solid line), output signal ỹ (solid
line with circle) and hypothesised output signal − 11

6 x̃ (solid line with dot).



2.2 Active electrical circuits 25

Test 3 (Active RC circuit) In this test we construct the circuit from Fig-
ure 2.8 with R1 ≈ R2 ≈ 27kΩ and C2 ≈ 10nF accurate to within 5% of these
values and C1 = 0 (an open circuit). The operational amplifier used is a
Texas Instruments LM358P. Using a computer soundcard (an approximation
of) the voltage signal

x(t) = 1
3 sin(2πf1t) + 1

3 sin(2πf2t)

with f1 = 500 and f2 = 1333 is passed through the circuit. As in previous
tests, the soundcard is used to sample the input signal x and the output sig-
nal y and approximate reconstructions x̃ and ỹ are given according to (1.3.4)
and (1.3.2). According to (2.2.4) we expect the approximate relationship

x̃ ≈ −R1

R2
ỹ −R1CD(ỹ) = −ỹ − 27

105
D(ỹ).

The derivative of the sinc function is

D sinc(t) =
d

dt
sinc(t) =

1

πt2
(
πt cos(πt)− sin(πt)

)
, (2.2.5)

and so,

Dỹ(t) =
d

dt

(
L∑
`=1

y` sinc(Ft− `)
)

= F

L∑
`=1

y`D sinc(Ft− `). (2.2.6)

Each of ỹ, x̃ and −ỹ − 27
105
Dỹ are plotted in Figure 2.9.
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Figure 2.9: Plot of reconstructed input signal x̃ (solid line with circle), output signal
ỹ (solid line), and hypothesised input signal −ỹ − 27

105Dỹ (solid line with dot).



26 Testable linear shift-invariant systems

Put

Ki =
1

R1C2
, Kp =

R2

R1
+
C1

C2
, Kd = R2C1

and now
Dy = −Kix−KpDx−KdD

2x. (2.2.7)

This equation models what is called a proportional-integral-derivative
controller or PID controller. The coefficients Ki,Kp and Kd are called
the integral gain, proportional gain, and derivative gain.

The final active circuit we consider is called a Sallen-Key [Sallen and
Key, 1955] and is depicted in Figure 2.10. Observe that the output of the
amplifier is connected directly to the inverting input and is also connected
to the noninverting input by a capacitor and resistor. This circuit has both
negative and positive feedback. It is not immediately apparent that we
can use the simplifying assumptions for an ideal operational amplifier with
negative feedback. However, we will do so and will find that it works in this
case.

Let vR1, vR2, vC1, and vC2 be the voltages over the components R1, R2,
C1, and C2. Kirchoff’s voltage law leads to the equations

x = vR1 + vR2 + vC2, y = vC1 + vR2 + vC2.

The voltage at the inverting and noninverting terminals is y and so the
voltage over the capacitor C2 is y, that is, y = vC2. Using this, the equations
above simplify to

x = vR1 + vR2 + y, vC1 = −vR2.

The current i2 through capacitor C2 satisfies i2 = C2DvC2 = C2Dy. Because
no current flows into the inverting terminal of the amplifier the current
through R2 is also i2 and so vR2 = R2i2 = R2C2Dy. Substituting this into
the equations above gives

x = vR1 +R2C2Dy + y, vC1 = −R2C2Dy. (2.2.8)

Kirchoff’s current law asserts that i + i1 = i2. The current i through ca-
pacitor C1 satisfies i = C1DvC1 = −R2C1C2D

2y and the current through
resistor R1 satisfies

vR1 = R1i1 = R1(i2 − i) = R1C2Dy +R1R2C1C2D
2y.

Substituting this into the equation on the left of (2.2.8) gives

x = y + C2(R1 +R2)Dy +R1R2C1C2D
2y. (2.2.9)

The Sallen-Key will be useful when we consider the design of analogue elec-
trical filters in Section 5.2.
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Figure 2.9: Operational amplifier implementing a proportional-integral-
derivative controller.
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Figure 2.10: Operational amplifier implementing a Sallen-Key.
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Figure 2.11: Two masses, a spring and a damper
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2.3 Masses, springs, and dampers

A mechanical mass-spring-damper system was described in Section 2 and
Figure 2.2. We now consider another mechanical system depicted in Fig-
ure 2.11 involving two masses, a spring and a damper. A mass M1 is con-
nected to a wall by a damper with constant B, and to another mass M2 by
a spring with constant K. A force represented by the signal f is applied
to the first mass. We will derive a differential equation relating f with the
position p of the second mass. Assume that the spring applies no force (is
in equilibrium) when the masses are distance d apart. The forces due to the
spring satisfy

fs1 = −fs2 = K(p− p1 − d)

where fs1 and fs2 are signals representing the force due to the spring on mass
M1 and M2 respectively. It is convenient to define the signal g = p1 + d so
that forces due to spring satisfy the simpler equation

fs1 = −fs2 = K(p− g).

The only force applied to M2 is by the spring and so, by Newton’s law, the
acceleration of M2 satisfies

M2D
2p = fs2 = Kg −Kp. (2.3.1)

The force applied by the damper on mass M1 is given by the signal

fd = −BDp1 = −BDg
where the replacement of p1 by g is justified because differentiation will
remove the constant d. The cumulative force on M1 is given by the signal

f1 = f + fd + fs1 = f + fd − fs2 = f −M2D
2p−BDg

and by Newton’s law the acceleration of M1 satisfies

M1D
2p1 = M1D

2g = f1 = f −M2D
2p−BDg.

Combining this equation with (2.3.1) we obtain a fourth order differential
equation relating the position p and force f ,

f = BDp+ (M1 +M2)D2p+
BM2

K
D3p+

M1M2

K
D4p. (2.3.2)

Given the position of the second mass p we can readily solve for the
corresponding force f and position of the first mass p. For example, if the
constants B = K = 1 and M1 = M2 = 1

2 and d = 5
2 , and if the position of

the second mass satisfies
p(t) = e−t

2

then, by application of (2.3.2) and (2.3.1),

f(t) = e−t
2
(1 + 4t− 8t2 − 4t3 + 4t4), and p1(t) = 2e−t

2
t2 − 5

2 .

This solution is plotted in Figure 2.12.
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Figure 2.12: Solution of the system describing two masses with a spring and damper
where B = K = 1 and M1 = M2 = 1

2 and the position of the second mass is

p(t) = e−t
2

.

2.4 Direct current motors

Direct current (DC) motors convert electrical energy, in the form of a volt-
age, into rotary kinetic energy [Nise, 2007, page 76]. We derive a differential
equation relating the input voltage v to the angular position of the motor
θ. Figure 2.13 depicts the components of a DC motor.

The voltages over the resistor and inductor satisfy

vR = Ri, vL = LDi,

and the motion of the motor induces a voltage called the back electromo-
tive force (EMF),

vb = KbDθ

that we model as being proportional to the angular velocity of the motor.
The input voltage now satisfies

v = vR + vL + vb = Ri+ LDi+KbDθ.

The torque τ applied by the motor is modelled as being proportional to the
current i,

τ = Kτ i.

A load with inertia J is attached to the motor. Two forces are assumed to act
on the load, the torque τ applied by the current, and a torque τd = −BDθ
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L

R
i

v motor Jvb

θ τ τd

Figure 2.13: Diagram for a rotary direct current (DC) motor

modelling a damper that acts proportionally against the angular velocity of
the motor. By Newton’s law, the angular acceleration of the load satisfies

JD2θ = τ + τd = Kτ i−BDθ.

Combining these equations we obtain the 3rd order differential equation

v =

(
RB

Kτ
+Kb

)
Dθ +

RJ + LB

Kτ
D2θ +

LJ

Kτ
D3θ

relating voltage and motor position. In many DC motors the inductance L
is small and can be ignored, leaving the simpler second order equation

v =

(
RB

Kτ
+Kb

)
Dθ +

RJ

Kτ
D2θ. (2.4.1)

Given the position signal θ we can find the corresponding voltage signal
v. For example, put the constants Kb = Kτ = B = R = J = 1 and assume
that

θ(t) = 2π(1 + erf(t))

where erf(t) = 2
π

∫ t
0 e
−τ2dτ is the error function. The corresponding an-

gular velocity Dθ and voltage v satisfy

Dθ(t) = 4
√
πe−t

2
, v(t) = 8

√
πe−t

2
(1− t).

These signals are depicted in Figure 2.14. This voltage signal is sufficient to
make the motor perform two revolutions and then come to rest.

Exercises

2.1. Analyse the inverting amplifier circuit in Figure 2.7 to obtain the rela-
tionship between input voltage x and output voltage y given by (2.2.1).
You may wish to use a symbolic programming language (for example
Maxima, Sage, Mathematica, or Maple).
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Figure 2.14: Voltage and corresponding angle for a DC motor with constants Kb =
Kτ = B = R = J = 1.

2.2. Figure 2.15 depicts a mechanical system involving two masses, two
springs, and a damper connected between two walls. Suppose that
the spring K2 is at rest when the mass M2 is at position p(t) = 0.
A force, represented by the signal f , is applied to mass M1. Derive
a differential equation relating the force f and the position p of mass
M2. Determine the force f in the case that the position p(t) = e−t

2

and M1 = M2 = 1
2 and K1 = K2 = B = 1.

2.3. Consider the electromechanical system in Figure 2.16. A direct current
motor is connected to a potentiometer in such a way that the voltage
at the output of the potentiometer is equal to the angle of the motor θ.
This voltage is fed back via a unity gain amplifier to the input terminal
of the motor. An input voltage v is applied to the other terminal on
the motor. Find the differential equation relating v and θ. What is
the input voltage v if the motor angle satisfies θ(t) = π

2 (1 + erf(t))?
Plot θ and v in this case when the motor coefficients satisfy L = 0,
R = 3

4 , and Kb = Kτ = B = J = 1.
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Figure 2.15: Two masses, a spring, and a damper connected between two walls for
Exercise 2.2.

R

v

−

+

θ

motor Jvb

θ

Figure 2.16: Diagram for a rotary direct current (DC) with potentiometer feedback
for Exercise 2.3.



Chapter 3

Linear shift-invariant
systems

In the previous section we derived differential equations that model mechan-
ical, electrical, and electro-mechanical systems. The equations themselves
often do not provide sufficient information. For example, we were able to
find a signal p representing the position of the mass-spring-damper in Fig-
ure 2.2 given a particular force signal f is applied to the mass. However,
it is not immediately obvious how to find the force signal f given a par-
ticular position signal p. We will be able to solve this problem and, more
generally, to describe properties of systems modelled by linear differential
equations with constant coefficient, if we make the added assumptions that
the systems are linear and shift-invariant. We study linear shift-invariant
systems in this chapter.

3.1 Convolution, regular systems and the delta “function”

A large number of linear shift-invariant systems can be represented by a
signal called the impulse response. The impulse response of a system H
is a locally integrable signal h such that

Hx(t) =

∫ ∞
−∞

h(τ)x(t− τ)dτ,

that is, the response of H to input signal x can be represented as an integral
equation involving x and the impulse response h. The integral is called a
convolution and appears so often that a special notation is used for it. We
write h ∗ x to indicate the signal that results from convolution of signals h
and x, that is, h ∗ x is the signal

h ∗ x =

∫ ∞
−∞

h(τ)x(t− τ)dτ

33
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where the right hand side is to be interpreted as a signal, a function of t ∈ R.
We write (h ∗ x)(t) to indicate the value of h ∗ x at t ∈ R. Those systems
that have an impulse response we call regular systems1.

Some care must be taken when selecting a domain for a regular system.
To see what can go wrong it is worth first considering an example. Suppose
that H has discrete impulse response given by the step function u (1.1.1).
The signal x(t) = 1 that takes the value 1 for all t ∈ R will not be in the
domain of H since, in this case,

Hx(t) =

∫ ∞
−∞

u(τ)x(t− τ)dτ =

∫ ∞
0

dτ

is not finite for any t ∈ R. Given a signal h, denote by domh the set of
signals x such that the integral∫ ∞

−∞
|h(τ)x(t− τ)| dτ <∞ for all t ∈ R.

If H has impulse reponse h then, for all signal x ∈ domh we have

|Hx(t)| =
∣∣∣∣∫ ∞
−∞

h(τ)x(t− τ)dτ

∣∣∣∣ ≤ ∫ ∞
−∞
|h(τ)x(t− τ)| dτ <∞

for all t ∈ R and so Hx(t) is finite for all t ∈ R. We take domh as the domain
of a regular system H with impulse response h unless otherwise stated. It
can be shown that domh is a linear shift-invariance space (Exercise 3.3).

Regular systems are linear because, for all x, y ∈ domh and all a, b ∈ C,

H(ax+ by) = h ∗ (ax+ by)

=

∫ ∞
−∞

h(τ)
(
ax(t− τ) + by(t− τ)

)
dτ

= a

∫ ∞
−∞

h(τ)x(t− τ)dτ + b

∫ ∞
−∞

h(τ)y(t− τ)dτ

= a(h ∗ x) + b(h ∗ y)

= aHx+ bHy.

(3.1.1)

The above equation shows that convolution commutes with scalar multipli-
cation and distributes with addition, that is,

h ∗ (ax+ by) = a(h ∗ x) + b(h ∗ y).

1The name regular system is motivated by the term regular distribution [Zema-
nian, 1965]
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Regular systems are also shift-invariant because for all x ∈ domh

TκHx = Tκ(h ∗ x)

=

∫ ∞
−∞

h(τ)x(t− κ− τ)dτ

=

∫ ∞
−∞

h(τ)Tκx(t− τ)dτ

= h ∗ (Tκx)

= HTκx.

The impulse response of a regular system H can be found in the following
way. First define the signal

pγ(t) =

{
γ, 0 < t ≤ 1

γ

0, otherwise,

that is, a rectangular shaped pulse of height γ and width 1
γ . The signal

pγ is plotted in Figure 3.1 for γ = 1
2 , 1, 2, 5. As γ increases the pulse gets

thinner and higher so as to keep the area under pγ equal to one. Consider
the response of the regular system H to the signal pγ ,

Hpγ = h ∗ pγ =

∫ ∞
−∞

h(τ)pγ(t− τ)dτ = γ

∫ t

t−1/γ
h(τ)dτ.

Taking γ →∞ we find that

lim
γ→∞

Hpγ = lim
γ→∞

γ

∫ t

t−1/γ
h(τ)dτ = h a.e.

As an example, consider the integrator system I∞ described in Sec-
tion 1.4. The response of I∞ to pγ is

I∞pγ(t) =

∫ t

−∞
pγ(τ)dτ =


0, t ≤ 0

γt, 0 < t ≤ 1
γ

1, t > 1
γ .

The response is plotted in Figure 3.1. Taking the limit as γ → ∞ we find
that the impulse response of the integrator is the step function

u(t) = lim
γ→∞

Hpγ(t) =

{
0 t ≤ 0

1 t > 0.
a.e. (3.1.2)

Some important systems do not have an impulse response and are not
regular. For example, the identity system T0 is not regular. Similarly, the



36 Testable linear shift-invariant systems
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=
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=
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=
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γ
=
∞
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0.5 1

Figure 3.1: The rectangular shaped pulse pγ for γ = 0.5, 1, 2, 5 and the response of
the integrator I∞ to pγ for γ = 0.5, 1, 2, 5,∞.

shifter Tτ and differentiators Dk are not regular. However, it is common to
pretend that T0 does have an impulse response and this is typically denoted
by the symbol δ called the delta function. The idea is to assign δ the
property ∫ ∞

−∞
x(t)δ(t)dt = x(0)

so that convolution of x and δ satisfies

δ ∗ x =

∫ ∞
−∞

δ(τ)x(t− τ)dτ = x(t) = T0x.

We now treat δ as if it were a signal. So δ(t− τ) will represent the impulse
response of the shifter Tτ because

Tτx = δ(t− τ) ∗ x

=

∫ ∞
−∞

δ(κ− τ)x(t− κ)dκ

=

∫ ∞
−∞

δ(k)x(t− τ − k)dk (change variable k = κ− τ)

= x(t− τ).

For a ∈ R it is common to plot aδ(t− τ) using an arrow of height a at t = τ
as indicated in Figure 3.2. It is important to realise that δ is not actually a
signal. It is not a function in R→ C. However, it can be convenient to treat
δ as if it were a signal. The manipulations in the last set of equations, such
as the change of variables, are not formally justified, but they do lead to the
desired result Tτx = x(t− τ) in this case. In general, there is no guarantee



3.1 Convolution, regular systems and the delta “function” 37

t

δ(t+ 2) + 2δ(t)− δ(t− 1)

1

−1 2

t

2 sin(πt) + δ(t− 3
2)

2

1
2

Figure 3.2: Plot of the “signal” δ(t + 2) + 2δ(t) − δ(t − 1) (left) and the “signal”
2 sin(πt) + δ(t− 3

2 ) (right).

that mechanical mathematical manipulations involving δ will lead to sensible
results.

The only other non regular systems that we have use of are differentiators
Dk and it is common to define a similar notation for pretending that these
systems have an impulse response. In this case, the symbol δk is assigned
the property ∫ ∞

−∞
x(t)δk(t)dt = Dkx(0),

so that convolution of x and δk is

δk ∗ x =

∫ ∞
−∞

δk(τ)x(t− τ)dτ = Dkx(t).

As with the delta function the symbol δk must be treated with care. This
notation can be useful, but purely formal manipulations with δk may not
always lead to sensible results.

The impulse response h immediately yields some properties of the corre-
sponding system H. For example, if h(t) = 0 for all t < 0, then H is causal
because

Hx(t) =

∫ ∞
−∞

h(τ)x(t− τ)dτ =

∫ ∞
0

h(τ)x(t− τ)dτ

only depends on values of the input signal x at t−τ with τ > 0. The system
H is stable if and only if h is absolutely integrable (Exercise 3.5).

Another related important signal is the step response defined as the
response of the system to the step function u. For example, the step response
of the shifter Tτ is the shifted step function Tτu(t) = u(t − τ). The step



38 Testable linear shift-invariant systems

response of the integrator I∞ is

I∞u(t) =

∫ t

−∞
u(τ)dτ =

{∫ t
0 dτ = t t > 0

0 t ≤ 0.

This signal is often called the ramp function. A system has a step response
only if u is inside its domain. For example, the regular system with impulse
response u(−t) does not have a step response because u /∈ domu(−t). Con-
volution of the step function u and its reflection u(−t) is not possible. If
a system H has both an impulse response h and a step response Hu, then
these two signals are related. To see this, observe that the step response is

Hu = h ∗ u =

∫ ∞
−∞

h(τ)u(t− τ)dτ =

∫ t

−∞
h(τ)dτ = I∞h. (3.1.3)

Thus, the step response can be obtained by applying the integrator I∞ to
the impulse response in the case that both of these signals exist.

3.2 Properties of convolution

The convolution x ∗ y of two signals x and y does not always exist. For
example, if x(t) = u(t) and y(t) = 1, then

x ∗ y =

∫ ∞
−∞

x(τ)y(t− τ)dτ =

∫ ∞
−∞

u(τ)dτ =

∫ ∞
0

dτ

is not finite for any t. We cannot convolve the step function u and the signal
that takes the constant value 1. On the other hand, if x(t) = y(t) = u(t),
then

x ∗ y =

∫ ∞
−∞

u(τ)u(t− τ)dτ =

{∫ t
0 dτ = τ t > 0

0 t ≤ 0

is finite for all t. If x ∈ dom y or equivalently y ∈ domx then the convolution
x ∗ y exists because, in this case,

|(x ∗ y)(t)| =
∫ ∞
−∞

x(τ)y(t− τ)dτ ≤
∫ ∞
−∞
|x(τ)y(t− τ)| dτ <∞

for all t ∈ R.
We have already shown in (3.1.1) that convolution commutes with scalar

multiplication and distributes with addition, that is, for signals x, y, w and
complex numbers a, b,

a(x ∗ w) + b(y ∗ w) = (ax+ by) ∗ w.

The property holds provided that the convolutions x ∗ w and y ∗ w exist.
This is the case if, for example, w is in both domx and dom y, that is,
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w ∈ domx ∩ dom y. Convolution is commutative, that is, x ∗ y = y ∗ x
whenever these convolutions exist. To see this, write

x ∗ y =

∫ ∞
−∞

x(τ)y(t− τ)dτ

=

∫ ∞
−∞

x(t− κ)y(κ)dκ (change variable κ = t− τ)

= y ∗ x.

Convolution is associative under appropriate assumptions, that is, for
signals x, y, z, we have x ∗ (y ∗ z) = (x ∗ y) ∗ z. To describe conditions under
which associativity holds let us first define the set dom(x, y) containing all
those signals z such that the double integral∫ ∞

−∞

∫ ∞
−∞
|x(τ)y(κ)z(t− κ− τ)| dκ dτ <∞ for all t ∈ R.

We will often drop the brackets and write simply domx y. If z ∈ domx y
then

x ∗ (y ∗ z) =

∫ ∞
−∞

x(τ)(y ∗ z)(t− τ)dτ

=

∫ ∞
−∞

x(τ)

∫ ∞
−∞

y(κ)z(t− κ− τ) dκ dτ.

Because z ∈ domx y, Fubini’s theorem [Rudin, 1986, Theorem 8.8] justifies
swapping the order of integration leading to

x ∗ (y ∗ z) =

∫ ∞
−∞

∫ ∞
−∞

x(τ)y(κ)z(t− κ− τ) dτ dκ

and by the change of variable ν = κ+ τ we find that

x ∗ (y ∗ z) =

∫ ∞
−∞

∫ ∞
−∞

x(τ)y(ν − τ)z(t− ν) dτ dν

=

∫ ∞
−∞

(x ∗ y)(ν)z(t− ν) dν

= (x ∗ y) ∗ z.

By combining the associative and commutative properties we find that
the order in which the convolutions in x∗y∗z are performed does not mater,
that is

x ∗ y ∗ z = y ∗ z ∗ x = z ∗ x ∗ y = y ∗ x ∗ z = x ∗ z ∗ y = z ∗ y ∗ x

provided that all the convolutions involved exist. For example, this holds if
z ∈ domx y or equivalently x ∈ dom y z or y ∈ domx z. More generally, the
order in which any sequence of convolutions is performed does not change
the final result.



