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Chapter 1

Signals and systems

Exercises

1.1. How many distinct functions from the set X = {Mario, Link} to the

set Y = {Freeman, Ryu, Sephiroth} exist? Write down each function,
that is, write down all functions from the set X — Y.

Solution: Each of the two elements in X can be mapped to one of the three
elements of Y. There are thus 3% = 9 distinct functions in X — Y. They are

Freeman « = Mario Freeman 2z = Mario
fi(z) = . fo(z) = .
Freeman « = Link Ryu r = Link
Ryu x = Mario Freeman 1z = Mario
fs(x) = . a(z) = . .
Freeman « = Link Sephiroth « = Link
Sephiroth x = Mario Ryu « = Mario
fs(z) = : o(z) = .
Freeman 2 = Link Ryu 2z = Link
Ryu x = Mario Sephiroth x = Mario
fr(x) = : . fa(z) = .
Sephiroth z = Link Ryu x = Link

Sephiroth = = Mario
foz) = . .
Sephiroth =z = Link

1.2. State whether the step function u(t) is bounded, periodic, absolutely

1.3.

integrable, an energy signal. Solution: The magnitude of u is less than or
equal to one and so the signal is bounded. The signal is not periodic, since for
any hypothesised period T' > 0 we have u(T) = 1 but u(0) = 0. The signal is not
absolutely integrable, nor an energy signal since

flull2 :||u\|2=/ |u(t)\dt:/ dt
- )

Show that the signal ¢? is locally integrable, but that the signal t% is
not.

is not finite.



Testable linear shift-invariant systems (Exercise Solutions)

Solution: For any a and b
b, R
/tm:———
o 3 3
is finite and so t? is locally integrable. Put a = 0 and b > 0 and

Ly
, 20T Ty T T

The limit above diverges and so %2 is not locally integrable.
1.4. Plot the signal
1
x(t) = { 1
©) A t<0.

State whether it is: bounded, locally integrable, absolutely integrable,
square integrable.

Solution:

The signal is bounded since |z(t)] < M for any M > 1. The signal is locally
integrable because it is bounded, i.e., for any finite constants a and b

/b|x(t)\dt</bMdt:(b—a)M<oo.

The signal x is not absolutely integrable since

el = / 7 ao)] de

— oo

:2/ L
o t+1

—2 [
.t

= 2log(1) + lim 2log(t)
t—o0

and the limit diverges. The signal is square integrable since

el = | " la(t)ae

—0o0



1.5.

1.6.

1.7.

1.8.

Plot the signal

1

—- 0<t<1
0  otherwise.

Show that z is absolutely integrable, but not square integrable.

Solution:

The integral

Hle:/w |x(t)\dt:/0 7 2de = 2V = 2

—o0

and so x is absolutely integrable. The integral
e} 1
lele = [ lo(olde = [t = log(®)]} = log(1) - lim log(t) = o0
—o00 0 -
and so x is not square integrable.

Compute the energy of the signal e—a’t? (Hint: use equation (1.1.4)
on page 5 and a change of variables). Solution: From (1.1.4) we the energy

of e~ is \/7. Now
oo 1 o0
/ e gt = —/ e dr = ﬁ
o

—o0 —o0

by the change of variables 7 = adt.

Show that the signal t? is differentiable, but the step function u and
rectangular pulse II are not. Solution: We have

2 42 2
lim (t+h)*—t - lim 2th+h” _ ot
h—0 h h—0 h

2 782 32
lim t (t=h) = lim 2th —h =2t
h—0 h h—0 h

and so t? is continuously differentiable with derivative %1@ = 2t. At t = 0 the
corresponding limits for the step function are

. u(h) —w©0) .0
e L
but 0 b )
limiu( )~ ul(= ):limf:oo

h—0 h h—0 h

so the step function u is not differentiable at ¢ = 0. A similar argument at ¢ = %

ort= —% shows that IT is not differentiable.

Plot the signal sin(t) + sin(nt). Show that this signal is not periodic.
Solution: A plot of the signal is below:



1.9.