40 Testable linear shift-invariant systems

3.3 Linear combination and composition

Let F and G be linear shift-invariant systems with domain XF ⊆ R → C
and XG ⊆ R→ C respectively. For complex numbers c and d, let H be the
system satisfying

Hx = cFx+ dGx x ∈ XF ∩XG.

The system H is said to be a linear combination of F and G and its
domain is taken to be XG ∩XF unless otherwise stated. The system H is
linear because for all signals x, y ∈ XG ∩XF and a, b ∈ C,

H(ax+ by) = cF (ax+ by) + dG(ax+ by)

= acFx+ bcFy + adGx+ bdGy (linearity F,G)

= a(cFx+ dGx) + b(cFy + dGy)

= aHx+ bHy.

The system H is also shift-invariant because, for x ∈ XG ∩XF ,

HTτx = cFTτx+ dGTτx

= cTτFx+ dTτGx (shift-invariance F,G)

= Tτ (cFx+ dGx) (linearity Tτ )

= TτHx.

So, linear shift-invariant systems can be constructed as linear combinations
of other linear shift-invariant systems. If F and G are regular systems with
impulse responses f and g then, for x ∈ dom f ∩ dom g,

Hx = aFx+ bGx

= af ∗ x+ bg ∗ x
= (af + bg) ∗ x (distributivity of convolution)

= h ∗ x,

and so, H is a regular system with impulse response h = af+bg. Its domain
is taken to be dom f ∩ dom g unless otherwise stated.

Another way to construct linear shift-invariant systems is by composi-
tion. Let X,Y, Z be linear shift-invariant spaces of signals. Let F ∈ X → Y
and G ∈ Y → Z be linear shift-invariant systems and let H ∈ X → Z be
the system satisfying

Hx = GFx,

that is, H first applies F and then applies G. The system H is said to be the
composition of F and G. Observe that the range of F is contained within
the domain Y of G. This is necessary for the composition GF to make sense.
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Hx = cFx+ dGx

cF

dG

x

H

Figure 3.3: Block diagram depicting the linear combination of linear shift-invariant
systems. The system cFx+ dGx can be expressed as a single linear shift-invariant
system Hx.

The system H is linear because, for signals x, y ∈ X and complex numbers
a, b,

H(ax+ by) = GF (ax+ by)

= G(aFx+ bFy) (linearity F )

= aGFx+ bGFy (linearity G)

= aHx+ bHy.

The system is also shift-invariant because, for x ∈ X,

HTτx = GFTτx

= GTτFx (shift-invariance F )

= TτGFx (shift-invariance G)

= TτHx.

If F and G are regular systems the composition property can be expressed
using their impulse responses f and g. For x ∈ dom f g, the associative
property of convolution asserts that g ∗ (f ∗ x) = (g ∗ f) ∗ x (Section 3.2). It
follows that, for x ∈ dom f g,

Hx = GFx = g ∗ (f ∗ x) = (g ∗ f) ∗ x = h ∗ x

and so H is a regular system with impulse response h = g ∗ f . We can take
its domain to be dom f g unless otherwise stated.

A wide variety of linear shift-invariant systems can be constructed by
linear combination and composition of simpler systems.

3.4 Eigenfunctions and the transfer function

Let s = σ + jω ∈ C where j =
√
−1. A signal of the form

est = eσtejωt = eσt
(

cos(ωt) + j sin(ωt)
)
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x F G Hx = GFx

H

Figure 3.4: Block diagram depicting composition of linear shift-invariant systems.
The system GF can be expressed as a single linear shift-invariant system H.
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Figure 3.5: The function cos(πt)eσt (top) and sin(πt)eσt (bottom) for σ =
− 1

10 , 0,
1
10 .
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is called a complex exponential signal. Complex exponential signals play
an important role in the study of linear shift-invariant systems. The real
and imaginary parts of e(σ+jπ)t are plotted in Figure 3.5 for σ = − 1

10 , 0,
1
10 .

The signal is oscillatory when ω 6= 0. The signal converges to zero as t→∞
when σ < 0 and diverges as t→∞ when σ > 0.

Let H ∈ X → Y be a linear shift-invariant system. Suppose that
y = Hest is the response of H to the complex exponential signal est ∈ X.
Consider the response of H to the shifted signal Tτe

st = es(t−τ) for τ ∈ R.
By shift-invariance

HTτe
st = TτHe

st = y(t− τ)

and by linearity

HTτe
st = Hes(t−τ) = e−sτHest = e−sτy(t).

Combining these equations we obtain

y(t− τ) = e−sτy(t) for all t, τ ∈ R.

This equation is satisfied by signals of the form y(t) = λest where λ is a
complex number. That is, the response of a linear shift-invariant system H
to a complex exponential signal est is the same signal est multiplied by some
constant complex number λ. Due to this property complex exponential
signals are called eigenfunctions of linear shift-invariant systems. The
constant λ does not depend on t, but it does usually depend on the complex
number s and the system H. To highlight this dependence on H and s we
write λH(s) or λ(H)(s) or λ(H, s) and do not distinguish between these
notations. Considered as a function of s, the expression λH is called the
transfer function of the system H. Observe that the transfer function λH
maps a complex number to a complex number.

Denote by cepX the set of complex numbers s such that est ∈ X,

cepX = {s ∈ C ; est ∈ X}.

We take cepX as the domain of the transfer function λH, that is λH ∈
cepX → C. The transfer function satisfies

Hest = λH(s)est s ∈ cepX. (3.4.1)

This is an important equation. Stated in words: the response of a linear
shift-invariant system H ∈ X → Y to a complex exponential signal est ∈ X
is the transfer function λH evaluated at s multiplied by the same complex
exponential signal est.

We can use these eigenfunctions to better understand the properties
of systems modelled by differential equations, such as those in Section 2.
Consider the active electrical circuit from Figure 2.8. In the case that the
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resistors R1 = R2, and the capacitor C1 = 0 (an open circuit) the differential
equation relating the input voltage x and output voltage y is

x = −y −R1C2Dy.

We called this the active RC circuit. To simplify notation put R = R1

and C = C2 so that x = −y − RCDy. Suppose that H is a linear shift-
invariant system that maps the input voltage x to the output voltage y,
that is, H is a system that describes the active RC circuit. If the input
voltage is a complex exponential signal x = est, then the output voltage
is the same complex exponential signal multiplied by the transfer function,
that is, y = Hx = λH(s)est. Substituting this into the differential equation
for the active RC circuit we obtain

est = −λest −RCD(λest) = −λest(1−RCs)

where, to simplify notation, we have written simply λ for λH(s) above.
Solving for λ leads to the transfer function of the system H describing the
active RC circuit

λH(s) = − 1

1 +RCs
. (3.4.2)

Now, if est is input to the circuit, we expect the output to be

Hest = λH(s)est = − est

1 +RCs
.

This satisfies the differential equation x = −y − RCDy for the active RC
circuit.

In Chapter 2 we modelled electrical, mechanical, and electromechanical
devices by differential equations of the form

m∑
`=0

a`D
`x =

k∑
`=0

b`D
`y. (3.4.3)

Suppose that H is a linear shift-invariant system such that y = Hx if x
and y satisfy a differential equation of this form. The response of H to
the complex exponential signal est satisfies Hest = λH(s)est. Substituting
x(t) = est and y = λH(s)est into the differential equation gives

m∑
`=0

a`s
`est =

k∑
`=0

b`s
`λH(s)est = λH(s)

k∑
`=0

b`s
`est.

Rearranging we find that the transfer function λH satisfies

λH(s) =

∑m
`=0 a`s

`est∑k
`=0 b`s

`est
=
a0 + a1s+ . . . ams

m

b0 + b1s+ . . . bksk
. (3.4.4)
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The transfer function takes the form of a polynomial divided by a poly-
nomial. The transfer function associated with a linear differential equation
with constant coefficients (3.4.3) always takes this form. We will study these
transfer functions in greater detail when we introduce the Laplace transform
in Chapter 4.

3.5 The spectrum

It is of interest to focus on the transfer function when s is purely imaginary,
that is, when s = jω with ω ∈ R. In this case the complex exponential
signal takes the form

ejωt = ej2πf = cos(2πft) + j sin(2πft)

where ω = 2πf . This signal is oscillatory when f 6= 0 and does not decay or
explode as |t| → ∞. Let H ∈ X → Y be a linear shift-invariant system with
domain X containing the signal ej2πft, that is, j2πft ∈ cepX. We denote
by ΛH the function satisfying

ΛH(f) = λH(j2πf) j2πf ∈ cepX

called the spectrum of H. It will typically be the case that cepX contains
the entire imaginary axis and so the domain of ΛH is the set of real numbers
R. In this case the spectrum is a signal, that is, λH ∈ R → C. The
independent variable f typically represents frequency in Hertz.

It follows from (3.4.1) that the response of H to ej2πft ∈ X satisfies

Hej2πft = λH(j2πf)ej2πft = ΛH(f)ej2πft

It is of interest to consider the magnitude spectrum |ΛH(f)| and the
phase spectrum ∠ΛH(f) separately. The notation ∠ denotes the argu-
ment (or phase) of a complex number. We have,

ΛH(f) = |ΛH(f)| ej∠ΛH(f)

and correspondingly

Hej2πft = |ΛH(f)| ej(2πft+∠ΛH(f)).

Taking real and imaginary parts we obtain the pair of real valued solutions

H cos(2πft) = |ΛH(f)| cos
(
2πft+ ∠ΛH(f)

)
,

H sin(2πft) = |ΛH(f)| sin
(
2πft+ ∠ΛH(f)

)
. (3.5.1)

Consider again the active RC circuit with H the system mapping input
voltage x to output voltage y. According to (3.4.2) the spectrum of H is

ΛH(f) = − 1

1 + 2πRCfj
. (3.5.2)
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Figure 3.6: Magnitude spectrum (top) and phase spectrum (bottom) of the active
RC circuit with R = 27× 103 and C = 10× 10−9.

The magnitude and phase spectrum is

|ΛH(f)| =
(
1 + 4π2R2C2f2

)−1
2 , ∠ΛH(f) = π − atan(2πRCf

)
.

These are plotted in Figure 3.6 when R = 27 × 103 and C = 10 × 10−9.
Observe from the plot of the magnitude spectrum that a low frequency
sinusoidal signal, say 100Hz or less, input to the active RC circuit results in
a sinusoidal output signal with the same frequency and approximately the
same amplitude. However, a high frequency sinusoidal signal, say greater
than 1000Hz, input to the circuit results in a sinusoidal output signal with
the same frequency, but smaller amplitude. For this reason RC circuits are
called low pass filters.

Test 4 (Spectrum of the active RC circuit) We test the hypothesis
that the active RC circuit satisfies (3.5.1). To do this sinusoidal signals at
varying frequencies of the form

xk(t) = sin(2πfkt), fk =
⌈
110× 2k/2

⌋
, k = 0, 1, . . . , 12

are input to the active RC circuit constructed as in Test 3 with R = R1 =
27kΩ and C = C2 = 10nF. The notation d·c denotes rounding to the nearest
integer with half integers rounded up. In view of (3.5.1) the expected output
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signals are of the form

yk(t) = |ΛH(fk)| sin
(
2πfkt+ ∠ΛH(fk)

)
, k = 0, 1, . . . , 12.

This equality can also be shown directly using the differential equation for
the active RC circuit.

Using the soundcard each signal xk is played for a period of approxi-
mately 1 second and approximately F = 44100 samples are obtained. On
the soundcard hardware used for this test samples near the beginning and
end of playback are distorted. This appears to be an unavoidable feature
of the soundcard. To alleviate this we discard the first 104 samples and use
only the L = 8820 samples that follow (corresponding to 200ms of signal).
After this process we have samples xk,1, . . . , xk,L and yk,1, . . . , yk,L of the
input and output signals corresponding with the kth signal xk. The samples
are expected to take the form

xk,` ≈ xk(P`− τ) = ρ sin(2πfkP`− θ)

and

yk,` ≈ yk(`P − τ) = |ΛH(fk)| ρ sin
(
2πfkP`− θ + ∠ΛH(fk)

)
where P = 1

F is the sample period, the positive real number ρ corresponds
with the gain on the input and output of the soundcard, and θ = 2πfkτ
corresponds with delays caused by discarding the first 104 samples and also
unavoidable delays that occur when starting soundcard playback and record-
ing.

We will not measure the gain ρ nor the delay θ, but will be able to
test the properties of the circuit without knowledge of these. To simplify
notation put γ = 2πfkP . From the samples of the input signal xk,1, . . . , xk,L
compute the complex number

A =
2j

L

L∑
`=1

xk,`e
−jγ` ≈ 2j

L

L∑
`=1

ρ sin(γ`− θ)e−jγ` = α+ α∗C

where α = ρe−jθ and α∗ denotes the complex conjugate of α and

C = e−γ(L+1) sin(γL)

L sin(γ)
(Exercise 3.8).

Similarly, from the samples of the output signal yk,1, . . . , yk,L we compute
the complex number

B =
2j

L

L∑
`=1

yk,`e
−jγ` ≈ β + β∗C
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where β = ρe−jθΛH(fk) = αΛH(fk). Now compute the quotient

Qk =
B −B∗C
A−A∗C ≈

β(1 + |C|2)

α(1 + |C|2)
=
β

α
= ΛH(fk).

Thus, we expect the quotient Qk to be close to the spectrum of the active RC
circuit evaluated at frequency fk. We will test this hypothesis by observing
the magnitude and phase of Qk individually, that is, we will test the expected
relationships

|Qk| ≈ |ΛH(fk)| =
√

1

1 + 4π2R2C2f2
k

and
∠Qk ≈ ∠ΛH(fk) = π − atan(2πRCfk

)
for each k = 0, . . . , 12. Figure 3.7 plots the hypothesised magnitude and
phase spectrum alongside the measurements Qk for k = 0, . . . , 12.

Exercises

3.1. State whether each of the following systems are: causal, linear, shift-
invariant, or stable. Plot the impulse and step response of the systems
whenever they exist. In each case, assume the domain to be the set of
locally integrable signals.

(a) Hx(t) = 3x(t− 1)− 2x(t+ 1)

(b) Hx(t) = sin
(
2πx(t)

)
(c) Hx(t) = t2x(t)

(d) Hx(t) =
∫ 1/2
−1/2 cos(πτ)x(t+ τ)dτ

3.2. Show that the system Hx(t) =
∫ 1
−1 sin(πτ)x(t + τ)dτ is linear shift-

invariant and regular. Find and sketch the impulse response and the
step response.

3.3. Let h be a locally integrable signal. Show that the set domh defined
in Section 3.1 on page 33 is a linear shift-invariant space.

3.4. Show that domu where u is the step function is the subset of locally
integrable signals such that

∫ 0
−∞ |x(t)| dt <∞.

3.5. Show that a regular system is stable if and only if its impulse response
is absolutely integrable.
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Figure 3.7: Hypothesised magnitude spectrum |ΛH(f)| (top) and phase spectrum
∠ΛH(f) (bottom) and the measured magnitude and phase spectrum |Qk| and ∠Qk
for k = 0, . . . , 12 (dots).
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3.6. Define signals x(t) = u(t), y(t) = u(−t), and z(t) = Π(t) − Π(t − 1)
where u is the step function and Π is the rectangular pulse. Plot x, y,
and z and show that the associative property of convolution does not
hold for these signals. That is, show that x ∗ (y ∗ z) 6= (x ∗ y) ∗ z.

3.7. Show that
∑L

`=1 e
β` = eβ(L+1)−eβ

eβ−1
(Hint: sum a geometric progression).

3.8. Show that

2j

L

L∑
`=1

sin(γ`− θ)e−jγ` = α+ α∗C

where α = e−jθ and C = e−jγ(L+1) sin(γL)
L sin(γ) . (Hint: solve Exercise 3.7

first and then use the formula 2j sin(x) = ejx − e−jx).

∗3.9. Show that the convolution of two absolutely integrable signals is ab-
solutely integrable.



Chapter 4

The Laplace transform

In the previous chapter we studied the properties of linear shift-invariant
systems. We considered regular systems for which the response to input
signal x is given by h ∗ x, that is, by the convolution of x with the impulse
response h of the system. We discovered that complex exponential signals
of the form est were eigenfunctions of linear shift-invariant systems, that is,
if H is the linear-shift-invariant system with domain X, then the response
of H to input signal est ∈ X satisfies

Hest = λH(s)est

where λH(s) is a complex number that depends on s ∈ C, but not on
t ∈ R. Considered as a function of s, the expression λH is called the
transfer function of the system H. The domain of λH is the set of complex
numbers s such that est ∈ X and this set is denoted by cepX.

Now consider the special case where H is a regular system with impulse
response h and domain domh. The response of H to a complex exponential
signal est ∈ domh is given by convolution of h with est, that is,

Hest = h ∗ est =

∫ ∞
−∞

h(τ)es(t−τ)dτ = est
∫ ∞
−∞

h(τ)e−sτdτ.

It follows that the transfer function of the regular system H satisfies

λH(s) =

∫ ∞
−∞

h(τ)e−sτdτ s ∈ cep domh.

This is also know as the Laplace transform of the signal h. The set
cep domh is called the region of convergence of the Laplace transform
of h. We will denote the region of convergence by the simpler notation
roch = cep domh in what follows.

Let x be a signal. The Laplace transform of x is denoted by Lx. It is
the complex valued function of rocx satisfying

Lx(s) =

∫ ∞
−∞

x(t)e−stdt s ∈ rocx. (4.0.1)

51



52 Testable linear shift-invariant systems

The domain of Lx is the region of convergence rocx = cep domx.

4.1 Regions of convergence

We now study the Laplace transform and the region of convergence in more
detail. The region of convergence rocx = cep domx is precisely the set
of complex numbers s such that x(t)e−st is absolutely integrable (Exer-
cise 4.19), that is,∫ ∞

−∞

∣∣x(t)e−st
∣∣ dt <∞ if and only if s ∈ rocx.

For example, consider the right sided signal eαtu(t). We have∫ ∞
−∞

∣∣eαtu(t)e−st
∣∣ dt =

∫ ∞
0

eRe(α−s)tdt = lim
t→∞

eRe(α−s)t

Re(α− s) −
1

Re(α− s) .

The limit above converges if and only if Re(α− s) < 0 and so the region of
convergence of the Laplace transform of eαtu(t) is

roc eαtu(t) = {s ∈ C ; Re s > Reα}.

Figure 4.1 shows the region of convergence when Reα = −2. Apply-
ing (4.0.1) we find that

L(eαtu(t)) =

∫ ∞
−∞

eαte−stu(t)dt = lim
t→∞

e(α−s)t

α− s −
1

α− s.

The limit converges to zero when Re(α−s) < 0, that is, when s ∈ roc eαtu(t),
and so the Laplace transform is

L(eαtu(t)) =
1

s− α Re s > Reα.

Now consider the left sided signal eβtu(−t). The region of convergence is

roc eβtu(−t) = {s ∈ C ; Re s < Reβ}

and the Laplace transform is

L(eβtu(−t)) = lim
t→−∞

e(β−s)t

β − s +
1

β − s =
1

β − s Re s < Reβ.

The signal aeαtu(t) + beβtu(−t) has Laplace transform

L
(
aeαtu(t) + beβtu(−t)

)
=

∫ ∞
−∞

(
aeαtu(t) + beβtu(−t)

)
e−stdt

= aL(eαtu(t)) + bL(eβtu(−t))
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with region of convergence

roc(aeαtu(t) + beβtu(−t)) = {s ∈ C ; Reα < Re s < Reβ}.

This region is shown in Figure 4.1 when Reα = −2 and Reβ = 3. In the
previous equation we have discovered that the Laplace transform is linear,
that is, for signals x and y and non zero complex numbers a and b, the
Laplace transform of the linear combination ax+ by is

L(ax+ by) = aLx+ bLy s ∈ roc(ax+ by) = rocx ∩ roc y. (4.1.1)

The region of convergence is the intersection of the regions of convergence
of Lx and Ly.

In the previous example the region of convergence is the empty set ∅ if
Reα ≥ Reβ. The Laplace transform is said not to exist in this case. Other
signals have this property. For example, the signal x(t) = 1 has no Laplace
transform because∫ ∞

−∞

∣∣e−st∣∣ dt = lim
t→−∞

e−Re st

s
− lim
t→∞

e−Re st

s

and the limit as t → −∞ converges only when Re s < 0 while the limit as
t→∞ converges only when Re s > 0.

As a final example, consider the rectangular pulse

Π(t) =

{
1 −1

2 < t ≤ 1
2

0 otherwise.

The region of convergence is the entire complex plane, roc Π = C, because

∫ ∞
−∞

∣∣Π(t)e−st
∣∣ dt =

∫ 1/2

−1/2
e−Re stdt =

eRe s/2 − e−Re s/2

s
<∞

for all s ∈ C. At s = 0 the above expression is given the value 1 by appealling
to continuity (Exercise 4.16). The Laplace transform of Π is

LΠ =

∫ ∞
−∞

Π(t)e−stdt =

∫ 1/2

−1/2
e−stdt =

es/2 − e−s/2
s

s ∈ C. (4.1.2)

The examples just given exhibit all the possible types of regions of conver-
gence. The region of convergence is either the entire complex plane, a left
or right half plane, a vertical strip, or the empty set.
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Figure 4.1: Regions of convergence (unshaded) of the Laplace transforms of the
signal e−2tu(t) (top left), the signal e−2tu(t)+e3tu(−t) (top right), the rectangular
pulse Π (bottom left), and the constant signal x(t) = 1 (bottom right).
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4.2 The inverse Laplace transform

Given the Laplace transform Lx ∈ rocx→ C the signal x can be recovered
by the inverse Laplace transform

x(t) =
1

2πj
lim
ω→∞

∫ σ−jω

σ−jω
Lx(s)estds,

where σ is any real number inside the region of convergence rocx. Solving
the integral above typically requires a special type of integration called con-
tour integration that we will not consider here [Stewart and Tall, 2004].
For our purposes, and for many engineering purposes, it suffices to remember
only the following Laplace transform pair

L
(
tnu(t)

)
=

n!

sn+1
Re s > 0, (4.2.1)

where n ≥ 0 is an integer (Exercise 4.2). The Laplace transforms of the
signal x(t) and the signal eαtx(t) are related,

L
(
eαtx(t)

)(
s
)

=

∫ ∞
−∞

eαtx(t)e−stdt

=

∫ ∞
−∞

x(t)e−(s−α)tdt

= Lx(s− α) s− α ∈ rocx. (4.2.2)

The region of convergence of L(eαtx(t)
)

is all those complex numbers s such
that s−α ∈ rocx. This is called the frequency-shift rule. Combining the
frequency-shift rule with (4.2.1) we obtain the transform pair

L
(
tneαtu(t)

)
=

n!

(s− α)n+1
Re s > Reα, (4.2.3)

where n ≥ 0 is an integer. This is the only Laplace transform pair we require
here.

A useful relationship exists between the Laplace transform of a signal
x(t) and its time-scaled version x(αt) where α 6= 0,

L
(
x(αt)

)(
s
)

=
1

|α|Lx(s/α), Re(s/α) ∈ rocx. (4.2.4)

The region of convergence of L
(
x(αt)

)
is those complex numbers s such

that s/α ∈ rocx. This is called the time-scaling property of the Laplace
transform (Excercise 4.12).
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4.3 The transfer function and the Laplace transform

We have already discovered that the transfer function λH of a regular system
H with impulse response h is equal to the Laplace transform Lh of the
impulse response, that is,

λH(s) = Lh(s) s ∈ roch.

The transfer functions of the shifter Tτ and differentiator D can be obtained
by inspection. For the shifter

Tτe
st = es(t−τ) = e−sτest and so λTτ (s) = e−sτ . (4.3.1)

For the special case of the identity system T0 we obtain λT0 = 1. For the
differentiator

Dest =
d

dt
est = sest and so λD(s) = s.

More generally, for the kth differentiator

Dkest =
dk

dtk
est = skest and so λDk(s) = sk. (4.3.2)

The domain of λTτ and of λDk is the entire complex plane C. These results
motivate assigning the following Laplace transforms to the delta “function”
δ, its shift Tτδ = δ(t− τ), and the δk symbol,

Lδ = 1, L
(
δ(t− τ)

)
= e−sτ , Lδk = sk.

These conventions are common in the literature [Oppenheim et al., 1996].

We now study the transfer function of a system formed by composition.
Let F ∈ X → Y and G ∈ Y → Z be linear shift-invariant systems with
domains X and Y and suppose that the complex exponential signal est ∈ X
if est ∈ Y , that is, cepX ⊂ cepY . This will be the only case of interest to
us. Let H ∈ X → Z be the system formed by the composition H = GF .
The response of H to the signal est ∈ X satisfies

Hest = GFest = G
(
λF (s)est

)
= λF (s)Gest

and since est is also in Y ,

Hest = λF (s)λG(s)est = λH(s)est.

It follows that

λH(s) = λF (s)λG(s) s ∈ cepX = cepX ∩ cepY. (4.3.3)
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That is, the transfer function of a composition of linear shift-invariant sys-
tems is the multiplication of the transfer functions of those systems.

Now suppose that F and G are regular systems with impulse responses f
and g. We showed in Section 3.3 that the composition H = GF is a regular
system with impulse response given by the convolution h = g ∗ f and we
take its domain to be dom f g. It can be shown that est ∈ dom f g if and
only if s ∈ roc f ∩ roc g, that is, cep dom f g = roc f ∩ roc g (Exercise 4.20).
Thus, for s ∈ roc f ∩ roc g we have

λH(s) = Lh(s) λF (s) = Lf(s) λG(s) = Lg(s),

and using (4.3.3) and dropping the “(s)”’s for notationial clarity, we obtain,

L(f ∗ g) = Lh = λH = λFλG = LfLg

for s ∈ roc f ∩ roc g. Putting x = f and y = g, we obtain the convolution
theorem,

L(x ∗ y) = LxLy (4.3.4)

with region of convergence rocx ∩ roc y. In words: the Laplace transform
of a convolution of signals is the multiplication of their Laplace transforms.
The region of convergence of L(x ∗ y) is the intersection of the regions of
convergence of Lx and Ly, that is, rocx ∩ roc y.

Let H be a regular system with impulse response h and let y = Hx be
the response of the system H to input signal x ∈ domh. We have y = h ∗ x
and the convolution theorem asserts that

Ly = LhLx = λHLx (4.3.5)

with region of convergence roch∩ rocx. Thus, the Laplace transform of the
response y = Hx is the transfer function of the regular system H multiplied
by the Laplace transform of the input signal x. This result also holds for
the shifter, that is,

LTτx = λTτLx = e−sτLx
with region of convergence rocx. This is called the time-shift property
of the Laplace transform (Exercise 4.4). The result also holds for the differ-
entiator, that is,

LDx = λDLx = sLx
with region of convergence rocx under the added assumptions that x is
differentiable, i.e. x ∈ C1, and that

lim
t→∞

x(t)e−st = lim
t→−∞

x(t)e−st = 0 when s ∈ rocx.

This is called the differentiation property of the Laplace transform (Ex-
ercise 4.5). Observe that the added assumptions are true if, for example,
x(t) is finite.
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In Chapter 2 we modelled electrical, mechanical, and electromechanical
devices by linear differential equations with constant coefficients of the form

m∑
`=0

a`D
`x =

k∑
`=0

b`D
`y.

Suppose that H is a linear shift-invariant system such that y = Hx if x and
y satisfy a differential equation of this form. In Section 3.4 we found that
the transfer function of H is a ratio of polynomials, that is,

λH(s) =

∑m
`=0 a`s

`est∑k
`=0 b`s

`est
=
a0 + a1s+ . . . ams

m

b0 + b1s+ . . . bksk
.

Properties of H can be obtained by inspecting this transfer function. For
example, the impulse response of H (if it exists) can be obtained by applying
the inverse Laplace transform.

We now apply these results to the differential equations that model the
RC electrical circuit from Figure 2.1 and the mass spring damper from Fig-
ure 2.2. The RC circuit is an example of what is called a first order system
and the mass spring damper is an example of what is called a second order
system.

4.4 First order systems

Recall the passive electrical RC circuit from Figure 2.1. The differential
equation modelling this circuit is (2.0.1),

x = y +RCDy

where x is the input voltage signal, y is the voltage over the capacitor, and
R and C are the resistance and capacitance. The RC circuit is an example
of a first order system so called because the highest order derivative that
occurs is of order one, that is, Dk with k = 1. Let H be a system mapping
the input voltage signal x to the output voltage signal y. From (3.4.4) the
transfer function λH is found to satisfy

λH(s) =
1

1 +RCs
=

r

r + s

where r = 1
RC . The value 1

r = RC is called the time constant. The
impulse response of H is given by the inverse of this Laplace transform.
There are two signals with Laplace transform r

r+s : the right sided signal
re−rtu(t) with region of convergence Re s > −r, and the left sided signal
−re−rtu(−t) with region of convergence Re s < −r. The RC circuit (and
in fact all physically realisable systems) are expected to be causal. For this
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reason, the left sided signal −re−rtu(−t) cannot be the impulse response of
H. The impulse response is the right sided signal

h(t) = re−rtu(t).

Given an input voltage signal x we can now find the corresponding output
signal y = Hx by convolving x with the impulse response h. That is,

y = Hx = h ∗ x =

∫ ∞
−∞

re−rτu(τ)x(t− τ)dτ = r

∫ ∞
0

e−rτx(t− τ)dτ.

If r ≥ 0 the impulse response is absolutely integrable, that is,

‖h‖1 =

∫ ∞
−∞

∣∣re−rtu(t)
∣∣ dt

= r

∫ ∞
0

e−rtdt

= 1− lim
t→∞

e−rt = 1,

and the system is stable (Exercise 3.5). However, if r < 0 the impulse
response is not absolutely integrable and the system is not stable. Figure 4.3
shows the impulse response when r = −1

5 ,−1
3 ,−1

2 , 1, 2. In a passive electrical
RC circuit the resistance R and capacitance C are always positive and r =

1
RC is positive. For this reason, passive electrical RC circuits are always
stable.

From (3.1.3), the step response Hu is given by applying the integrator
I∞ to the impulse response, that is,

Hu = I∞h =

∫ t

−∞
re−rτu(τ)dτ =

{
r
∫ t

0 e
−rτdτ t > 0

0 otherwise

or more simply
Hu =

(
1− e−rt

)
u(t). (4.4.1)

This step response in plotted in Figure 4.3.

Test 5 (The impulse response of the active RC circuit) In this test
we again use the active RC circuit from Test 3 with resistors R = R1 = R2 =
27kΩ and capacitor C = C2 = 10nF. In Test 3 we applied the differential
equation (2.2.4) to the reconstructed output signal ỹ and asserted that the
resulting signal was close to the reconstructed input signal x̃. In this test
we instead convolve the input signal x̃ with the impulse response

h(t) = − 1
RC e

−t/RCu(t) = −re−rtu(t), r = 1
RC =

105

27
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and assert that the resulting signal is close to the output signal ỹ. That is,
we test the expected relationship

ỹ ≈ h ∗ x̃ =

∫ ∞
−∞

h(τ)x̃(t− τ)dτ.

From (1.3.4),

ỹ(t) ≈
∫ ∞
−∞

h(τ)
L∑
`=1

x` sinc(Ft− Fτ − `)dτ

=

L∑
`=1

x`

∫ ∞
−∞

h(τ) sinc(Ft− Fτ − `)dτ

=

L∑
`=1

x`g(Ft− `)

where the function

g(t) =

∫ ∞
−∞

h(τ) sinc(t− Fτ)dτ = −r
∫ ∞

0
e−rτ sinc(t− Fτ)dτ.

An approximation of g(t) is made by the trapezoidal sum

g(t) ≈ K

2N

(
p(0) + p(K) + 2

N−1∑
n=1

p(∆n)

)
,

where p(τ) = h(τ) sinc(t− Fτ) and

K = −RC log
(
10−3

)
, N = d10FKe, ∆ = K/N.

Figure 4.2 plots the input signal x̃, output signal ỹ, and hypothesised output
signal h ∗ x̃ over a 4ms window.



4.5 Second order systems 61

1.000 1.001 1.002 1.003 1.004

0

time (s)

el
ec
tr
ic
a
l
p
o
te
n
ti
a
l

x̃

ỹ
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Figure 4.2: Plot of reconstructed input signal x̃ (solid line), output signal ỹ (solid
line with circle), and hypothesised output signal h ∗ x̃ (solid line with dot).

4.5 Second order systems

Consider the mass spring damper system from Figure 2.2 that is described
by the equation

f = Kp+BDp+MD2p (4.5.1)

where f is the force applied to the mass M and p is the position of the
mass and K and B are the spring and damping coefficients. The mass
spring damper is an example of a second order system because it contains
differeniators D2 of order at most two. Another example of a second order
system is the Sallen-Key active electrical circuit depicted in Figure 2.10.
In Section 2 we were able to find the force f corresponding with a given
position signal p. Suppose that H is a linear shift-invariant system mapping
f to p, that is, such that p = Hf . We will find the impulse response of H.
From 3.4.4 the transfer function is found to satisfy

λH(s) =
1

K +Bs+Ms2
.

We can invert this Laplace transform to obtain the impulse response. There
are three cases to consider depending on whether the quadraticK+Bs+Ms2

has two distinct real roots, is irreducible (does not have real roots), or has
two identical real roots.
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Case 1: (Distinct real roots) In this case, the roots are

β − α, −β − α,

where

α =
B

2M
, β =

√
B2 − 4KM

2M

and B2 − 4KM > 0. By a partial fraction expansion (Exercise 4.9),

λH(s) =
1

M(s− β + α)(s+ β + α)

=
1

2βM

(
1

s− β + α
− 1

s+ β + α

)
.

From (4.2.3) we obtain the transform pairs

L(e(β−α)tu(t)) =
1

s− β + α
, L(e−(β+α)tu(t)) =

1

s+ β + α
.

As in Section 4.4, other signals with these Laplace transforms are discarded
because they do not lead to an impulse response that is zero for t < 0. That
is, they do not lead to a causal system H. The impulse response of H is
thus

h(t) =
1

2βM
u(t)e−αt

(
eβt − e−βt

)
.

This is a sum of the impulse responses of two first order systems.

Case 2: (Distinct imaginary roots) The solution is as in the previous
case, but now 4KM −B2 > 0 and β is imaginary. Put θ = β/j so that

eβt − e−βt = ejθt − e−jθt = 2j sin(θt).

The impulse response of H is

h(t) =
1

θM
u(t)e−αt sin(θt).

Case 3: (Identical roots) In this case, the two roots are equal to −α
and

λH(s) =
1

M(s+ α)2
.

From (4.2.3) we obtain the transform pair

L
(
te−αtu(t)

)
=

1

(s+ α)2
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and this is the only signal with this Laplace transform that leads to a causal
impulse response. The impulse response of H is thus

h(t) =
1

M
te−αtu(t).

A second order system is called overdamped when there are two distinct
real roots, underdamped when their are two distinct imaginary roots, and
critically damped when the roots are identical. The different types of
impulse responses for are plotted in Figure 4.4.

With no damping (i.e. damping coefficient B = 0) the roots are of the
form ±β and have no real part. In this case, the impulse response is

h(t) =
1

θM
u(t) sin(θt),

where θ = β/j =
√
KM is called the natural frequency of the second

order system. This impulse response oscillates for all t > 0 without decay
or explosion. Two identical roots occur when the damping coefficient B =√

4KM and this is sometimes called the critical damping coefficient.

The impulse response of a second order system is absolutely integrable
when α = B

2M > 0, but not when α ≤ 0. Thus, the system is stable when
α > 0 and not stable when α ≤ 0. For the mass spring damper both the
mass M and damping coefficient B are positive and so mass spring dampers
are always stable.

From (3.1.3) the step response H(u) is given by applying the integrator
I∞ to the impulse response. There are three cases to consider depending
on whether the system is overdamped, underdamped, or critically damped.
When the system is overdamped the step response is

Hu = I∞h =
1

2βM

∫ t

−∞
e−ατ

(
eβτ − e−βτ

)
u(τ)dτ

=
1

2βM

∫ t

0
e−ατ

(
eβτ − e−βτ

)
dτ

=
1

2βM
u(t)

(
e(β−α)t − 1

β − α +
e−(β+α)t − 1

β + α

)
.

When the system is underdamped the step response is

Hu = I∞h =
1

θM

∫ t

0
e−ατ sin(θτ)dt

= u(t)

(
θ − e−tα

(
θ cos(tθ) + α sin(tθ)

)
Mθ(α2 + θ2)

)
.
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When the system is critically damped the step response is

Hu = I∞h =
1

θM

∫ t

0

1

M
te−αtdt

=
1

Mα2
u(t)

(
1− e−tαs(1 + tα)

)
.

These step responses are plotted in Figure 4.5.

4.6 Poles, zeros, and stability

The transfer function of a system described by a linear differential equation
with constant coefficients is of the form of (3.4.4), that is,

λH(s) =
a0 + a1s+ . . . ams

m

b0 + b1s+ . . . bksk
.

Factorising the polynomials on the numerator and denominator we obtain

λH(s) = C
(s− α0)(s− α1) · · · (s− αm)

(s− β0)(s− β1) · · · (s− βk)
,

where α0, . . . , αm are the roots of the numerator polynomial a0 + a1s +
· · · + ams

m, and β0, . . . , βk are the roots of the denominator polynomial
b0+b1s+· · ·+bksk, and C = am

bm
. That such a factorisation is always possible

is called the fundamental theorem of algebra [Fine and Rosenberger,
1997]. If the numerator and denominator polynomials share one or more
roots, then these roots cancel leaving the simpler expression

λH(s) = C
(s− αd)(s− αd+1) · · · (s− αm)

(s− βd)(s− βd+1) · · · (s− βk)
, (4.6.1)

where d is the number of shared roots, these shared roots being

α0 = β0, α1 = β1, . . . , αd−1 = βd−1.

The roots from the numerator αd, . . . , αm are called the zeros and the roots
from the denominator βd, . . . , βm are called the poles. A pole-zero plot
is constructed by marking the complex plane with a cross at the location of
each pole and a circle at the location of each zero. Pole-zero plots for the first
order system from Section 4.4, the second order system from Section 4.5,
and the system describing the PID controller (2.2.7) are shown in Figure 4.6.

It is always possible to apply partial fractions and write (4.6.1) in the
form

λH(s) = p(s) +
∑
`∈K

A`
(s− β`)r`

,
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Figure 4.4: Impulse response of the mass spring damper with M = 1, K = π2

4 and

damping constant B = π
3 (underdamped), B =

√
4KM = π (critically damped),

and B = 2π (overdamped).
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Figure 4.5: Step response of the mass spring damper with M = 1, K = π2

4 and

damping constant B = π
3 (underdamped), B =

√
4KM = π (critically damped),

and B = 2π (overdamped).
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Figure 4.6: Top left: pole zero plot for the first order system x = y + Dy. There
is a single pole at −1. Top right: pole zero plot for the overdamped second order
system x = 2y + 3Dy + D2y that has two real poles at −1 and −2. Bottom left:
pole zero plot for the underdamped second order system x = 5y+ 2Dy+D2y that
has two imaginary poles at −1 + 2j and −1− 2j. The poles form a conjugate pair.
Bottom right: pole zero plot for the equation Dy = 5x − 2Dx + D2x that models
a PID controller (2.2.7). The system has a single pole at the origin and two zeros
at 1 + 2j and 1− 2j.
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where r` are positive integers, A` are complex constants, K is a subset of
the indices from {d, d+ 1, . . . , k}, and p(s) is a polynomial of degree m− k.
If k > m then p(s) = 0. The integer r` is called the multiplicity of the
pole β`. We see that the transfer function contains the summation of two
parts: the polynomial p(s), and a sum of terms of the form A

(s−β)r . Let

p(s) = γ0 + γ1s+ · · ·+ γm−ks
m−k. This polynomial is the transfer function

of the nonregular system

F = γ0T0 + γ1D + γ2D
2 + · · ·+ γm−kD

m−k.

This system is a linear combination of the identity system T0 and differen-
tiators of order at most m− k. From (4.2.3),

L
(
A

r!
tr−1eβtu(t)

)
=

A

(s− β)r
Re s > Reβ

and so the terms of the form A
(s−β)r correspond with the transfer function

of a regular system with impulse response A
r! t

r−1eβtu(t). Other signals with
Laplace transform A

(s−β)r are discarded because they do not correspond with

the impulse response of a causal system. Thus,
∑

`∈K
A`

(s−β`)r` is the transfer
function of the regular system G with impulse response

g(t) = u(t)
∑
`∈K

A`
r`!
tr`−1eβ`t. (4.6.2)

The system H mapping x to y is the sum of the regular system G and
nonregular system F , that is,

y = Hx = Fx+Gx.

Observe that H is regular only if the system F = 0, that is, only if F maps
all input signals to the signal x(t) = 0 for all t ∈ R. This occurs only when
the polynomial p(s) = 0, that is, only when the number of poles exceeds the
number of zeros. The system H will be stable if both F and G are stable.
Because the differentiator D` is not stable (Exercise 1.17) the system F is
stable if only if the order of the polynomial p(s) is zero, that is, if p(s) = γ0

is a constant (potentially γ0 = 0). In this case Fx = γ0T0x is the identity
system multiplied by a constant. The polynomial p(s) is a constant only
when the order of the denominator polynomial is greater than or equal to
the order of the numerator polynomial, that is, when the number of poles
is greater than or equal to the number of zeros. The regular system G is
stable if and only if its impulse response g is absolutely integrable. This
occurs only when the terms eβ`t inside the sum (4.6.2) are decreasing as
t → ∞, that is, only if the real part of the poles Reβ` are negative. Thus,
the system G is stable if and only if the real part of the poles are strictly
negative.
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The stability of the system H can be immediately determined from its
pole-zero plot. The system is stable if and only if:

1. the number of poles is greater than or equal to the number of zeros
(there are at least as many crosses on the pole-zero plot as circles),

2. No poles (crosses) line on the imaginary axis or in the right half of the
complex plane.

The pole-zero plots in Figure 4.6 all represent stable systems with the ex-
ception of the plot on the bottom right (a PID controller). This system has
two zeros and only one pole. The single pole is contained on the imaginary
axis.

4.6.1 Two masses, a spring, and a damper

Consider the system involving two masses, a spring, and a damper in Fig-
ure 2.11. From (2.3.2), the equation relating the force applied to the first
mass f and the position of the second mass p is

f = BDp+ (M1 +M2)D2p+
BM2

K
D3p+

M1M2

K
D4p,

where B is the damping coefficient, K is the spring constant, and M1 and
M2 are the masses. The transfer function of a system H that maps f to p is

λH(s) =
1

s
(
B + (M1 +M2)s+ BM2

K s2 + M1M2
K s3

) .
The system has no zeros and 4 poles. One of these poles always exists at
the origin. The system is not stable because this pole is not strictly in the
left half of the complex plane.

Consider the specific case when B = K = M1 = M2 = 1. Factorising
the denominator polynomial gives

λH(s) =
1

s(s− β1)(s− β2)(s− β∗2)
,

where

β1 =
1

3

(
γ − 5

γ
− 1

)
≈ −0.56984,

β2 =
1

6

(
5(1 + j

√
3)

γ
− (1− j

√
3)γ − 1

2

)
≈ −0.21508 + 1.30714j,

and γ =
(

3
√

69−11
2

)1/3
. Applying partial fractions (Exercise 4.10) gives

λ(H) =
1

s(s− β1)(s− β2)(s− β∗2)
=
A0

s
+

A1

s− β1
+

A2

s− β2
+

A∗2
s− β∗2

,
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Figure 4.7: Impulse response of the system with two masses, a spring, and a damper,
where B = K = M1 = M2 = 1.

where

A0 = − 1

β1|β2|2
= 1, A1 =

1

β1|β1 − β2|2
≈ −0.956611,

A2 =
1

β2(β2 − β1)(β2 − β∗2)
≈ −0.0216944 + 0.212084j.