Testable linear shift-invariant systems (Exercise Solutions)

sin(t) + sin(nt)

L)

The following argument is due to Qiaochu Yuan. Suppose sin(t)+sin(t) is periodic.
Then

sin(t) + sin(wt) = sin(t + T') + sin(nt + T')
for some T > 0. Differentiating both sides twice with respect to ¢ gives
sin(t) + 7° sin(nt) = sin(t + T) + 7° sin(nt 4 T)
Subtracting the first equation from the second gives sin(¢) = sin(¢ + 7') and sub-
stituting this into the second equation gives sin(wt) = sin(nt + T'). The equation
sin(t) = sin(¢ + T') implies that 7" = 27k for some integer k # 0. The equation

sin(wt) = sin(wt + T') implies that 7" = 2¢ for some integer £ # 0. We would thus

have 27k = 2¢ and so ™ = f However, this is impossible because 7 is irrational.

Thus sin(t) + sin(nt) is not periodic.
Show that the set of locally integrable signals Ly, the set of absolutely

integrable signals L', and the set of square integrable signals L? are
linear shift-invariant spaces. Solution: Let x,y € L* and a,b € C. Now

laz + byl = / laz(t) + by(t)| dt

< / alz(t)| +bly(t)|dt triangle inequality

= aflzfly + bllyll < oo

and so ax + by € L1 and L, is a linear space. Also

Tl = / (1))t

:/jon(t—f)mt

= / |z(k)| dk change variable k =t — 7 = [lz|1 < oo

— 00
and so L is a shift-invariant space.

Now

oo

laz + byl|2 = / Jace(t) + by(H)|* dt

/ ()] + [by(t)|? + 2Re (a”x(t) by(t))dt
where * denotes the complex cojugate and Re denotes the real part of a complex
number. Now

Re (a"(8)*by(t)) < laz(®)]|by(8)] < max(laz(®)]? , [by()?) < laz(®)] + |by(8)]


http://math.stackexchange.com/questions/1079/sum-of-two-periodic-functions

1.10.

1.11.

1.12.

and so

nm+wﬁs/ 3lan(t)|? + 3 by (1) dt

—o0

— [ sl OF + 316R (o) e

2 2 2 2
=3lal” [lzll2 + 3[b]" [lyll2 < o0

and Lo is thus a linear space. Also

Mn@:/|nwww:/ mwme:/\mwm:w%<w

—o0 —o0

and so Lo is a shift-invariant space.

Show that the set of periodic signals is a shift-invariant space, but not
a linear space. Solution: Let P be the set of periodic signals. If z € P then
there exists T > 0 such that x(¢t + kT") = z(t) for all t € R and k € Z. The shifted
signal T-z € P since, for the same T', we have

Trx(t—kT)=a(t—7—kT)=z(t — 1) = Trz(t)

for all t € R and all k£ € Z. Since x € P and 7 € R are arbitrary, this holds for all
signals z € P and all shifts 7 € reals. Thus, the set of periodic signals is a shift
invariant space.

The set of period signals is not a linear space. Consider the signal z(t) = sin(¢)
with period 27 and y(t) = sin(nt) with period 2. Both x and y are in P. However,
exercise 1.8 shows that the sum z(¢) + y(t) = sin(t) + sin(nt) is not periodic, that
is,x+ye€P.

Show that the set of bounded signals is a linear shift-invariant space.
Solution: Let B be the set of bounded signals. If z € B there exists M > 0 such
that |z(t)] < M for all ¢ € R then the shift T-z(t) satisfies |T,z(t)] < M for all
t € R. Since x and 7 are arbitrary this holds for all x € B and 7 € R. Thus B is a
shift invariant space.

Let z € B and y € B be bounded signals. There exists M, > 0 and M, > 0 such
that
|z(t)| < M, ly(t)| < My for all t € R.