From (4.6.2), the impulse response of H is

h(t) = u(t)
(
A0 +A1e

β1t + 2 |A2| eReβ2t cos(Imβ2t+ ∠A2)
)
.

This impulse response is plotted in Figure 4.7. Observe that h is not abso-
lutely integrable and the system is not stable. The impulse response h(t)
does not converge to zero as t→∞ and correspondingly the mass M2 does
not come come to rest at position zero in Figure 4.7. In the figure it is
assumed that the spring is at equilibrium when the two masses are d = 1
apart. From (2.3.1), the position of mass M1 is given by the signal p1 = g−d
where g = h+M2D

2(h).
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4.6.2 Direct current motors

Recall the direct current (DC) motor from Figure 2.13 described by the
differential equation from (2.4.1),

v =

(
RB

Kτ
+Kb

)
Dθ +

RJ

Kτ
D2θ,

where v is the input voltage signal and θ is a signal representing the angle of
the motor. The constants R,B,Kτ ,Kb, and J are related to components of
the motor as described in Section 2.4. To simplify the differential equation
put a = RB

Kτ
+Kb and b = RJ

Kτ
and the equation becomes

v = aDθ + bD2θ.

The transfer function of a system H that maps input voltage v to motor
angle θ is

λH(s) =
1

s(a+ bs)
.

This system has no zeros and two poles. One pole is at −a
b and the other is

at the origin. The system is not stable because the pole at the origin is not
strictly in the left half of the complex plane.

Applying partial fractions we find that

λH(s) =
1

as
− 1

a(s− β)
, (4.6.3)

where β = −a
b . Using (4.2.3), the impulse response of H is

h(t) =
1

a
u(t)

(
1− eβt

)
. (4.6.4)

Other signals with Laplace transform (4.6.3) are discarded because they do
not lead to a causal system. The step response Hu is obtained by applying
the integrator system I∞ to the impulse response, that is

Hu = I∞h =
1

aβ
u(t)

(
βt+ eβt − 1

)
.

The impulse response and step response are plotted in Figure 4.8 when
Kb = 1

8 , Kτ = 8 and B = R = 1 and J = 2 so that a = 1
4 , b = 1

4 and
β = −1.

Exercises

4.1. Sketch the signal
x(t) = e−2tu(t) + etu(−t)

where u(t) is the step function. Find the Laplace transform of x(t)
and the corresponding region of convergence. Sketch the region of
convergence on the complex plane.
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Figure 4.8: Impulse response (top) and step response (bottom) of a DC motor with
constants Kb = 1

4 , Kτ = 8 and B = R = J = 1.
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4.2. Find the Laplace transform of the signal tnu(t) where n ≥ 0 is an
integer.

4.3. Let n ≥ 0 be an integer. Show that the Laplace transform of the signal
(−t)nu(−t) is the same as the Laplace transform of the signal tnu(t),
but with a different region of convergence.

4.4. Show that equation (4.3.5) on page 57 holds when the system H the
time shifter Tτ .

4.5. Show that equation (4.3.5) on page 57 holds when the system H is the
differentiator under the added assumption that

lim
t→∞

x(t)e−st = lim
t→−∞

x(t)e−st = 0 when s ∈ roc(x).

4.6. Let x be the signal with Laplace transform

L(x, s) =
1

(s− 1)3
Re(s) > 1.

Define the signal y by

y(t) = etx(2t+ 1).

Find the Laplace transform and region of convergence of y. Sketch the
region of convergence of y.

4.7. What is the transfer function of the integrator system I∞? What is
the domain of this transfer function?

4.8. By partial fractions, or otherwise, assert that

as

s+ b
= a− ab

s+ b

4.9. By partial fractions, or otherwise, assert that

s+ c

(s+ a)(s+ b)
=

a− c
(a− b)(s+ a)

+
c− b

(a− b)(s+ b)

∗4.10. By partial fractions, or otherwise, assert that

1

s(s− a)(s− b)(s− b∗) =
A0

s
+

A1

s− a +
A2

s− b +
A∗2

s− b∗

where a ∈ R and b ∈ C and Im(b) 6= 0 and

A0 = − 1

a|b|2 , A1 =
1

a|a− b|2 , A2 =
1

b(b− a)(b− b∗) .

You might wish to check your solution using a symbolic programming
language (for example Sage, Mathematica, or Maple).
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4.11. Let y be a signal with Laplace transform taking the form

Ly(s) =
2s+ 1

s2 + s− 2

By partial fractions, or otherwise, find all possible signals y with this
Laplace transform and the corresponding region of convergence.

4.12. Let x be a signal. Show that the time scaled signal x(αt) with α 6= 0
satisfies equation (4.2.4) on page 55.

4.13. Consider the active electrical circuit from Figure 2.8 described by the
differential equation from (2.2.3). Derive the transfer function of this
system. Find an explicit system H that maps the input voltage x
to the output voltage y. State whether this system is stable and/or
regular.

∗4.14. Given the mass spring damper system described by (4.5.1), find the
position signal p given that the force signal

f(t) = Π
(
t− 1

2

)
=

{
1 0 < t ≤ 1

0 otherwise

is the rectangular function time shifted by 1
2 . Consider three cases:

(a) M = 1, K = π2

4 and B = π
3 ,

(b) M = 1, K = π2

4 and B = π,

(c) M = 1, K = π2

4 and B = 2π,

Plot the solution in each case, and comment on whether the system is
underdamped, overdamped, or critically damped.

4.15. Plot the signal x(t) = sin(tet)u(t) and find and plot its derivative
Dx. Show that the region of convergence of x contains those complex
numbers s with Re s > 0 and that the region of convergence of Dx
contains those with Re s > 1.

4.16. Show that the limit as |s| → 0 of

es/2 − e−s/2
s

is equal to 1.

∗4.17. Consider the mechanical system in Figure 2.15 from Exercise 2.2. After
solving Exercise 2.2, find the transfer function of a linear shift-invariant
H system mapping f to p. Now suppose that M1 = K1 = K2 = B = 1
and M2 = 2. Find the poles and zeros of H and draw a pole zero plot.
Determine whether H is stable and/or regular. Find and plot the
impulse response and the step response of H if they exist.
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4.18. Consider the electromechanical system in Figure 2.16 from Exercise 2.3.
After solving Exercise 2.3, find the transfer function of a linear shift-
invariant system that maps the input voltage v to the motor angle
θ. Under the assumption that the motor coefficients satisfy L = 0
and Kb = Kτ = B = R = J = 1 draw a pole zero plot and deter-
mine whether this system is stable and/or regular. Find and plot the
impulse response and step response if they exist.

∗∗4.19. Let x be a signal. Show that the complex exponential signal est ∈
domx if and only if the signal x(t)e−st is absolutely integrable.

∗∗4.20. Show that the complex exponential signal est ∈ dom f g if and only if
s ∈ roc f ∩ roc g, that is, cep dom f g = roc f ∩ roc g.



Chapter 5

The Fourier transform

Let x be an absolutely integrable signal. We denote by Fx the complex
valued function satisfying

Fx(f) =

∫ ∞
−∞

x(t)e−j2πftdt (5.0.1)

called the Fourier transform of x. The Fourier transform is a complex
valued function of the real number f , that is, Fx ∈ R → C, or in other
words, Fx is a signal. For example, the rectangular pulse Π(t) from (1.1.2)
is absolutely integrable and has Fourier transform

FΠ(f) =

∫ ∞
−∞

Π(t)e−j2πftdt

=

∫ 1/2

−1/2
e−j2πftdt

=
ejπf − e−jπf

j2πf
=

sin(πf)

πf
= sinc(f). (5.0.2)

The sinc function is plotted in Figure 5.1.
The Fourier transform is closely related to the Laplace transform because

Fx(f) = Lx(j2πf)

for those signals x with region of convergence containing the imaginary axis,
that is, for absolutely integrable x. The Fourier transform inherits the prop-
erties of the Laplace transform that were described in Section 4.3. For ex-
ample, if H is a stable regular system with absolutely integrable impulse
response h (Exercise 3.9), then the spectrum of H satisfies

ΛH(f) = λH(j2πf) = Lh(j2πf) = Fh(f),

that is, the spectrum of a stable regular system is the Fourier transform
of its impulse response. Like the Laplace transform, the Fourier transform

77
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obeys the convolution theorem (4.3.4), that is,

F(x ∗ y) = FxFy (5.0.3)

when the signals x and y are absolutely integrable. In words: the Fourier
transform of a convolution of signals is the multiplication of the Fourier
transforms of those signals. The convolution of two absolutely integrable
signals is always absolutely integrable and so there is no need to include the
assumption that x ∗ y is absolutely integrable (Exercises 3.9).

It follows from (4.3.5) that if H is a stable regular system with impulse
response h and spectrum ΛH = Fh and if x ∈ domh is a signal with Fourier
transform Fx, then the signal Hx has Fourier transform

FHx = ΛH Fx, (5.0.4)

that is, the Fourier transform of Hx is the multiplication of the transfer
function of the system H and the Fourier transform of the input signal x.
This property also holds for the shifter Tτ (Exercise 4.4) and it holds for
the differentiator D under the added assumption that limt→∞ x(t) = 0 and
limt→−∞ x(t) = 0 (Exercise 4.5). From (4.3.1) and (4.3.2) the spectrum of
Tτ and the kth differentiator Dk satisfy

ΛTτ = e−j2πfτ , ΛDk = (j2πf)k

from which we obtain the time shift property,

FTτx = ΛTτFx = e−j2πfτFx,

and the differentiation property,

FDkx = ΛDkFx = (j2πf)kFx.

These results motivate assigning the following Fourier transforms to the
delta “function” δ, its shift Tτδ = δ(t− τ), and its derivatives

Fδ = 1, F
(
δ(t− τ)

)
= e−j2πτf , Fδk = (j2πf)k. (5.0.5)

These conventions are common in the literature [Oppenheim et al., 1996].
Similarly to the Laplace transform (4.2.2), the Fourier transform obeys

a frequency shift rule that relates the transform of a signal x(t) to that
of the signal e2πjγftx(t) where γ ∈ R. From (4.2.2), the frequency shift rule
asserts that

F
(
e2πjγtx(t)

)(
f
)

= Fx(f − γ), (5.0.6)

that is, the Fourier transform of the signal e2πjγftx(t) is given by shifting
that of x by γ. The property can be expressed using the shifter system Tγ



5.1 The inverse transform and the Plancherel theorem 79

by F
(
e2πjγtx(t)

)
= TγFx. The signal e2πjγftx(t) is often referred to as a

frequency shifted version of x.

Because cos(2πγt) = 1
2e

2πjγt + 1
2e
−2πjγt it follows from the frequency

shift rule that

F
(

cos(2πγt)x(t)
)(
f
)

=
1

2
Fx(f − γ) +

1

2
Fx(f + γ). (5.0.7)

and, similarly, since sin(2πγt) = 1
2j e

2πjγt − 1
2j e
−2πjγt we have

F
(

sin(2πγt)x(t)
)(
f
)

=
1

2j
Fx(f − γ)− 1

2j
Fx(f + γ).

These results are sometimes called the modulation properties of the
Fourier transform [Papoulis, 1977, page 61]. These properties are of partic-
ular importance in communications engineering [Proakis, 2007]. Combing
the frequency shift rule with the convention Fδ = 1 motivates assigning the
following Fourier transforms to the complex exponential signal e2πjγt and
the cosine and sine signals,

F(e2πjγt) = δ(f − γ).

F
(

cos(2πγt)
)

= 1
2δ(f − γ) + 1

2δ(f + γ),

F
(

sin(2πγt)
)

= 1
2j δ(f − γ)− 1

2j δ(f + γ).

These conventions are common in the literature [Oppenheim et al., 1996;
Proakis, 2007], but must be treated with caution. There is no guarantee
that mechanical mathematical manipulations involving these conventions
will lead to sensible results.

Like the Laplace transform (4.2.4), the Fourier transform obeys a time-
scaling property. If x is an absolutely integrable signal then the time
scaled signal x(αt) with α 6= 0 has Fourier transform

F
(
x(αt)

)(
f
)

=
1

|α|Fx(f/α). (5.0.8)

5.1 The inverse transform and the Plancherel theorem

Given a signal x we will often denote its Fourier transform by x̂ = Fx.
Observe that x̂, like x, is a function that maps a real number to a complex
number, that is, x̂ is a signal with independent variable representing fre-
quency. It is usual to call x̂ the frequency-domain representation of the
signal and x the time-domain representation although the signal x need
not be a function of “time”.
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t

42−2−4

1

Figure 5.1: The sinc function sinc(t) = sin(πt)
πt .

If x̂ is absolutely integrable, then x can be recovered using the inverse
Fourier transform

x(t) = F−1x̂(t) =

∫ ∞
−∞

x̂(f)ej2πftdf. (5.1.1)

For example, suppose that x̂ = Fx = Π is the rectangular pulse. By working
analogous to that from (5.0.2),

x(t) =

∫ ∞
−∞

Π(f)ej2πftdf = sinc(−t) = sinc(t).

We are lead to the conclusion that the Fourier transform of sinc is the
rectangular pulse Π.

The rectangular pulse Π is finite and absolutely integrable. The sinc
function is not absolutely integrable (Exercise 5.3). Because of this the in-
tegral equation that we have used to define the Fourier transform (5.0.1)
cannot be directly applied to the sinc function. Although sinc is not abso-
lutely integrable, it is square integrable (Exercise 5.3). It happens that all
square integrable signals can be assigned a Fourier transform by interpreting
the integral in (5.0.1) as what is called its Cauchy principal value. That
is, for x a square integrable signal, we assign the Fourier transform

x̂(f) = Fx(f) = lim
T→∞

∫ T

−T
x(t)e−j2πftdt. (5.1.2)

This Fourier transform x̂ is itself a square integrable signal and the orig-
nal time domain signal x can be recovered almost everywhere by taking
the Cauchy principal value of the integral for the inverse Fourier trans-
form (5.1.1), that is,

x(t) = F−1x̂(t) = lim
T→∞

∫ T

−T
x̂(f)ej2πftdf a.e.

Infact, the energy of x and its Fourier transform x̂ are the same, that is,

‖x‖22 =

∫ ∞
−∞
|x(t)|2 dt =

∫ ∞
−∞
|x̂(f)|2 dt = ‖x̂‖22. (5.1.3)
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These results are known as the Plancherel theorem [Rudin, 1986, Th. 9.13].
The equality of energies in (5.1.3) is often called Parseval’s identity. For
our purposes it will suffice to remember only that the Fourier transform of
the sinc function is the rectangular pulse Π. In this text, the sinc func-
tion is by far the most regularly occuring example of a signal that is square
integrable, but not absolutely integrable. If x and y are square integrable
signals with Fourier transforms x̂ and ŷ, then a consequence of (5.1.3) is∫ ∞

−∞
x(t)y∗(t)dt =

∫ ∞
−∞

x̂(f)ŷ∗(f)dt (Exercise 5.15) (5.1.4)

where the superscript ∗ denotes the complex cojugate. This result often also
goes by the name of Parseval’s identity.

Let x be a signal with Fourier transform

Fx(f) =

∫ ∞
−∞

x(τ)e−j2πfτdτ.

Evaluating the Fourier transform at −t we find that

Fx(−t) =

∫ ∞
−∞

x(τ)ej2πtτdτ = F−1x(t). (5.1.5)

This is the called the duality property of the Fourier transform. In words, if
x̂ is the Fourier transform of x, then x is the Fourier transform of x̂ reflected
in time. Another way to express duality is

F x̂(t) = FFx(t) = F2x(t) = x(−t) a.e.,

that is, twice application of the Fourier transform to a signal x results in x
reflected in time. Pointwise equality holds in the case that x̂ is absolutely
integrable.

Suppose that x and y are square integrable with absolutely integrable
Fourier transforms x̂ and ŷ. Because F x̂(t) = x(−t) and F ŷ(t) = y(−t), the
convolution property asserts that

F(x̂ ∗ ŷ)(−t) = x(t)y(t).

The product xy is an absolutely integrable signal by Holder’s inequal-
ity [Rudin, 1986, Theorem 3.5]. Applying the Fourier transform to both
sides and using the duality property we find that

F(xy) = x̂ ∗ ŷ (5.1.6)

This is called the multiplication property of the Fourier transform. In
words, the Fourier transform of a multiplication of signals is the convolu-
tion of the Fourier transforms of those signals. The multiplication property
can be shown to hold under only the assumption that x and y are square
integrable provided that equality in (5.1.6) is replaced by equality almost
everywhere (Exercise 5.16).
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5.2 Analogue filters

For many engineering purposes it is desirable to construct systems that will
pass (have little affect on) a complex exponential signal ej2πft for certain
frequencies f , but will reject (significantly attenuate) these signals for other
frequencies. Such systems are called frequency dependent filters. Those
frequencies that the filter intends to pass unaffected are said to be in the
pass band and those frequencies that the filter intends to reject are said to
be in the stop band.

An ideal lowpass filter with cuttoff frequency c is the system Lc
with spectrum

ΛLc =

{
1 |f | < c

0 otherwise
= Π

(
f

2c

)
.

Applying the inverse Fourier transform to Π
( f

2c

)
gives∫ ∞

−∞
Π
( f

2c

)
ej2πtfdf =

∫ c

−c
ej2πtfdf =

sin(2cπt)

πt
= 2c sinc(2ct).

We are lead to the conclude that the ideal lowpass filter Lc is a regular linear
time invariant system with impulse response 2c sinc(2ct). This conclusion
should be taken with scepticism because the signal 2c sin(2ct) is not abo-
lutely integrable and so its transfer function with not contain the imaginary
axis in its domain. Infact, roc sinc = ∅. An exception has been made to allow
square integrable signals to have a Fourier transform and a similar excep-
tion must be made to allow regular systems with square integrable impulse
response to have a spectrum. Ideal filters are not practically implementable
and so this caveat with not affect the results that follow. The concept of an
ideal filter is nonethless informative from an intuitive viewpoint.

An ideal highpass filter with cuttoff frequency c is given by the linear
combination T0 − Lc where T0 is the identity system. The spectrum is

Λ(T0 − Lc) = ΛT0 − ΛLc = 1−Π

(
f

2c

)
=

{
0 |f | < c

1 otherwise.

This ideal highpass filter is not regular because the system T0 is not regular.
The system does not have an impulse response. Nevertheless, it is common
to represent one by δ(t)− 2c sinc(2ct) using the delta function as described
in Section 3.1.

An ideal bandpass filter with upper cuttoff frequency u and lower
cuttoff frequency ` is given by the linear combination Lu−L`. The spectrum
is

Λ(Lu − L`) = Π

(
f

2u

)
−Π

(
f

2`

)
=


1 −u < f ≤ −`
1 ` ≤ f < u

0 otherwise.
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We conclude that the ideal bandpass filter has impulse response 2u sinc(2ut)−
2` sinc(2`t). The spectrum and impulse response of the ideal lowpass, high-
pass, and bandpass filters are plotted in Figure 5.2.

Ideal filters are not realisable in practice. We now describe a popular
practical low-pass filter discovered by Butterworth [1930]. A normalised
low pass Butterworth filter of order m, denoted by Bm, has transfer
function

λBm(s) =
1∏m

i=1( s
2π − βi)

=
(2π)m∏m

i=1(s− 2πβi)
,

where β1, . . . , βm are the roots of the polynomial s2m+(−1)m that lie strictly
in the left half of the complex plane (have negative real part). Specifically,
these roots are

βk =

{
exp

(
j π2 (1 + 2k−1

m )
)
, k = 1, . . . ,m

exp
(
j π2 (1− 2k−1

m )
)
, k = m+ 1, . . . , 2m.

The roots are plotted in Figure 5.3. The spectrum of Bm is

ΛBm(f) =
1∏m

i=1(jf − βi)
and the magnitude spectrum of Bm can be shown to satisfy

|ΛBm(f)| =
√

1

f2m + 1
. (Exercise 5.4)

The magnitude and phase spectrum of the filters B1, B2, B3, and B4 are
plotted in Figure 5.4.

The cuttoff frequency of the lowpass filter Bm is defined as the positive
real number c such that |ΛBm(f)|2 < 1

2 for all f > c. The normalised
Butterworth filters have cuttoff frequency c = 1Hz. A lowpass Butterworth
filter of order m and cuttoff frequency c, denoted Bc

m, has transfer function

λBc
m(s) = λBm

(
s
c

)
=

1∏m
i=1( s

2πc − βi)
.

The magnitude spectrum satisfies

|ΛBc
m(f)|2 = |ΛBm

(f
c

)
|2 =

1(f
c

)2m
+ 1

=
c2m

f2m + c2m
. (5.2.1)

A first order Butterworth filter Bc
1 has spectrum

ΛBc
1(f) =

1

j fc + 1
=

c

jf + c
.

Putting 1
c = 2πRC we find that this is the same as the spectrum of the RC

electrical circuit (Figure 2.1) or the active RC circuit after negation (3.5.2).
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f

Π
( f

2c

)

1

c−c
t

2c sinc(2ct)

2c

f

1−Π
( f

2c

)
1

c−c
t

δ(t)− 2c sinc(2ct)

−2c

1

f

Π
( f
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−Π

( f
2`

)

1

`−u u−`
t

2u sinc(2ut)− 2` sinc(2`t)

2(u− `)

Figure 5.2: Spectrum and impulse response of the ideal lowpass filter Lc (top),
the ideal highpass filter T0 − Lc (middle), and the ideal bandpass filter Lu − L`
(bottom). The ideal highpass filter is not regular and does not have an impulse
response. We plot the ‘pretend’ impulse response using the delta function described
in Section 3.1.
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Figure 5.3: Roots of the polynomial s2m + (−1)m for m = 1 (top left), m = 2 (top
right), m = 3 (bottom left), and m = 4 (bottom right). All the roots lie on the com-
plex unit circle and have magnitude one. The poles of the normalised Butterworth
filter Bm are those roots from the left half of the complex plane (unshaded).
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Figure 5.4: Magnitude spectrum (top) and phase spectrum (bottom) of normalised
Butterworth filters B1, B2, B3 and B4.



5.2 Analogue filters 87

Thus, the RC electrical circuit is a first order Butterworth filter with cuttoff
frequency c = 1

2πRC . In Test 4 we constructed the active RC circuit with
R ≈ 27kΩ and C ≈ 10nF and measured its magnitude spectrum. The
cuttoff frequency was c = 5×104

27π ≈ 589Hz.
A second order electrical Butterworth filter can be constructed using

the Sallen-Key circuit described in Section 2.2 and Figure 2.10. The input
voltage x and output voltage y of the Sallen-Key satisfy the differential
equation (2.2.9)

x = y + C2(R1 +R2)Dy +R1R2C1C2D
2y.

The transfer function corresponding with this equation is

1

1 + C2(R1 +R2)s+R1R2C1C2s2
.

The second order Butterworth filter Bc
2 has transfer function

ΛBc
2(s) =

1

( 1
2πcs− β1)( 1

2πcs− β2)
,

where β1 = β∗2 = ej3π/4. Expanding the quadratic on the denominator gives

ΛBc
2(s) =

1

1 + 1√
2πc

s+ 1
4π2c2

s2
.

Choosing the resistors and capacitors of the Sallen-Key to satisfy

C2(R1 +R2) =
1√
2πc

, R1R2C1C2 =
1

4π2c2

leads to a second order Butterworth filter. A convenient solution is to put
C1 = 2C2 and R1 = R2. This gives a second order Butterworth filter with
cuttoff

c =
1√

2πC2(R1 +R2)
=

1

2
√

2πC2R2

.

In Test 6 we construct a second order Butterworth filter using a Sallen-Key
and measure its spectrum.

Butterworth filters of orders larger than m = 2 can be constructed by
concatenating Sallen-Key circuits and RC circuits. If m is even then m/2
Sallen-Key circuits are required. Each Sallen-Key is used to construct a
conjugate pair of poles, that is, the kth Sallen-Key would have poles 2πcβk
and 2πcβ∗k = 2πcβm−k+1. If m is odd then (m − 1)/2 Sallen-Key circuits
and a single RC circuit (or active RC circuit) can be used. The RC circuit
is designed to have the real valued pole β(m+1)/2 = 2πc.
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Test 6 (Butterworth filter)
We construct a second order Butterworth filter using the Sallen-Key

circuit from Figure 2.10 with capacitors C2 ≈ 100nF, C1 ≈ 2C2 ≈ 200nF
and resistors R1 ≈ R2 ≈ 330Ω. The cuttoff frequency is

c =
1

2
√

2πC2R2

≈ 3410Hz.

Sinusoids of the form

sin(2πfkt), fk =
⌈
110× 2k/2

⌋
, k = 1, 2, . . . , 13

are input to the filter using a computer soundcard and the magnitude and
phase spectrum are measured using the procedure described in Test 4. Fig-
ure 5.5 shows the measurements (dots) plotted alongside the hypothesised
magnitude spectrum

|ΛBc
2(f)| =

√
1

(f/c)4 + 1

and the hypothesised phase spectrum ∠ΛBc
2(f).

5.3 Complex sequences

Let x be a signal with Fourier transform x̂ = Fx. The signal x is said to be
bandlimited if there exists a positive real number b such that

x̂(f) = Fx(f) = 0 when |f | > b.

The value b is called the bandwidth of the signal x. For example, the sinc
function is bandlimited with bandwidth 1

2 because its Fourier transform
F sinc(f) = Π(f) = 0 for all |f | > 1

2 . Bandlimited signals have a number of
properties that make them suitable for representation and manipulation by
a computer. They are of particular importance for this reason. Before we
can study bandlimited signals we first require some properties of real and
complex valued sequences.

A sequence is a function with domain given by the integers Z. The value
of a sequence x at integer n can be denoted by x(n) but it is conventional
to write xn. We are primarily interested in sequences that take complex
values, that is, functions from the set Z→ C. For example,

sin(π4n), n3, e−|n|/2

each denote a real (and so also complex) valued sequence. In what follows the
term sequence will always mean a complex valued sequence unless other-
wise stated. Complex valued sequences are commonly called discrete-time
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Figure 5.5: Hypothesised magnitude spectrum |Λ(Bcm)| (top) and phase spectrum
∠Λ(Bcm) (bottom) of the second order Butterworth filter and the measured magni-
tude and phase spectrum of the filter implemented with a Sallen-Key active elec-
trical circuit (dots).
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n

sin
(
π
4n
)

n

e−|n|/2

n

un

n

δn

Figure 5.6: Real valued sequences. The bottom plots show that step sequence u
and the delta sequence δ.

signals and the nth element in the sequence is denoted by x[n] using squared
brackets [Oppenheim et al., 1996]. Here, we use the subscript notation xn.
This notation is also common [Vetterli et al., 2014; Rudin, 1986]. Sequences
are plotted using vertical lines with dotted ends as in Figure 5.6 and have a
number of properties analogous to the properties of signals (Section 1.1).

A sequence x is bounded if there exists a real number M such that

|xn| < M for all n ∈ Z.

Both sin(π4n) and e−|n|/2 are examples of bounded sequences, but n3 is not
bounded because its magnitude grows indefinitely as n moves away from the
origin. A sequence x is periodic if there exists a positive integer T such that

xn = xn+kT for all integers k and n.

The smallest such T is called the period. The sequence sin(π4n) is periodic

with period T = 8. Neither n3 or e−n
2/4 are periodic. A sequence x is even

(or symmetric) if xn = x−n for all n ∈ Z and odd (or antisymmetric) if
xn = −x−n for all n ∈ Z. Both sin(π4n) and n3 are odd and e−|n|/2 is even.

A sequence x is right sided if there exists a T ∈ R such that xn = 0
for all n < T . Correspondingly x is left sided if xn = 0 for all n > T . For
example, the step sequence u with nth element

un =

{
1 n ≥ 0

0 n < 0
(5.3.1)
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is right sided (Figure 1.2). The reflected sequence u−n is left sided. A
sequence is said to be of finite support or just finite if it is both left and
right sided. For example the the delta sequence δ with nth element

δn =

{
1 n = 0

0 otherwise,
(5.3.2)

has finite support. The delta sequence is analogous to the delta “function”
introduced in Section 3.1. The delta “function” is not actually function,
only a notational device. Contrastingly, the delta sequence is a well defined
sequence.

A sequence x is absolutely summable if

‖x‖1 =
∑
n∈Z
|xn| <∞,

that is, if the sum of absolute values of the elements in the sequence converges
to a finite number. The real number ‖x‖1 is commonly called the `1-norm of
x. The sequences sin(π4n) and n3 are not absolutely summable, but e−|n|/2

is because∑
n∈Z
|e−|n|/2| =

∑
n∈Z

e−|n|/2 = 1 +
2√
e− 1

. (Exercise 5.9)

It is common to denote the set of absolutely summable sequences by `1 or
`1(Z). So, e−|n|/2 ∈ `1 and sin(π4n) /∈ `1.

A sequence x is square summable if

‖x‖22 =
∑
n∈Z
|xn|2 <∞,

that is, if the sum of squared magnitudes of the elements converges to a
finite number. The real number ‖x‖2 is commonly called the `2-norm and
its square ‖x‖22 the energy of x. The sequences sin(π4n) and n3 are not

square summable, but e−|n|/2 is because

∑
n∈Z
|e−|n|/2|2 =

∑
n∈Z

e−|n| = 1 +
2

e− 1
. (Exercise 5.9)

It is common to denote the set of square summable sequences by `2. So,
e−|n|/2 ∈ `2 and sin(π4n) /∈ `2. If a sequence is absolutely summable then
it is also square summable (Exercise 5.10). The corresponding property is
not true of signals, that is, absolutely integrable signals are not necessarily
square integrable (Exercise 1.5).
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5.4 Bandlimited signals

Let b be a positive real number and let x be a signal with Fourier transform
x̂ = Fx. The signal x is said to be bandlimited with bandwidth b if

x̂(f) = Fx(f) = 0 for all |f | > b.

For example, the sinc function sinc(t) that has Fourier transform Π(f) is
bandlimited with bandwidth b ≥ 1

2 . Another example is the signal with
Fourier transform given by a raised cosine

x̂(f) = Π(f)
(
1 + cos(2πf)

)
=

{
1 + cos(2πf) |f | < 1

2

0 otherwise

that is bandlimited with bandwidth b ≥ 1
2 . The time domain signal is found

by applying the inverse Fourier transform

x(t) = sinc(t) + 1
2 sinc(t+ 1) + 1

2 sinc(t− 1). (Exercise 5.7)

Another example is the signal with Fourier transform given by the triangle
pulse

4(f) =


f + 1 −1 < f < 0

1− f 0 ≤ f < 1

0 otherwise

that is bandlimited with bandwidth b ≥ 1. The corresponding time domain
signal is given by the square of the sinc function sinc2(t) (Exercises 5.2).
These bandlimited signals and their Fourier transforms are plotted in Fig-
ure 5.7.

It happens that bandlimited signals are never finite. We can reasonably
suppose that all signals ever encountered in practice are finite and so no sig-
nals encountered in practice are truely bandlimited. However, many practi-
cally occuring signals are approximately bandlimited, that is, their Fourier
transform is small for frequencies larger than some positive number b. For
example, in Test 7 the Fourier transform of an audio signal taken from a
lecture recording is plotted (Figure 5.8). This signal appears approximately
bandlimited with bandwidth a little larger than 8 kHz.

A surprising result is that every square integrable bandlimited signal x
with bandwidth b can be written as a sum of time-scaled and time-shifted
sinc functions, that is, in the form

x(t) =
∑
n∈Z

cn sinc(Ft− n) (5.4.1)

where c is a square integrable complex valued sequence and F = 2b. This is
a consequence of a property of the set of square integrable signals L2 called
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completeness [Rudin, 1986, Theorem 3.11 and page 91]. The sum on the
right hand side of (5.4.1) is often called sinc interpolation. Evaluating
the signal x at integer multiples of P = 1

F we find that

x(`P ) =
∑
n∈Z

cn sinc(`− n) = c`

because sinc(`−n) is equal to 1 when ` = n and 0 otherwise. So, the elements
of the sequence c correspond with samples of the signal x taken at integer
multiples of P = 1

F = 1
2b , that is, cn = x(nP ). The positive real number P

is called the sampling period and its reciprical F the sampling rate. It
follows that every square integrable bandlimited signal x with bandwidth b
can be reconstructed from samples taken at rate F = 2b, that is,

x(t) =
∑
n∈Z

x(nP ) sinc(Ft− n).

This result known as the Nyquist sampling theorem. This motivated
use of this recontruction method in Tests 1, 2, 3, and 5.

5.5 The discrete-time Fourier transform

Let x be a square integrable bandlimited signal with bandwidth b and let
c be the square summable sequence containing samples of x at sampling
rate F = 1

P = 2b, that is, cn = x(nP ). Suppose temporarily that c is also
absolutely summable. From (5.4.1), the Fourier transform of x is

x̂(f) = Fx(f) = F
(∑
n∈Z

cn sinc(Ft− n)

)
=
∑
n∈Z

cnF(sinc(Ft− n)) (5.5.1)

= PΠ(fP )
∑
n∈Z

cne
−j2πPnf

= PΠ(fP )Dc(Pf) (5.5.2)

where

Dc(f) =
∑
n∈Z

cne
−j2πnf (5.5.3)

is called the discrete-time Fourier transform of the sequence c. The
interchange of Fourier transformation and summation on line (5.5.1) is jus-
tified by Lebesgue’s dominated convergence theorem [Rudin, 1986,
Section 1.34] (Exercise 5.17). We write ĉ = Dc for the discrete-time Fourier
transform of c. The discrete-time Fourier transform ĉ = Dc is a periodic
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function from R → C, that is, ĉ is a periodic signal with period 1. For
example, the discrete-time Fourier transform of the delta sequence is

Dδ(f) =
∑
n∈Z

δne
−j2πnf = 1.

The sequence

Π(n/2) =

{
1 |n| ≤ 1

0 otherwise

has discrete-time Fourier transform

D
(
Π(n/2)) = e−2πjf + 1 + e2πjf = 1 + 2 cos(2πf)

and the sequence 2−nun has discrete-time Fourier transform (Exercise 5.14)

D
(
2−nun

)
=
∑
n∈Z

2−nune
−j2πnf =

∞∑
n=0

e−j2πnf

2n
=

2

2− e−j2πf .

These sequences and their discrete-time Fourier transforms are plotted in
Figure 5.10.

We now use the discrete-time Fourier transform to compute and plot
the Fourier transform of some sampled audio signals. Test 7 uses (5.5.2)
to compute the Fourier transform of a 20 s segment of audio from a lecture
recording. In Test 8 this audio signal is passed through the Butterworth
filter constructed in Test 6 and the Fourier transform of the response is
plotted.

Test 7 (The Fourier transform of a lecture recording)
In this test we consider a 20 s segment of audio taken from the lec-

ture video ch1sec3.mp4. This 34.8 MB file contains both compressed video
(H.264 codec) and audio (mp3 codec) of duration 23 min and 36 s. The audio
is mono and sampled at rate F = 22 050 Hz. The ffmpeg program is used
to extract a 20 s segment of audio starting at time 85 s and ending at time
105 s. The segment is decompressed to wav format. The command used is:

ffmpeg -i ch1sec3.mp4 -ss 85 -t 20 audio.wav

The resulting file audio.wav is 882 kB in size and contains N = 440998
samples that we denote by c0, c1, . . . , cN−1. Each sample takes a value in
the interval [−1, 1]. We put cn = 0 when n < 0 or n ≥ N . The reconstructed
audio signal is given by

x(t) =
∑
n∈Z

cn sinc(Ft− n) =
N−1∑
n=0

cn sinc(Ft− n).

www.itr.unisa.edu.au/~mckillrg/videos/lectures/signalsandsystems2014/ch1sec3.mp4
https://www.ffmpeg.org/
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From (5.5.2) the Fourier transform of this signal is x̂(f) = PΠ(Pf)ĉ(Pf)
where

ĉ(f) = Dc(f) =
∑
n∈Z

cne
−j2πnf =

N−1∑
n=0

cne
−j2πnf (5.5.4)

is the discrete-time Fourier transform of the sequence of samples. Figure 5.8
shows a plot of the magnitude of the Fourier transform for frequencies in
the interval −12 kHz to 12 kHz. The plot is constructed by evaluting |ĉ(f)|
at all K = 1201 frequencies

fk = −12000 + 20k k = 0, . . . ,K − 1,

that is, from −12 kHz to 12 kHz in steps of 20 Hz. It takes approximately
137 s to compute the Fourier transform at all of these frequencies. Evaluating
the Fourier transform at a particular frequency requires calculating and
accumlating each of the N terms in the sum (5.5.4). We hypothesise it to
take approximately

137 s

NK
≈ 260 ns

to compute each term. The computer used is an Intel Core 2 running at
2.4 GHz and the software is written in the Scala programming language.

The audio recording contains human voice that primarily resides at lower
frequencies below 4 kHz. Audible in the recording is a faint high pitched
hum. The cause of this is unknown. It might be a feature of the (probably
low quality) webcam microphone used to record the audio. This hum is rep-
resented in Figure 5.8 by the spikes occurring at approximately ±8 kHz and
also by the region between 4900 Hz and 5900 Hz where the magnitude of the
Fourier transform is elevated. Figure 5.9 is a plot of the Fourier transform
for frequencies from 7998 Hz to 8002 Hz in steps of 5 mHz. This gives a high
resolution view of the spike that occurs near 8 kHz. The magnitude of the
Fourier transform is precisely zero for frequencies |f | > F/2 = 11 025 Hz due
to Π(Pf) occurring in the definition of x̂. However, in Figure 5.8 it is ap-
parent that the Fourier transform is small if |f | is a little larger than 8 kHz.
This audio signal appears approximately bandlimited with bandwidth a lit-
tle larger 8 kHz.

http://scala-lang.org/
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Figure 5.8: Magnitude of the Fourier transform of 20 s of audio from a lecture
recording. The human voice signal is primarily contained in the low frequency
region below 5 kHz. The spikes occurring at approximately ±8 kHz and the region
between 4900 Hz and 5900 Hz where the magnitude is elevated are audible in the
recording as a high pitched hum.
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Figure 5.9: A plot of the magnitude of the Fourier transform zoomed in on the
spike at 8 kHz.
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Test 8 (Butterworth filtered lecture recording)
We consider again the 20 s audio signal from Test 7. In this test we pass this
signal through the second order Butterworth filter from Test 6 with cuttoff
frequency approximately 3041 Hz. The output of the Butterworth filter is
fed back to the soundcard input and recorded at 22 050 Hz. The recorded
samples are written to the file filtered.wav. Listening to filtered.wav

confirms that the high pitched hum is weaker than it is in the original audio
signal. The Fourier transform of the Butterworth filtered signal is plotted
in Figure 5.10. This figure is constructed by the same procedure as used for
Figure 5.8 from Test 7. Observe that the spikes occurring at approximately
±8 kHz are less prominent than in Figure 5.8.
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Figure 5.10: Magnitude of the Fourier transform of 20 s of audio from Test 7 after
being passed through the second order Butterworth filter from Test 6 with cut-
toff frequency approximately 3041 Hz. The magnitude of the Fourier transform at
higher frequencies is attenuated when compared with the Fourier transform of the
original audio signal (Figure 5.8). In particular, the spikes occurring at approxi-
mately ±8 kHz are less prominent than in Figure 5.8. The high pitched hum that
is audible in the original audio signal is significantly weaker in the Butterworth
filtered audio signal.
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Under our assumption that c is absolutely summable

|ĉ(f)| = |Dc(f)| ≤
∑
n∈Z

∣∣∣cne−j2πnf ∣∣∣ =
∑
n∈Z
|cn| = ‖c‖1 <∞

and so the discrete Fourier transform Dc(f) is finite for all f . A discrete-
time Fourier transform can also be assigned to sequences that are only square
summable and not necessarily absolutely summable. In this case one inter-
prets the sum in (5.5.3) as

ĉ(f) = Dc(f) = lim
N→∞

N∑
n=−N

cne
−j2πnf .

This is analogous to how the Fourier transform of a square integrable sig-
nal was assigned using the Cauchy principal value (5.1.2). The relation-
ship (5.5.2) between x̂ and ĉ = Dc still holds in this case provided that
equality is weakened to equality almost everywhere (Exercise 5.18).

Equation (5.5.2) relates the Fourier transform of the bandlimited signal
x to the discrete-time Fourier transform of its sequence of samples c. The
sequence of samples cn = x(nP ) can be recovered by evaluating the inverse
Fourier transform

cn = x(nP ) = F−1x̂(nP )

=

∫ ∞
−∞

PΠ(Pf)Dc(Pf)ej2πfnPdf

=

∫ ∞
−∞

Π(γ)ĉ(γ)ej2πγndγ (change variable γ = fP )

=

∫ 1/2

−1/2
ĉ(γ)ej2πγndγ.

We obtain the following relationship between the square integrable sequence
c and its periodic discrete-time Fourier transform ĉ = Dc,

cn =

∫ 1/2

−1/2
ĉ(f)ej2πfndf.

The right hand side of this expression is called the inverse discrete-time
Fourier transform. The element c−n is also known as the nth Fourier
coefficient of the periodic function ĉ.

Replacing Pf with f in (5.5.2) and multiplying by F we obtain

Π(f)ĉ(f) = Fx̂(Ff).

Because ĉ(f) has period 1 and because the rectangle function Π(f) takes
the value 1 on the interval (−1

2 ,
1
2) the product Π(f)ĉ(f) corresponds with
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Figure 5.10: The sequences δ and Π(n/2) and their discrete-time Fourier trans-
forms (top and middle). The sequence 2−nun and the magnitude of its discrete-
time Fourier transform 4/(5 − 4 cos(2πf)) (bottom). The discrete-time Fourier
transforms are periodic signals with period 1.
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Figure 5.11: The sequence sinc(n/3) and its discrete-time Fourier transform
3
∑
m∈Z Π(3f + 3m).

a single period of ĉ centered at the origin. This suggests reconstructing ĉ by
summing shifts of x̂(Ff) by integers, that is,

ĉ(f) = Dc(f) = F
∑
m∈Z

x̂(Ff + Fm) a.e. (5.5.5)

The right hand side is called a periodic summation of x̂. Examples of
periodic summations are plotted in Figure 5.12. The relationship (5.5.5)
provides a convenient means of determining the discrete-time Fourier trans-
form of a sequence by considering it as the samples of a signal x for which
the Fourier transform is already known. For example, consider the sequence
cn = sinc(n/3) given by sampling the sinc function at rate F = 3. Com-
puting the discrete-time Fourier transform of c directly using (5.5.3) is not
straightforward. However, we know that F sinc(f) = Π(f) and so (5.5.5)
gives ĉ(f) = 3

∑
m∈Z Π(3f + 3m). The sequence sinc(n/3) and its discrete-

time Fourier transform are plotted in Figure 5.11. We will find the re-
lationship (5.5.5) particularly convient for the design of digital filters in
Section 6.4.

Substituting Pf for f in (5.5.5) and multiplying by P we find that

P ĉ(Pf) =
∑
m∈Z

x̂(f + Fm) a.e.

In the case that x is bandlimited with bandwidth b < F/2 the Fourier
transform x̂ can be recovered by multiplying both sides of this equation by
the rectangle function Π(Pf). Equation (5.5.2) is reobtained in this way.
This effect can be seen in the top plot in Figure 5.5.2 whereby multiplication
of the periodic summation on the right by Π(f) recovers the rectangular
pulse centered and the origin. Recovery of x̂ in this way is not possible if
x has bandwidth larger than F/2. Consider, for example, the middle and
bottom plots in Figure 5.12 where multiplication of the periodic summation
on the right by Π(f) would not recover the original signals on the left.
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While the relationship (5.5.2) requires x to be bandlimited with band-
width b < F/2, the relationship (5.5.5) between the discrete-time Fourier
transform ĉ and the periodic summation of x̂ can still hold even when x is
not bandlimited and, in this case, the sequence c does still correspond with
samples of the signal x at period P . To see this, care must first be taken
to ensure that the periodic summation of x̂ is a well defined signal. This
will be the case if x̂ is absolutely integrable (Exercise 5.19). In this case,
applying the inverse discrete-time Fourier transform to both sides of (5.5.5)
gives

cn =

∫ 1/2

−1/2
F
∑
m∈Z

x̂(Ff + Fm)ej2πfndf.

Under our assumption that x̂ is absolutely integrable the dominated con-
vergence theorem can be used to justify exchanging infinite summation and
integration [Pinksy, 2002, Section 4.2] and so

cn = F
∑
m∈Z

∫ 1/2

−1/2
x̂(Ff + Fm)ej2πfndf.

By the change of variables γ = F (f +m),

cn =
∑
m∈Z

∫ Fm+F/2

Fm−F/2
x̂(γ)ej2πγn/F e−j2πmndγ.

The term e−j2πmn = 1 because both m and n are integers and the sum
of integrals can be combined into a single integral over the entire real line
leading to

cn =

∫ ∞
−∞

x̂(γ)ej2πγn/Fdγ = F−1x̂(n/F ) = x(Pn)

where the integral is identified as the inverse Fourier transform of x̂ (5.1.1).
We have found that the sequence c with discrete-time Fourier transform
F
∑

n∈Z x̂(Ff+Fm) is precisely the samples of the signal x at period P = 1
F .

This does not require that x be bandlimited.
The reconstructed bandlimited signal

∑
n∈Z cn sinc(Ft − n) will not be

equal to x if x has bandwidth b > F/2. The reconstructed signal will have
Fourier transform Π(Pf)

∑
m∈Z x̂(f +mF ) = P ĉ(Pf) and this will only be

equal to x̂ in the case that x has bandwidth b < F/2. Figure 5.13 shows
the affect of reconstructing the signal x(t) = e−πF

2f2/2 from samples taken
at rate F = 1

P . The Fourier transform of x can be shown to be x̂(f) =√
2Pe−2πP 2f2 . This signal is not bandlimited. The samples cn = x(nP ) and

corresponding discrete-time Fourier transform ĉ are shown in the middle
plot. Observe that the translates of the Fourier transform x̂ overlap the
translate at the origin causing the Fourier transform of the reconstructed
signal (bottom of Figure 5.13) to differ from that of the original signal. This
phenomenon is referred to as aliasing.
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Figure 5.12: Signals x and their periodic summations
∑
m∈Z x(t + m). The peri-

odic summation is shown by the solid lines on the left. The dashed lines are the
individual translations being summed.
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Figure 5.13: Top: the signal x(t) = e−πF
2t2/2 and its Fourier transform x̂(f) =√

2Pe−2πP
2t2 . Middle: the sequence of samples cn = x(nP ) and discrete-time

Fourier transform ĉ related to the periodic summation of x̂. Bottom: The bandlim-
ited signal reconstructed from the sequence c and its Fourier transform. Observe
that the reconstructed bandlimited signal is not equal to the original signal x. The
translates of the Fourier transform x̂ overlap the translate at the origin, a phe-
nomenon referred to as aliasing.
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5.6 The fast Fourier transform

In Test 7 the Fourier transform of a 20 s audio signal consisting of N =
440998 consecutive samples was evaluated. This scenario where only a finite
number, say N , of consecutive samples of a signal is available is common in
practice. Let c be a sequence with elements c0, c1, . . . , cN−1 equal to the N
samples. A convenient assumption is that the remaining samples are equal
to zero, that is, cn = 0 when n < 0 or n ≥ N . This assumption was made
in Test 7.

With this assumption the discrete-time Fourier transform of the sequence
c is given by the finite sum

ĉ(f) = Dc(f) =
∑
n∈Z

cne
−j2πnf =

N−1∑
n=0

cne
−j2πnf .

The values of ĉ(f) for f a multiple of 1
N have a number of convenient prop-

erties. Denote these values by

(DNc)k = Dc
(
k
N

)
=

N−1∑
n=0

cne
−j2πnk/N k ∈ Z. (5.6.1)

This is called the discrete Fourier transform (as opposed to the discrete
time Fourier transform). The discrete Fourier transform DNc is a sequence
with elements given by the discrete-time Fourier transform Dc evaluated at
multiples of 1

N . As usual we include write DNck to denote the value of DNc
at k ∈ Z. We will regularly include brackets and use (DNc)k to denote this
value. The positive integer N is called the length of the transform. In
practical applications N often corresponds with the number of samples of a
signal that have been obtained.

The discrete Fourier transform is a periodic sequence with period N as
a result of the discrete-time Fourier transform ĉ = Dc having period 1, that
is,

(DNc)k = ĉ

(
k

N

)
= ĉ

(
k +mN

N

)
= (DNc)k+mN for all k,m ∈ Z.

Because of this it is sufficient to know only (DNc)k for k = 0, . . . , N − 1 in
order to know the entire sequence DNc. Given d = DNc the original samples
c0, . . . , cN−1 can be recovered by

cn = (D−1
N d)n =

1

N

N−1∑
k=0

dke
j2πnk/N n = 0, . . . , N − 1.

This is called the inverse discrete Fourier transform (Excersise 5.12).
Taking complex conjugates on both sides gives

c∗n =
1

N

N−1∑
k=0

d∗ke
−j2πnk/N =

1

N
(DNd∗)n n = 0, . . . , N − 1.
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A practical consequence of this is that the inverse discrete Fourier trans-
form can be evaluted by applying the complex conjugate, taking the dis-
crete Fourier transform, applying the complex conjugate again, and finally
dividing by N . That is, if d is a sequence, then D−1

N d = 1
ND∗Nd∗.

Suppose that we wish to evaluate the discrete Fourier transform DNc of
the 20 s audio signal comprising of N = 440998 samples from Test 7. In
Test 7 we hypothesised that approximately 260 ns are required to compute
each term in the sum (5.5.4). We require to compute the sum for each
k = 0, . . . , N − 1 and so we might expect that

N2 × 260 ns ≈ 50 565 s ≈ 14 hours (5.6.2)

will be required to compute DNc for this 20 s audio signal! A primary cause
of this lengthy computation time is the quadratic term N2 that occurs in
the expression above. The amount of time required grows proportionally
with the square of the length of the transform. Suppose that instead of 20 s
of audio we have 1 hour and N = 60× 60× 22050 = 79380000 samples. The
amount of time required in this case is approximated by N2 × 260 ns ≈ 52
years!

Computing the discrete Fourier transform by direct application of the
formula (5.6.1) is too slow when N is large. Fortunately, much faster algo-
rithms exist. The algorithms are appropriately called fast Fourier trans-
forms. The specific algorithm used depends on N . The simplest case is
when N = 2m is a power of 2. In this case an algorithm attributed to Coo-
ley and Tukey [1965] can be used. When N = 2m is divisible by 2 the sum
in (5.6.1) can be split into two parts corresponding with n being even or
odd,

(DNc)k =

N/2−1∑
n=0

c2ne
−j2π(2n)k/N +

N/2−1∑
n=0

c2n+1e
−j2π(2n+1)k/N . (5.6.3)

Put M = N/2 and let p be the sequence with elements pn = c2n, that is,
the elements of p are the even indexed elements of c. Now the first term
in (5.6.3) can be written in the form

N/2−1∑
n=0

c2ne
−j2π(2n)k/N =

M−1∑
n=0

pne
−j2πnk/M = (DMp)k,

that is, this term is the discrete Fourier transform of length M = N/2 of
the sequence p. Let q be the sequence with elements qn = c2n+1, that is, q
contains the odd indexed elements of c. The second term in (5.6.3) can be
written in the form

N/2−1∑
n=0

c2n+1e
−j2π(2n+1)k/N = e−j2πk/N

M−1∑
n=0

qne
−j2πnk/M

= e−j2πk/N (DMq)k,
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that is, this term is the discrete Fourier transform of length M = N/2 of
the sequence q multiplied by e−j2πk/N . Combining these results we have

(DNc)k = (DN/2p)k + e−j2πk/N (DN/2q)k.

We see that the discrete Fourier transform DNc can be evaluated by comput-
ing two smaller discrete Fourier transforms DN/2p and DN/2q of length N/2.
Both of these smaller transforms are sequences that are periodic with period
N/2 and so it is sufficient to know their values only for k = 0, . . . , N2 − 1.
These N/2 length transforms can in turn be computed by two transforms
of length N/4 and so on until transforms of length 1 are obtained. In this
case (D1c)k =

∑0
n=0 cne

−j2πnk = c0 for all k ∈ Z.
The computational cost of this procedure can be analysed as follows.

Suppose that CN is the number of complex arithmetic operations (com-
plex additions and multiplications) required to compute the discrete Fourier
transform DNc of length N = 2m. The computation requires calculation of
two transforms of length N/2 followed by N complex multiplications and N
additions. The multiplications arise from the multiplication of (DN/2q)k by

e−j2πk/N and the additions arise from summing the result of this product
with (DN/2p)k. The number of operations satisfies

CN = 2CN/2 + 2N N ≥ 2.

Because (D1c)k = c0 we have C1 = 0, that is, computing a discrete Fourier
transform of length 1 requires no complex operations at all. Putting am =
C2m we have

a0 = C1 = 0 am = 2am−1 + 2m+1 m ≥ 1. (5.6.4)

This type of recursive equation is called a difference equation and will be
studied further in Section 6.6. Exercise 6.6 shows that

CN = am = 2m+1m = 2N log2N.

Observe that the number of operations (and hence the amount of time
required) grows proportionally to N log2N rather than N2. Suppose that
each complex operation requires no more than 260 ns. For the 20 s audio
signal consisting of N = 440998 samples the amount of time required will
be less than

2N log2N × 260 ns ≈ 4.3 s. (5.6.5)

This is more reasonable than 14 hours! If instead we have 1 hour of audio and
N = 79380000 samples the amount of time required is hypothesised to be less
than 1084 s ≈ 18 min. This is very reasonable when compared with the 52
years hypothesised to be required by direct application of formula (5.6.1).
In practice the computation time will vary based on the computer used
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and the specific algorithm implementation. Nevertheless, these numbers
indicate that a fast Fourier transform of large length can be computed within
a reasonable amount of time. This is not possible by direct application
of formula (5.6.1). Test 9 compares the practical running time of various
discrete Fourier transform implementations.

In the above computation of run times we have neglected that the fast
Fourier transform we have described required the length N to be a power of
two. Other algorithms exist for the case whenN is not a power of two [Rader,
1968; Bluestein, 1968; Frigo and Johnson, 2005]. These algorithms deliver
similarly dramatic computational savings. Even so, the restriction of the
length to a power of 2 is often not a significant drawback in practical appli-
cations. Consider again the example from Test 7 with N = 440998 samples.
Denote by

L = 2dlog2Ne = 219 = 524288

the smallest power of 2 greater than N . We can use the fast Fourier trans-
form algorithm described to compute the discrete Fourier transform DLc of
length L. This transform is a sequence with period L and elements

(DLc)k = ĉ

(
k

L

)
=

L−1∑
n=0

cne
−j2πnk/L =

N−1∑
n=0

cne
−j2πnk/L k ∈ Z.

The second sum follows from our assumption that cn = 0 for n ≥ N . The
elements of DLc are the values of the discrete-time Fourier transform ĉ at
multiples of 1

L rather than 1
N . This fact is often of no significant consequence

and can even be of benefit for some applications [Quinn and Hannan, 2001;
Quinn et al., 2008]. The original samples c0, . . . , cN−1 can still be recovered
by application of the inverse transform of length L, that is,

cn = (D−1
L DLc)n n = 0, . . . , N − 1.

This procedure of increasing the length of the transform is often called zero
padding on account of the fact that the samples cN , cN+1, . . . , cL−1 are
assumed to be zero. Test 10 presents a practical example of zero padding
for the purpose of filtering the 20 s audio recording from Test 7.

Test 9 (Benchmarking the fast Fourier transform)
In this test we compare the computational complexity of practical im-

plementations of the discrete Fourier transform. Three differenent imple-
mentations are compared: a direct implementation by formula (5.6.1), an
implementation of the fast Fourier transform of Cooley and Tukey [1965]
when the length N = 2m is a power of 2 as described in Section 5.6, and
an implementation from an optimised fast Fourier transform library called
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JTransforms. The JTransforms library contains implementations of fast
Fourier transforms of all lengths, not just powers of 2.

Figure 5.14 shows the run-time in seconds versus transform length. For
the JTransforms library and formula (5.6.1) the length of the transforms
is given by the sequence Nk =

⌈
26+k/2

⌋
for k = 0, 1, 2, . . . . For our im-

plementation of the Cooley and Tukey [1965] algorithm the length must
be a power of two and is given by Nk = 26+k/2 for k = 0, 2, 4, . . . . The
dashed lines indicate the approximate running times given by (5.6.2) and
by (5.6.5). These approximations appear reasonably accurate on the log
scale used in Figure 5.14. The fast Fourier transform algorithms are con-
siderably faster than formula (5.6.1) as expected. For example, when the
length is N = 221 = 2097152 the JTransforms library required approxi-
mately 0.58 s whereas formula (5.6.1) is hypothesised by (5.6.2) to require
approximately N2 × 260 ns ≈ 13 days.

The optimised algorithms from the JTransforms library are considerably
faster than our implementation of the Cooley and Tukey [1965] algorithm.
Observe the jagged nature of the run-time with the JTransforms library.
The algorithms used by the library for length Nk and odd k appear slower
than when k is even so that the length is a power of 2. The computer used is
an Intel Core 2 running at 2.4 GHz and the software is written in the Scala

programming language.

Test 10 (Filtering a lecture recording by fast Fourier transform)
We again consider the 20 s segment of audio consisting of N = 440998

samples from Test 7. As in Test 7 we let c be the sequence with elements
c0, . . . , cN−1 equal to the audio samples and put cn = 0 for n < 0 or n ≥ N .
The reconstructed audio signal is given by

x(t) =
∑
n∈Z

cn sinc(Ft− n) =

N−1∑
n=0

cn sinc(Ft− n)

where P = 1
F is the sample period and F = 22 050 Hz is the sample rate.

The Fourier transform of x is x̂ = Fx = PΠ(Pf)ĉ(Pf) where ĉ = Dc.
Audible in the recording is a faint high pitched hum. This hum appears in
the Fourier transform as spikes occurring at ±8 kHz and also as the region
between 4900 Hz and 5900 Hz where the magnitude of the Fourier transform
is elevated (Figure 5.8).

In this test we use a fast Fourier transform to remove this hum from the
audio while minimally affecting the human voice. To do this we compute an

https://github.com/wendykierp/JTransforms
https://github.com/wendykierp/JTransforms
https://github.com/wendykierp/JTransforms
https://github.com/wendykierp/JTransforms
https://github.com/wendykierp/JTransforms
https://github.com/wendykierp/JTransforms
http://scala-lang.org/
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Figure 5.14: Comparison between run-times of the discrete Fourier transform com-
puted directly by formula (5.6.1), by an implementation of the fast Fourier trans-
form (FFT) of Cooley and Tukey [1965] described in Section 5.6, and by the opti-
mised JTransforms fast Fourier transform library.

approximation of the bandlimited signal y with Fourier transform

ŷ(f) = Fy(f) =


0 |f | > 7200

0 |f − 5400| < 500

0 |f + 5400| < 500

x̂(f) otherwise.

That is, y is the signal with Fourier transform equal to x̂ except for those fre-
quencies between 4900 Hz and 5900 Hz and above 7200 Hz where the Fourier
transform is zero. Because y is bandlimited with bandwidth less than F ,

y(t) =
∑
n∈Z

bn sinc(Ft− n)

where b is the sequence with elements bn = y(nP ) given by samples of y at
sample period P . Now ŷ = PΠ(Pf)b̂(Pf) where b̂ = Db is the discrete-time
Fourier transform of b. For f inside the interval [−1

2 ,
1
2), the discrete-time

https://github.com/wendykierp/JTransforms
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Fourier transforms ĉ and b̂ are related by

b̂(f) =


0 |f | > 7200P

0 |f − 5400P | < 500P

0 |f + 5400P | < 500P

ĉ(f) otherwise.

For f /∈ [−1
2 ,

1
2) a similar relationship can be obtained by appealing to the

periodicity of b̂ and ĉ. This is easiest to express by introducing the notation
〈a〉 = a− dac called the centered fractional part of a ∈ R. Now

b̂(f) =


0 |〈f〉| > 7200P

0 |〈f − 5400P 〉| < 500P

0 |〈f + 5400P 〉| < 500P

ĉ(f) otherwise

for all f ∈ R.
Let L = 219 = 524288 be the smallest power of 2 less than or equal to N .

Using the fast Fourier transform we compute the discrete Fourier transform
DLc of length L of the sequence c. This yields values of ĉ at multiples of 1

L ,
that is,

(DLc)k = ĉ
(
k
L

)
k ∈ Z.

Let d be the sequence with elements

dk = Db(k/L) =


0

∣∣〈 k
L

〉∣∣ > 7200P

0
∣∣〈 k
L − 5400P

〉∣∣ < 500P

0
∣∣〈 k
L + 5400P

〉∣∣ < 500P

(DLc)k = ĉ(k/L) otherwise.

We do not necessarily have d = DLb because bn is not necessarily equal to
zero for n < 0 and n ≥ L. Nevertheless, we will suppose that d ≈ DLb.
In this case, application of the inverse discrete Fourier transform yeilds the
periodic sequence b̃ = D−1

L d and we expect the first L elements of b̃ to be
an approximation of the first L elements of b, that is,

b̃n ≈ bn = y(nP ) for n = 0, . . . , L− 1.

An approximation of the signal y is now given by

y(t) ≈ ỹ(t) =
N−1∑
n=0

b̃n sinc(Ft− `).
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Figure 5.15: Plot of the magnitude of the Fourier transform F ỹ. The plot looks
similar to that of the magnitude of the Fourier transform of the original audio
signal (Figure 5.8) except that the spikes at ±8 kHz and the elevated region between
4900 Hz and 5900 Hz no longer exist.

Figure 5.15 plots the magnitude of Fourier transform F ỹ. Observe that
|F ỹ| looks similar to the magnitude of the Fourier transform of the original
audio signal x plotted in Figure 5.8 except that the spikes at ±8 kHz and the
elevated region between 4900 Hz and 5900 Hz no longer exist. The samples
b̃0, . . . , b̃N−1 are written to the audio file nohum.wav. Listening to the audio
confirms that the human voice signal remains, but the high pitched hum is
no longer audible.

Exercises

5.1. Plot the signal e−α|t| where α > 0 and find its Fourier transform.

5.2. Plot the signal

4(t) =


t+ 1 −1 < t < 0

1− t 0 ≤ t < 1

0 otherwise
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and find its Fourier transform.

∗5.3. Show that the sinc function is square integrable, but not absolutely
integrable.

∗5.4. Show the the magnitude spectrum of the normalised Butterworth filter
Bm satisfies

|ΛBm(f)| =
√

1

f2m + 1
.

∗5.5. Find and plot the impulse response of the normalised lowpass Butter-
worth filters B1, B2 and B3.

5.6. Plot the signal

tΠ(t) =

{
t −1

2 < t ≤ 1
2

0 otherwise

and find its Fourier transform.

5.7. Let x be the signal with Fourier transform x̂(f) = Π(f)
(

cos(2πf)+1
)
.

Plot the Fourier transform x̂ and find and plot x.

5.8. State whether the following signals are bandlimited and, if so, find the
bandwidth:

(a) sinc(4t),

(b) Π(t/4),

(c) cos(2πt) sinc(t),

(d) e−|t|.

5.9. Show that ∑
n∈Z

eα|n| = 1 +
2

e−α − 1

if α < 0 (Hint: solve Exercise 3.7 first).

5.10. Show that if a sequence is absolutely summable then it is also square
summable.

5.11. Show that
∑N−1

k=0 ej2πnk/N is equal to N if n is a multiple of N and
zero if n is any integer not a multiple of N . (Hint: use the result from
Exersise 3.7)

5.12. Let d = DNc be the discrete Fourier transform of the sequence c. Show
that

cn =
1

N

N−1∑
k=0

dke
j2πnk/N n = 0, . . . , N − 1.

(Hint: use the result from Exersize 5.11)
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5.13. Plot the sequence cos(n) and determine whether it is bounded or pe-
riodic.

5.14. Find the discrete time Fourier transform of the sequence αnun where
|α| < 1 and un is the step sequence. Plot the sequence and the mag-
nitude of the discrete time Fourier transform when α = 4

5 ,
1
2 ,

1
10 .

5.15. Given (5.1.3) show that (5.1.4) holds.

∗∗5.16. Let x and y be square integrable signals. Show that F(xy) = x̂ ∗ ŷ.

∗∗5.17. Let c be an absolutely summable sequence. Show that

F
∑
n∈Z

cn sinc(t− n) =
∑
n∈Z

cnF(sinc(t− n)).

∗∗5.18. Let c be a square summable sequence and let

x(t) =
∑
n∈Z

cn sinc(t− n)

be the bandlimited signal with samples x(n) = cn. Show that

Fx = lim
N→∞

N∑
n=−N

cnF
(

sinc(t− n)
)

a.e.

Find an example where equality does not hold pointwise.

∗∗5.19. Let x be an absolutely integrable signal. Show that the periodic sum-
mation

∑
m∈Z x(t+mP ) is a locally integrable signal. Show that this

is not necessarily true if x is square integrable, but not absolutely
integrable.



Chapter 6

Discrete-time systems

We have so far studied linear shift-invariant systems and inparticular those
systems described by linear differential equations with constant coefficients.
Such systems are useful for modelling electrical circuits, mechanical ma-
chines, electro-mechanical devices, and many other real world devices. The
time-shifter Tτ with non zero time shift τ 6= 0 has so far been absent. We
now consider linear shift-invariant systems constructed from linear combi-
nations of time-shifters of the form TPm where m ∈ Z and P is a positive
real number called the sample period or simply the period. That is, we
consider systems of the form

Hx =
∑
m∈Z

hmTPmx (6.0.1)

where h ∈ Z → C is a complex valued sequence. Such systems are called
discrete-time systems.

It is common in the literature that the term discrete-time system refers
to a mapping from a complex valued sequence c to another complex valued
sequence d of the form

dn =
∑
m∈Z

hmcn−m = (h ∗ c)n (6.0.2)

The sum is called the discrete convolution of sequences h and c. The
notation h ∗ c is reused to denote discrete convolution so that d = h ∗ c.
We can recover this definition from (6.0.1) by identifying dn with Hx(nP )
and cn with x(nP ). We will find that (6.0.1) provides a setting for the
study of discrete-time systems that is closely linked with previous chapters
where what are often called continuous-time systems have been studied.
Complex exponetial signals est remain the eigenfunctions and the notions of
the transfer function and spectrum carry through unchanged. This defini-
tion of discrete-time system (6.0.1) is connected with what Zemanian [1965,

115
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Sec. 9.5] calls the continuous variable case of a linear difference equation
with constant coefficients. We will study difference equations in Section 6.6.

It is often the case that we have access to a sequence of samples cn =
x(nP ) at sample rate F = 1

P of a signal x of interest. For example, in
Tests 1, 2, 3, and 4 we obtained samples of a voltage signal using a computer
soundcard. In Tests 7 and 8 we operated on the samples from an audio
recording that were stored on a computer harddisk. A convenient property
of discrete-time systems is that can operate directly on sampled signals. To
see this, let H be a discrete-time system with period P defined as in (6.0.1)
and let y = Hx be the response of H to x. It is often the case that we are
only interested in the samples of the response dn = y(nP ) = Hx(nP ) at
sample rate F = 1

P . For example, in Test 11 we will apply a discrete-time
system to a sampled audio recording and the samples of the response will
be written to an audio file in wav format. If only the samples dn = y(nP )
are required then,

dn = y(nP )

= Hx(nP )

=
∑
m∈Z

hmTmPx(nP )

=
∑
m∈Z

hmx(nP −mP )

=
∑
m∈Z

hmcn−m = (h ∗ c)n (6.0.3)

We see that computing dn requires only the samples cn = x(nP ) of the input
signal x. The values x(t) at times t not a multiple of the sample period
are not required. This property makes discrete-time systems particularly
convenient for implementation within a computer. Computers are good a
storing sequences of numbers and computing sums and products. Observe
that by considering only the samples of the response we have recovered the
common definition (6.0.2) of a discrete-time system.

Discrete-time systems are not regular because the time-shifter is not
regular. However, we will find that the sequence h plays a role analogous to
that of the impulse response of a regular system. For this reason h is called
the discrete impulse response of H.

6.1 The discrete impulse response

We first describe a suitable domain for each discrete-time system. It is worth
considering an example. Suppose that H has discrete impulse response given
by the step sequence u (5.3.1). The signal x(t) = 1 that takes the value 1
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for all t ∈ R will not be in the domain of H because, in this case,

Hx(t) =
∑
m∈Z

umTPmx(t) =
∑
m∈Z

um =
∞∑
m=0

1

is not finite for any t ∈ R. Given a sequence h, denote by domP h the set of
signals x such that∑

m∈Z
|hmx(t− Pm)| <∞ for all t ∈ R.

It can be confirmed that domP h is a linear shift-invariant space. If H has
discrete impulse response h then, for all signals x ∈ domP h,

|Hx(t)| =
∣∣∣∣∣∑
m∈Z

hmTPmx(t)

∣∣∣∣∣ ≤∑
m∈Z
|hmx(t− Pm)| <∞ for all t ∈ R,

that is, Hx(t) is finite for all t ∈ R. From here on, we take domP h as the
domain of the discrete-time system with discrete impulse response h unless
otherwise stated.

The discrete impulse response h immediately yields some properties of
the corresponding discrete-time system H. For example, if hm = 0 for all
m < 0, then H is causal because the response

Hx(t) =
∑
m∈Z

hmTPmx(t) =
∞∑
m=0

hmx(t− Pm)

at time t only depends on values of the input signal x at times less than
or equal to t. A discrete-time system is stable if and only if its discrete
impulse response is absolutely summable (Exercise 6.8). This is analagous
to the property of regular systems that are stable if and only if their impulse
response is absolutely integrable (Exercise 3.5).

Let F and G be discrete-time systems with equal sample period P and
discrete impulse responses f and g. Let a, b ∈ C and let H = aF + bG be
a system formed by linear combination of F and G. The response of H to
input signal x ∈ domP f ∩ domP g is

Hx = a
∑
n∈Z

fnTPnx+ b
∑
n∈Z

gnTPnx

=
∑
n∈Z

(afn + bgn)TPnx,

and so H is a discrete-time system with discrete impulse response given by
the linear combination of sequences af + ag. We take the domain of H to
be domP f ∩ domP g unless otherwise stated.
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Now suppose that Hx = FGx is formed by the composition of discrete-
time systems F and G. Denote by domP f g the set of signals x such that∑

m∈Z

∑
k∈Z
|fmgkx(t−m− k)| <∞ for all t ∈ R.

We will find domP f g to be a convenient domain for the system H = FG.
The response of H to x ∈ domP f g is

Hx =
∑
m∈Z

fmTPmGx

=
∑
m∈Z

fmGTPmx (shift-invariance of G)

=
∑
m∈Z

∑
k∈Z

fmgkTP (m+k)x.

Because x ∈ domP f g, Fubini’s theorem [Rudin, 1986, Theorem 8.8] justifies
swapping the order of summation so that

Hx =
∑
k∈Z

∑
m∈Z

fmgkTP (m+k)x

and by putting n = m+ k we have

Hx =
∑
n∈Z

∑
m∈Z

fmgn−mTPnx =
∑
n∈Z

hnTPnx

where h is the sequence with elements

hn =
∑
m∈Z

fmgn−m = (f ∗ g)n.

We have found that the systemH constructed by composition of the discrete-
time systems F and G is a discrete-time system. The discrete impulse
response of H is the discrete convolution of the discrete impulse responses
of F and G. The domain of H is taken to be domP f g unless otherwise
stated.

Discrete convolution has properties analogous to that of the convolution
of signals described in Section 3.2. For example, discrete convolution is
commutative and associative under approriate assumptions (Exercise 6.11).
In what follows we will often use the term convolution and impulse response
rather than the lengthier terms discrete convolution and discrete impulse
response whenever there is no chance for confusion.
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6.2 The transfer function and the spectrum

Recall that complex exponential signals are eigenfunctions of linear shift-
invariant systems, that is, if H is a linear shift-invariant system with domain
X, then the response of H to input signal est ∈ X satisfies

Hest = λH(s)est

where λH(s) is a complex number that depends on s ∈ C, but not on
t ∈ R. Considered as a function of s, the expression λH is called the
transfer function of the system H. The domain of λH is the set of complex
numbers s such that the signal est ∈ X and this set is denoted by cepX.

Let H be a discrete-time system with discrete impulse response h and
domain domP h. The response of H to est ∈ domP h satisfies

Hest =
∑
n∈Z

hnTPne
st

=
∑
n∈Z

hne
s(t−Pn)

= est
∑
n∈Z

hne
−sPn = estλH(s).

It follows that the transfer function of H satisfies

λH(s) =
∑
n∈Z

hne
−sPn s ∈ cep domP h.

For example, consider the discrete-time system H with discrete impulse
response given by the step sequence u. The domain of the transfer function
cep domP u contains all those complex numbers s for which∑

n∈Z

∣∣une−sPn∣∣ =
∞∑
n=0

e−Re sPn <∞.

This is precisely those s ∈ C with positive real part. The transfer function
is

λH(s) =
∑
n∈Z

une
−sPn =

∞∑
n=0

e−sPn =
1

1− e−sP Re s > 0.

The identity system T0 is a discrete-time system with discrete impulse re-
sponse given by the delta sequence

δn =

{
1 n = 0

0 otherwise.

The transfer function is

λT0(s) =
∑
n∈Z

δne
−sPn = 1 s ∈ C.
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The domain of λT0 is the entire complex plane C. This agrees with (4.3.1).

Now suppose that H is a stable discrete-time system with absolutely
summable discrete impulse response h. The oscillatory complex exponential
signal e2πjft is in the domain domP h for all f ∈ R because∑

m∈Z

∣∣∣hme2πjf(t−m)
∣∣∣ =

∑
m∈Z
|hm| <∞ for all t ∈ R.

Equivalently, the domain of the transfer function λH contains the imaginary
axis, that is, the set cep domP h contains the imaginary axis. The spectrum
of H is

ΛH(f) = λH(j2πf) =
∑
n∈Z

hne
−2πjfPn f ∈ R.

Observe that the spectrum ΛH is a periodic signal with period equal to the
reciprocal of the sample period F = 1

P called the sample rate.

The spectrum is related to the discrete-time Fourier transform (5.5.3) of
h by

Dh(f) = ΛH( fP ) =
∑
n∈Z

hne
−2πjfn.

As an example, suppose that H is the system with period P and discrete
impulse response

hn = Π(n/2) =

{
1 |n| ≤ 1

0 otherwise.

The spectrum of H is

ΛH(f) = Dh(Pf) = e−2πjPf + 1 + e2πjPf = 1 + 2 cos(2πPf).

The sequence Π(n/2) and its discrete-time Fourier transform are plotted in
Figure 5.10.

6.3 Ideal digital filters

We have found that the spectrum of a stable discrete-time system is periodic
with period equal to the sample rate F = 1

P . Because of this periodicity it
is not immediately apparent that any useful filters can be constructed from
discrete-time systems. For example, periodicity makes it impossible to build
a lowpass filter (Section 5.2). However, many signals occurring in practice
are approximately bandlimited with some bandwidth b > 0 (Section 5.4).
We will find that it is possible to perform useful filtering operations on
bandlimited signals using discrete-time systems. This is most easily achieved
when the bandwidth is less than half the sample rate of the system, that is,
when b < F

2 .
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To see how this works, let x be the bandlimited signal with Fourier
transform

x̂(f) = Fx(f) =
4

3
Π(f)− cos(2πf)

(
Π(2f − 3) + Π(2f + 3)

)
One can show that the signal x takes the form (Exercise 6.1)

x(t) =
4

3
sinc(f) +

1

2
cos(3πt)

(
sinc

(
t+ 1

2

)
+ sinc

(
t− 1

2

))
(6.3.1)

The Fourier transform x̂ is plotted by the dashed line in Figures 6.1 and 6.4.
The Fourier transform has a rectangular pulse of height 4

3 centered at the
origin and cosine pulses of width 1

2 at f = ±3
2 . The signal is bandlimited

with bandwidth 7
4 . Suppose that the component of interest is the rectangular

pulse at the origin and that the two cosine pulses would preferably not exist.
A low pass filter could be used to filter out the cosine pulses. For example,
an ideal lowpass filter Lc (Section 5.2) with cuttoff frequency c in the interval
(1

2 ,
5
4) and spectrum Π( f2c) would preserve the rectangular pulse at the origin

and remove the two cosine pulses. We are lead to believe that the response
Lcx of the filter Lc to input signal x has Fourier transform (5.0.4)

FLcx = ΛLcFx = Π( f2c)x̂(f) = 3
2Π(f).

The impulse response of this ideal lowpass filter Lc is 2c sin(2ct).

Because the signal x has bandwidth b = 7
4 the spectrum of the filter for

frequencies |f | > 7
4 is not important. By exploiting this property we will

find that the same lowpass filtering effect can be achieved with a discrete-
time system. Denote by LPc the discrete-time system with sample period
P = 1

F and discrete impulse response hn = 2cP sinc(2cPn). That is, h is
given by multiplying the impulse response of the ideal low pass filter Lc by
P and then sampling with period P . From (5.5.5), the discrete-time Fourier
transform of h is given by periodic summation of Π(Ff/2c), that is,

ĥ(f) = Dh(f) =
∑
m∈Z

Π

(
Ff + Fm

2c

)
.

We are lead to believe that the spectrum of LPc is

ΛLPc (f) = ĥ(Pf) =
∑
m∈Z

Π

(
f + Fm

2c

)
. (6.3.2)

The spectrum is periodic with period F and is plotted by the shaded region
in Figure 6.1 in the case that c = 1 and F = 1

P = 4. When F > 2c, the
system LPc is called an ideal lowpass digital filter with cuttoff frequency
c and sample period P . Now consider the response of LPc to the signal x
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from (6.3.1). If c ∈ (1
2 ,

5
4) and F > 7

2 then the response LPc x has Fourier
transform

FLPc x = ΛLPc Fx = x̂(f)
∑
m∈Z

Π

(
f + Fm

2c

)
= 4

3Π(f)

exactly as with the ideal lowpass filter Lc. This is seen in Figure 6.1 (top)

where only the period at the origin of the spectrum ΛL
1/4
1 overlaps with the

Fourier transform of the bandlimited signal x.
The conclusion that the spectrum of the ideal lowpass digital filter LPc

satisfies (6.3.2) needs to be taken with some scepticism because the discrete
impulse response hn = 2cP sinc(2cPn) is not absolutely summable and so
the domain cep domP h of ΛLPc does not contain the imaginary axis. Like
ideal analogue filters (Section 5.2), ideal digital filters will not be useful
in practice and so this caveat will not affect the results that follow. The
concept of ideal filters is nonetheless a valuable aid to intuition.

Ideal highpass and ideal bandpass digital filters can be constructed using
LPc in much the same way that ideal analogue filters were constructed using
the ideal lowpass filter Lc in Section 5.2. An ideal high pass digital filter
with cuttoff frequency c and period P = 1

F < 1
2c is the system given by the

linear combination
T0 − LPc .

The impulse response is δn − 2cP sinc(2cnP ). The spectrum

Λ(T0 − LPc ) = 1− ΛLPc = 1−
∑
m∈Z

Π

(
f + Fm

2c

)
is plotted in Figure 6.1 (middle) in the case that c = 1 and F = 1

P = 4. The

Fourier transform of the response of T0−L1/4
1 to input signal x from 6.3.1 is

plotted in Figure 6.1 (middle). The two higher frequency cosine pulses are
preserved and the rectangular pulse at the origin is removed.

An ideal bandpass digital filter with upper cuttoff frequency u, lower
cuttoff frequency `, and period P is the system given by the linear combi-
nation

LPu − LP` .
The impulse response is the sequence 2uP sinc(2unP ) − 2`P sinc(2`nP ).
The spectrum ΛLPu −ΛLP` is plotted in Figure 6.1 (bottom) in the case that
u = 3

2 , ` = 1
4 , and F = 1

P = 4. The Fourier transform of the response of
LPu − LP` to input x from (6.3.1) is also plotted.

6.4 Finite impulse response filters

Ideal digital filters are not realisable in practice. We now turn our attention
to practical digital filters. The first of these are called finite impulse
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Figure 6.1: Fourier transform 4
3Π(f)−cos(2πf)

(
Π(2f−3)+Π(2f+3)

)
of a bandlim-

ited signal with bandwidth b ≤ 7
4 (dashed). The solid lines shows the magnitude of

the Fourier transform of the response to this signal to the ideal lowpass digital filter

L
1/4
1 (top), the ideal highpass digital filter T0 −L1/4

1 (middle), and the ideal band-

pass digital filter L
1/4
3/2−L

1/4
1/4. The spectra of these filters are shown by the shaded

regions. The spectra have period P = 4. The periodicity is not of consequence
because the signal is bandlimited with bandwidth b ≤ 7

4 <
F
2 = 2.
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response filters or FIR filters for short. One feature preventing practical
implementation of the ideal lowpass digital filter LPc is that the discrete
impulse response hn = 2cP sin(2cPn) is not of finite support. Computing
the response

∑
m∈Z hmTPmx(t) for any time t ∈ R might require summing an

infinite number of terms. A pragmatic approach to alleviate this problem is
to first approximate the ideal analogue lowpass filter Lc by a regular system
with impulse response

2cw(t) sinc(2ct)

where w(t) is a bounded signal called a window function or apodization
function. The window function w(t) is zero outside an interval (−W/2,W/2)
where W > 0 is called the window width. Because of the window function
this impulse response has finite support and is absolutely integrable.

Common window functions include the rectangular window w(t) = Π(t/W ),
the triangular (or Bartlett) window w(t) = 4(2t/W ) where

4(t) = (Π ∗Π)(t) =


t+ 1 −1 < t < 0

1− t 0 ≤ t < 1

0 otherwise,

(Exercise 5.2)

the raised cosine (or Hann) window

w(t) =
1

2
Π

(
t

W

)(
1 + cos

(
2πt

W

))
,

and the Blackman window [Blackman and Tukey, 1959]

w(t) = Π

(
t

W

)(
a0 + a1 cos

(
2πt

W

)
+ a2 cos

(
4πt

W

))
(6.4.1)

where a0 = 21
50 , a1 = 1

2 , and a2 = 2
25 . These window functions and their

Fourier transforms are plotted in Figure 6.2. The Fourier transform of the
Blackman window decays to zero particularly rapidly as |f | increases (Ex-
ercise 6.2).

From the multiplication property of the Fourier transform (5.1.6) we find
the Fourier transform of the windowed sinc function 2cw(t) sinc(2ct) to be

F
(
2cw(t) sinc(2ct)

)
= ŵ(f) ∗Π(f/2c),

that is, the convolution of the Fourier transform of the window function
Fw = ŵ and the Fourier transform F

(
2c sinc(2ct)

)
= Π(f/2c). This Fourier

transform is plotted in Figure 6.3 for the rectangular and Blackman windows
when the cuttoff c = 1 and the width W = 1, 3, 10. The Fourier transform
approaches the spectrum of the ideal lowpass filter as the window width W
increases.
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A low pass finite impulse response filter with period P , cuttoff
frequency c, and window w is a discrete-time system LP,wc with period P
having impulse response hn = 2cPw(nP ) sinc(2cnP ). That is, h is given
by multiplying the windowed sinc function by P and sampling with period
P . Because w(t) is zero outside the interval (−W/2,W/2), it follows that
hn = 0 when nP /∈ (−FW/2, FW/2) and so only a finite number of elements
of h are nonzero. For this reason, the response of LP,wc to any input signal
x can be computed by the finite sum

LP,wc x(t) =
a∑

m=−a
hmTPmx(t) where a = bFW/2c (6.4.2)

and bFW/2c denotes the greatest integer less than or equal to FW/2. The
number of terms to be summed is 2a+1. This is typically called the number
of filter taps. The number of non zero terms in the impulse response is at
most the number of taps.

The spectrum of this filter is given by periodic summation of the Fourier
transform ŵ(f) ∗Π(f/2c) of the windowed sinc function, that is,

ΛLP,wc (f) =
∑
m∈Z

(
ŵ(t) ∗Π(f/2c)

)
(Ff + Fm) = Dh(Pf).

The magnitude spectrum |ΛLP,wc (f)| is shown by the shaded regions in Fig-
ure 6.4 for the rectangular and Blackman windows.

Now consider filtering the signal x from (6.3.1) using a low pass finite
impulse response filter LP,wc . Figure 6.4 shows the response in the case that
the cuttoff frequency c = 1, the sample rate F = 1

P = 4, and for the rect-
angular window with window width W = 3 and 8 and a Blackman window
with width W = 8. The filter using the Blackman window is particularly
effective. Its response is close to that of the ideal lowpass filter L1 from Fig-
ure 6.1. The rectangular window suffers from ocillations that decay slowly
as the window width W increases.

In the following Test 11 we design a low pass digital filter for the audio
taken from lecture recording used in Tests 7, 8, and 10.

Test 11 (Finite impulse response filtered lecture recording)
We consider again the 20 s audio signal from Test 7. The mono audio

recording contains N = 440998 samples denoted by c0, c1, . . . , cN−1 at sam-
ple rate F = 22 050 Hz. We put cn = 0 when n < 0 or n ≥ N . Let x be the
bandlimited signal with samples cn = x(nP ), that is,

x(t) =
∑
n∈Z

cn sinc(Ft− n).
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Figure 6.2: Rectangular (top), triangular, Hann, and Blackman (bottom) window
functions and their Fourier transforms. The Fourier transforms have zero imaginary
part and so only the real part is plotted. The Fourier transform of the Blackman
window decays to zero particularly rapidly as |f | increases.
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Figure 6.3: Fourier transform ŵ(f) ∗ Π(f) of windowed sinc functions for window
width W = 1, 3, and 10. Top: rectangular window w(t) = Π(t/W ). Bottom:
Blackman window (6.4.1). The Fourier transforms approach Π(f) as W increases.
The rectangular window exhibits large oscillations even when W is large.
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Figure 6.4: Fourier transform 4
3Π(f)−cos(2πf)

(
Π(2f−3)+Π(2f+3)

)
of a bandlim-

ited signal with bandwidth b ≤ 7
4 (dashed). The solid lines shows the magnitude of

the Fourier transform of the response of the low pass digital finite impulse response
filter LP,wc with cuttoff frequency c = 1, period P = 1

4 , and with a rectangular
window of width W = 3 (top) and width W = 8 (middle), and with a Blackman
window of width W = 8 (bottom). The magnitude spectrum of these filters is
shown by the shaded region. The filter using the Blackman window is particularly
effective. Its response is close to that of the ideal filter L1 from Figure 6.1. The
rectangular window suffers from ocillations that decay slowly as the window width
W increases.
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In Test 7 the Fourier transform of x was computed and plotted in Figure 5.8.
The audio recording contains human voice primarily residing at lower fre-
quencies below 4 kHz. Audible in the recording is a faint high pitched hum.
This hum is represented in Figure 5.8 by spikes occurring at approximately
±8 kHz and also by the region between 4900 Hz and 5900 Hz where the mag-
nitude of the Fourier transform is elevated. In this test, a low pass digital
finite impulse response filter LP,wγ will be used to remove this hum.

We choose the period of the filter to be P = 1
F where F = 22 050 Hz is

the sample rate of the audio recording. The cuttoff frequency is chosen to
be γ = 4600 Hz and a Blackman window (6.4.1) of width W = 12

γ = 1
400 is

used. This filter has impulse response

hn = 2γPw(nP ) sinc(2γPn)

where w(t) is the Blackman window (6.4.1). The impulse response satisfies
hn = 0 for those n outside the interval [−a, a] where

a =

⌊
FW

2

⌋
=

⌊
735

32

⌋
= 28.

This filter has 2a+ 1 = 57 taps and can be implemented by a finite sum of
57 terms (6.4.2). The spectrum of the filter is

ΛLP,wγ (f) = Dh(Pf) =
a∑

n=−a
hne

−2πjPfn.

The magnitude spectrum |ΛLP,wγ | is plotted in Figure 6.5.

Let y = LP,wγ x be the response of the filter to the bandlimited audio
signal x. We will only have need of the samples of the response dn =
y(nP ) = LP,wγ x(nP ). From (6.0.3) the sequence d of samples is the discrete
convolution of the impulse response h and the sequence c of audio samples,
that is,

dn = (h ∗ c)n =
∑
m∈Z

hmcn−m =
a∑

m=−a
hmcn−m.

Observe that computing dn for any n involves only a finite sum of 2a+1 = 57
terms because hn = 0 for n > a or n < −a. The samples d0, d1, . . . , dN−1

are written to the file nohum.wav. Listening to this file confirms that the
high pitched hum is no longer audible.

The response y is the bandlimited signal with samples dn = LP,wγ , that
is,

y(t) =
∑
n∈Z

dn sinc(Ft− n).
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The Fourier transform of y is given by Fy(f) = PΠ(Pf)Dd(Pf) where Dd
is the discrete Fourier transform of the sequence d (5.5.3). The magnitude
of the Fourier transform is plotted in Figure 6.6. The spikes at ±8 kHz and
the elevated region between 4900 Hz and 5900 Hz no longer exist.

6.5 The z-transform

Recall that the transfer function λH of a discrete-time system H with im-
pulse response h satisfies

λH(s) =
∑
n∈Z

hne
−sPn s ∈ cep domP h.

Putting z = ePs we have

λH(s) = λH( 1
P log z) =

∑
n∈Z

hnz
−n (6.5.1)

that holds for complex numbers z = esP such that s ∈ cep domP h. Denote
this set by rocz h, that is,

rocz h = {z ∈ C ;
1

P
log z ∈ cep domP h }.

The right hand side of (6.5.1) is called the z-transform of the sequence h
and the set rocz h is called the region of convergence of the z-transform.

Let c be a complex valued sequence. The z-transform of c is denoted by
Zc. It is the complex valued function of rocz c satisfying

Zc(z) =
∑
n∈Z

cnz
−n z ∈ rocz c.

The domain of Zc is the region of convergence rocz c. It happens that the
region of convergence rocz c is precisely the set of nonzero complex numbers
such that the sequence cnz

−n is absolutely summable, that is, those z 6= 0
such that ∑

n∈Z

∣∣cnz−n∣∣ <∞. (Exercise 6.10)

The z-transform of a complex valued sequence plays a role analogous to
the Laplace transform of a signal. Recall that the region of convergence of
the Laplace transform was either a half plane, a vertical strip, the entire
complex plane, or the empty set (Section 4). We will find that the region
of convergence of the z-transform is either a circular disk with the origin
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Figure 6.5: Magnitude spectrum of the low pass finite impulse response digital
filter LP,wγ with cuttoff frequency γ = 4600 Hz, sample rate F = 1
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Figure 6.6: Plot of the magnitude of the Fourier transform Fy of the filtered audio
signal y = LP,wγ x. The plot looks similar to Figure 5.8 except that the spikes at
±8 kHz and the elevated region between 4900 Hz and 5900 Hz no longer exist.
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removed, an annular region in the complex plane, the complex plane with
an origin centered disc removed, the entire complex plane, or the empty set.

We now consider some example z-transforms. Consider first the step
sequence u. The region of convergence rocz u is all those complex numbers
with magnitude greater than one because

∑
n∈Z

∣∣unz−n∣∣ =

∞∑
n=0

|z|−n <∞ only if |z| > 1.

Graphically this region of convergence is the complex plane with a disc of
radius one centered at the origin removed (Figure 6.7). The z-transform of
u is

Zu(z) =
∑
n∈Z

unz
−n =

∞∑
n=0

z−n =
z

z − 1
|z| > 1. (Exercise 6.3)

Now consider the sequence with nth element (1
2)nun. The region of

convergence is all those complex numbers with magnitude greater than 1
2 .

The z-transform is

Z
(
(1

2)nun
)

=
∑
n∈Z

(1
2)nunz

−n =
∞∑
n=0

(2z)−n =
2z

2z − 1
|z| > 1

2 .

Graphically, the region of convergence is the complex plane with a disc of
radius 1

2 removed. Now consider the sequence with elements

(3
2)nu−n =

{
(3

2)n n ≤ 0

0 n > 0.

In this case the region of convergence is all those nonzero complex numbers
with magnitude less than 3

2 because

∑
n∈Z

∣∣(3
2)nu−nz

−n∣∣ =

∞∑
n=0

∣∣2
3z
∣∣n <∞ only if |z| < 3

2 .

The z-transform is

Z
(
(3

2)nu−n
)

=
∑
n∈Z

(3
2)nu−nz

−n =
∞∑
n=0

(2
3z)

n =
3

3− 2z
|z| < 3

2

The region of convergence is an open disc of radius 3
2 with the origin removed.

The sequence with nth element (1
2)nun + (3

2)nu−n has z-transform

Z
(
(1

2)nun + (3
2)nu−n

)
=

2z

2z − 1
+

3

3− 2z
1
2 < |z| < 3

2
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Figure 6.6: Real valued sequences. The top left plot shows the step sequence u.

with region of convergence all those complex numbers such that 1
2 < |z| < 3

2 .
The region of convergence is an annulus (a doughnut) in the complex plane
with inner radius 1

2 and outer radius 3
2 .

The delta sequence δ has z-transform

Z(δ) =
∑
n∈Z

δnz
−n = 1.

The region of convergence is the entire complex plane with the origin re-
moved, that is, rocz δ = C\0. Finally, consider the sequence 1 that has
every element equal to 1. Because

∑
n∈Z |z|−n does not converge for any

z ∈ C the region of convergence rocz 1 is the empty set. The sequence 1 is
said not to have a z-transform.

Given the z-transform Zc the sequence c can be recovered by the inverse
z-transform

cn =
1

2πj

∮
C
Zc(z)zn−1dz

where C is a counterclockwise closed path encircling the origin and within
the region of convergence rocz c. Similarly to the inverse Laplace trans-
form (Section 4), direct calculation of the inverse z-transform requires a
form of integration called contour integration that we will not consider
here [Stewart and Tall, 2004]. For our purposes, and for many engineering
purposes, it suffices to remember only the following z-transform pair

Z
(
[n]kun

)
=

k!z

(z − 1)k+1
|z| > 1 (Exercise 6.4)
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Figure 6.7: Regions of convergence of the z-transforms of (unshaded) the step se-
quence u (top left), the sequence ( 1
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2 )nu−n (bottom

left), and the sequence ( 1
2 )nun + ( 3

2 )nu−n (bottom right). The unit circle is indi-
cated by the dashed circle. The region of convergence takes the form of the complex
plane with a disc an origin centered disc removed (top), a disc with the origin re-
moved (bottom left), an annulus (bottom right), the entire complex plane, or the
empty set.
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where
[n]k = n(n− 1) . . . (n− k + 1)

is called the falling factorial [Graham et al., 1994, p. 48]. In the case that
k = 0 the falling factorial is defined as [n]0 = 1 for all n ∈ Z.

Let a ∈ C. The z-transforms of the sequence cn and the sequence with
nth element ancn are related by

Z(ancn)(z) =
∑
n∈Z

ancnz
−n =

∑
n∈Z

cn(z/a)−n = Zc(z/a)
z

a
∈ rocz c.

This is called the scaling property of the z-transform. The region of con-
vergence of Z(ancn) is the set of complex numbers z such that z/a ∈ rocz c.
Using this property the z-transform of the sequence an[n]kun is

Z
(
an[n]kun

)
=

k!akz

(z − a)k+1
|z| > |a| . (6.5.2)

This is the only z-transform pair we require here. We will have particular
use of the case when k is 0 or 1. In the case that k = 0 we obtain the
z-transform pair

Z
(
anun

)
=

z

z − a |z| > |a|

and in the case that k = 1 we obtain

Z
(
annun

)
=

az

(z − a)2
|z| > |a| .

The z-transform of a sequence c and of the shifted sequence with nth
element cn−` where ` ∈ Z are related by

Z(cn−`)(z) =
∑
n∈Z

cn−`z
−n

=
∑
n∈Z

cnz
−(n+`)

= z−`
∑
n∈Z

cnz
−n = z−`Zc(z) z ∈ rocz c. (6.5.3)

This is called the shifting property of the z-transform.
The z-transform obeys a convolution property analogous to that of the

Laplace transform. Let F and G be discrete-time systems with periods P
and discrete impulse responses f and g. Let Hx = FGx be the discrete-
time system formed by the composition F and G and with domain domP f g.
As shown in Section 6.1 the discrete impulse response of H is the discrete
convolution f ∗ g. Recall from (4.3.3) that the transfer function of a compo-
sition of linear time invariant systems is given by the product of the transfer
functions, that is,

λH(s) = λG(s)λF (s) esP ∈ rocz f ∩ rocz g.
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For s such that esP ∈ rocz f ∩ rocz g we have

Zf(esP ) = λF (s), Zg(esP ) = λG(s), Z(f ∗ g)(esP ) = λH(s)

from which it follow that

Z(f ∗ g)(z) = Zf(z)Zg(z) z ∈ rocz f ∩ rocz g.

That is, the z-transform of a convolution of sequences is the multiplication
of the z-transforms of those sequences. The region of convergence of Z(f ∗g)
is the intersection of the regions of convergence of Zf and Zg. This is called
the convolution property of the z-transform.

Let H be a stable discrete-time system with absolutely summable dis-
crete impulse response h. Because h is absolutely summable we have that
rocz h contains the complex unit circle, that is, rocz h contains all those
complex numbers with magnitude equal to one. We have the following re-
lationships between the transfer function, the spectrum, the discrete-time
Fourier transform, and the z-transform of a stable discrete-time system H
and its discrete impulse response h,

λH(j2πf) = ΛH(f) = Dh(f) = Zh(e2πjPf ).

6.6 Difference equations

We have previously shown that interesting systems are found by consider-
ation of a linear differential equation with constant coefficients. We have
used these systems to model electrical and mechanical devices (Chapter 2).
We will find that interesting discrete-time systems are found by considera-
tion of a linear difference equation with constant coefficients. That is, an
equation relating two sequences c and d of the form

m∑
`=0

a`cn−` =
k∑
`=0

b`dn−` n ∈ Z (6.6.1)

where a0, . . . , am and b0, . . . , bk are complex constants. For example, in
Section 5.6 we found that the number of complex operations required to
compute a Cooley-Tukey fast Fourier transform of size N = 2n was CN =
C2n = dn where the sequence dn satisfied the equation (5.6.4)

2n+1 = dn − 2dn−1 n ≥ 0

and where C1 = d0 = 0. This is in the form of (6.6.1) if we suppose that
dn = 0 for n ≤ 0 and put cn = 2n+1un−1.

Another example is the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .
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Each element of the Fibonnacci sequence after the second is given by the sum
of the previous two elements. Letting dn be the elements of the Fibonacci
sequence so that d0 = 0, d1 = 1, d2 = 1, . . . and putting dn = 0 for n < 0 we
have

dn − dn−1 − dn−2 = δn−1.

This is in the form (6.6.1) if we put cn = δn−1.
In order to study difference equations it is useful to study the equation

m∑
`=0

a`TP`x =
k∑
`=0

b`TP`y (6.6.2)

that relates two signals x and y. Zemanian [1965, Sec. 9.5] calls (6.6.2) the
continuous variable case of a linear difference equation with constant
coefficients. If x and y are signals satisfying this equation then the samples
of x and y at multiples of P satisfy (6.6.1). That is, if we define sequences c
and d by cn = x(nP ) and dn = y(nP ) then c and d satisfy (6.6.1) whenever
x and y satisfy (6.6.2).

Suppose that H is a linear shift-invariant system with the property that
the response y = Hx to input signal x is such that x and y satisfy (6.6.2).
The response of H to the complex exponential signal est satisfies Hest =
λH(s)est. Substituting x(t) = est and y = λH(s)est into (6.6.2) gives

m∑
`=0

a`TP`e
st =

k∑
`=0

b`TP`(λe
st)

where, to simplify notation, we have written simply λ for λH(s) above.
Since TP`e

st = e−sP`est we find that

est
m∑
`=0

a`e
−sP` = λest

k∑
`=0

b`e
−sP`

and rearranging we find that the transfer function λH satisfies

λH(s) =

∑m
`=0 a`e

−sP`∑k
`=0 b`e

−sP`
=

∑m
`=0 a`z

−`∑k
`=0 b`z

−`
= zk−m

∑m
`=0 a`z

m−`∑k
`=0 b`z

k−`

where z = esP . Suppose that h is a sequence with z-transform

Zh(z) = λH(s) = zk−m
∑m

`=0 a`z
m−`∑k

`=0 b`z
k−`

.

It follows from (6.5.1) that H is a discrete-time system with discrete impulse
response h. By applying the inverse z-transform we can find an explicit
expression for h. This procedure is similar to how the impulse response of a
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system described by a differential equation was found by application of the
inverse Laplace transform in Section 4.6. In the case that m > k the term
zk−m can be incorporated into the denominator obtaining

Zh(z) =
a0z

m + a1z
m−1 + · · ·+ am

b0zm + b1zk−1 + · · ·+ bkzm−k

and in the case that m < k the term zm−k can be incorporated into the
numerator obtaining

Zh(z) =
a0z

k + a1z
k−1 + · · ·+ amz

k−m

b0zk + b1zk−1 + · · ·+ bk
.

In either case the order of the polynomials on the numerator and denomi-
nator are the same, that is, the order is w = max(m, k).

By factorising the polynomials on the numerator and denominator we
obtain

Zh(z) =
a0

b0

(z − α0)(z − α1) · · · (z − αw)

(z − β0)(z − β1) · · · (z − βw)

where α0, . . . , αw are the roots of the numerator polynomial and β0, . . . , βw
are the roots of the denominator polynomial. If the numerator and denom-
inator polynomials share one or more roots, then these roots cancel leaving
the simpler expression

Zh(z) =
a0

b0

(z − αd)(z − αd+1) · · · (z − αw)

(z − βd)(z − βd+1) · · · (z − βw)
, (6.6.3)

where d is the number of shared roots, these shared roots being

α0 = β0, α1 = β1, . . . , αd−1 = βd−1.

The roots from the numerator αd, . . . , αw are called the zeros and the roots
from the denominator βd, . . . , βw are called the poles. For a discrete-time
system, the number of poles and zeros are equal. A pole-zero plot is con-
structed by marking the complex plane with a cross at the location of each
pole and a circle at the location of each zero (Figure 6.8).

The z-transform pair (6.5.2) has the term z on its numerator and so it
is convenient to write

Zh(z) =
a0

b0
z

(z − αd)(z − αd+1) · · · (z − αw)

z(z − βd)(z − βd+1) · · · (z − βw)
.

Applying partial fraction to polynomial quotient yields

Zh(z) =
a0

b0
z
∑
`∈K

A`
(z − β`)r`
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Figure 6.8: Pole zero plots for discrete-time systems corresponding with first order
difference equations cn = dn− 2

3dn−1 (top left) and cn = dn+ 3
2dn−1 (top right) and

second order difference equations z2− 4
3x− 4

9 (bottom left) and z2+
√

2z+1 (bottom
right). The plots of the left correspond with stable systems because all poles are
contained inside the complex unit circle (dashed). Plots on the right correspond
with unstable systems because there exist poles on or outside the complex unit
circle. The small 2’s above the zero on the lower plots indicate the existence of two
zeros at the origin.
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where r` are positive integers, A` are complex constants, and K is a subset
of the indices from {d, d+1, . . . , w}. We need to consider those terms where
β` = 0 separately. Let K1 be the subset of indices from K such that β` = 0
when ` ∈ K1 and let K2 be the subset such that β` 6= 0 when ` ∈ K2. Now

Zh(z) =
a0

b0

∑
`∈K1

A`
zr`−1

+
∑
`∈K

B`
βr`−1
` (r` − 1)!z

(z − β`)r`
.

where

B` =
a0A`

b0β
r`−1
` (r` − 1)!

.

Those terms of the form A`z
1−r` correspond with sequences A`δn+r`−1 where

δ is the delta sequence. From (6.5.2) with k = r`−1 those terms of the form

βr`−1
` (r` − 1)!z

(z − β`)r`

are found to correspond with sequences B`β
n
` [n]r`−1un where u is the step se-

quence. Other sequences with the same z-transform are disregarded because
they are not right sided and so do not correspond with a causal discrete-
time system. Combing the above results we find that the discrete impulse
response h of the discrete-time system H takes the form

hn =
a0

b0

∑
`∈K1

A`δn+r`−1 +
∑
`∈K2

B`β
n
` [n]r`−1un.

The discrete impulse response is absolutely summable only if the poles satisfy
|β`| < 1 for all ` = d, . . . , w as a result of the terms βn` that occur when
β` 6= 0. The system H is stable if and only if h is absolutely summable
(Exercise 6.8) and so a discrete-time system is stable if and only if no poles
lie outside or on the complex unit circle.

We now consider some specific examples of difference equations and their
corresponding discrete-time systems. Consider the difference equation

cn = dn − adn−1 n ∈ Z (6.6.4)

where a ∈ C. This is called a first order difference equation. Suppose
that H is a discrete-time system such that the response y = H(x) to input
x satisfies

x = y − aTP (y).

The transfer function of H is

λ(H, s) =
1

1− ae−sP =
1

1− az−1
=

z

z − a
where z = esP . The system has a single zero at z = 0 and a single pole
at z = a. The system will be stable if and only if this pole lies strictly
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inside the complex unit circle, that is, if and only if |a| < 1. The discrete
impulse response is found to be hn = anun by putting k = 0 in (6.5.2).
Other sequences with this z-transform are discarded because they do not
correspond with a causal system. When |a| < 1 the region of convergence
contains the unit circle and the system has spectrum

Λ(H, f) = λ(H, j2πf) = Z(h, e2πjPf ) =
e2πjPf

e2πjPf − a.

The magnitude and phase spectrum are plotted in Figure 6.9 in the case
that a = 1

2 and 1
10 .

Now consider the difference equation

cn = dn − adn−1 − bdn−2 n ∈ Z.

where a, b ∈ C. This is called a second order difference equation.
Suppose that H is a discrete-time system with reponse y = H(x) satisfying
the equation x = y − aTP (y)− bT2P (y). The transfer function is

λ(H) =
1

1− ae−sP − be−2sP
=

z2

z2 − az − b = Z(h)

where h is the discrete impulse response of H. The system has two zeros
at z = 0 and two poles given by the roots of the polynomial z2 − az − b.
The z-transform can be inverted to obtain h (Exercise 6.5). The system H
is stable if and only if both poles lie strictly inside the complex unit circle
(Figure 6.8). In this case, H has spectrum

Λ(H, f) = Z(h, e2πjPf ) =
e2πjPf

e4πjPf − ae2πjPf − b .
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f

|Λ(H, f)|
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1
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∠Λ(H, f)
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Figure 6.9: Magnitude and phase spectrum of the discrete-time H with discrete
implulse response hn = anun for a = 1

2 and 1
10 and period P = 1

F . The spectrum is
periodic with period F = 1

P . This system corresponds with the first order difference
equation cn = dn − 2dn−1.
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Exercises

6.1. Let x be the signal with Fourier transform

x̂(t) = 4
3Π(f)− cos(2πf)

(
Π(2f − 3) + Π(2f + 3)

)
.

Plot the Fourier transform. Find and plot x.

6.2. Find the Fourier transform of the Blackman window (6.4.1).

6.3. Show that the z-transform of the sequence anun is z/(z−a) with region
of convergence |z| > |a|.

6.4. Show that the z-transform of the sequence [n]kun where [n]k = n(n−
1) . . . (n− k + 1) is a falling factorial is

Z
(
[n]kun

)
=

k!z

(z − 1)k+1
|z| > 1.

6.5. Find the discrete impulse response of the discrete time system corre-
sponding with the second order difference equation cn = dn− adn−1−
bdn−2.

6.6. Let dn be a sequence satisfying dn = 2dn−1 + 2n+1 and suppose that
d0 = 0. Show that dn = 2n+1n for n = 1, 2, . . . .

6.7. The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . satisfies the recursive
equation d0 = 0, d1 = 1, and dn = dn−1 + dn−2 for n ≥ 2. Find a
closed form expression for the nth Fibonacci number.

∗6.8. Show that a discrete time system is stable if and only if its discrete
impulse response is absolutely summable.

∗6.9. Let f and g be absolutely summable sequences. Show that the discrete
convolution f ∗ g is also absolutely summable.

∗6.10. Let H be a discrete time system with discrete impulse response h. The
set rocz h is defined as those complex numbers z = esP such that s =
cep domP h. Show that rocz h is precisely the set of nonzero complex
numbers such that the sequence hnz

−n is absolutely summable.

∗6.11. Let f, g, h be complex valued sequences such that∑
m∈Z

∑
k∈Z
|fkhmgn−m−k| <∞.

Show that the discrete convolution is associative for these sequences.
That is, show that (f ∗ g) ∗ h = f ∗ (g ∗ h).
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