Now for a,b € C the signal ax + by satisfies
lax(t) + by(t)| < lal [x(t)] + [b] [y(t)] < la] M + [b] M,

for all t € R. Thus the linear combination ax + by is bounded. Since a,b € C and
x,y € B are arbtirary this holds for all a,b € C and all x,y € B and so B is a linear

space.

Let K > 0 be a fixed real number. Show that the set of signals bounded
below K is a shift invariant space, but not a linear space. Solution:
Let Bk be the set of signals bounded less than K, that is,

Bx ={z e R—C; |z(t)| < Kfor all t € R}.

If € Bk then |T;z(t)| < K for all t € R and so Bk is T-x € Bg. Thus, Bgk is a
shift invariant space.
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1.14.

1.15.

1.16.

1.17.
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Consider constant signals z(t) = K/2 and y(t) = 2K/3. Both z and y are bounded
less than K and so are in Bx However, the signal z + y is such that

lz(t) +y(t)| = K/2+2K/3=TK/6 > K
and so z +y ¢ Br. Thus Bg is not a linear space.

Show that the set of even signals and the set of odd signals are not
shift invariant spaces.

Show that the integrator I. with finite ¢ € R is not stable. Solution:
Put M > 1. The shifted step function u(t 4 a) is locally integrable and bounded
below M, ie. |u(t+a)] <1 < M for all ¢ € R. However, the response of the
integrator I, to u(t + a) is

t [fodr=t+a t>-a

Iau(t—l—a):/ u(T+a)dT:{0 f<—a’

—a

and this is not a bounded signal, that is, for every K we have ¢t + a > K whenever
t>K —a.

Show that if the signal x is locally integrable and ffm lz(t)] dt < oo
then Ixz(t) = fjoo z(t)dt < oo for all t € R. Solution: We have

Lo () < Loz (t)] = ’/_;x(t)dt‘

<[ k@

:/L |x(t)|dt—|—/0t j(t)] dt

Now ffoo |z(t)|dt < oo by assumption and fot |x(t)| dt because z is locally inte-
grable. It follows that

Show that the integrator I, is not stable. Solution: By default the
domain for I is the subset of locally integrable signals for which ffoo |z(t)| dt < oco.
The step function u(t) is in this domain. The argument now follows similiarly to

Exercise 1.16.

Show that the differentiator system D is not stable. Solution: Put
M > 2. Define the signal

0 2t < —a
qa(t) = 1+sin(Z) —a<2t<a
2 2t > a,

and observe that g, is differentiable and bounded below M. The response of the
differentiator D to q, is

0 2t < —a
Dqa(t) =4 Zcos (Z) —a<2t<a
1 2t > a.



The signal p, and the response Dp, are plotted below for a = %,1 and 2. The
response Dp, obtains a maximum amplitude of 7 at ¢ = 0. So D is not stable
because for any K we can choose a < % so that = > K.

Daqq.(t)

qa(t)

i

Another solution was suggested by Badri Vellambi. Consider the signal z(t) =
sin(¢?) plotted in the figure below. This signal is bounded below any M > 1. The
response of the differentiator is Dx(t) = 2t cos(t?) and this is not bounded.

sin(t?) 2t cos(t?)

1.18. Show that the shifter 7', is linear and shift-invariant and that the

time-scaler is linear, but not time invariant. Solution: The shifter T’ is
shift-invariant since

TWTre =Tzt —17)=2(t —7— k) =Trzx(t — k) = T-Trx
for all signals x, that is, shifters commute with shifters. The shifter is linear because
Tr(ax +by) = ax(t —7) + by(t — 7) = aTrx + bTry.
The time-scaler Hz = z(at) is linear because
H(ax + by) = ax(at) + by(at) = aHzx + bHy.
The system is not shift-invariant because

HT,z=Hz(t—71)=z(at — 1)
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1.20.
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but
T-Hx = T-z(at) = z(a(t — 7)) = z(at — a7),

and these signals are not equal in general. For example consider the rectangular
pulse II. With time-scaling parameter o = 2 and shift 7 = 1,

HT)II = T1(2t — 1) # T1(2t — 2) = Ty HIL.

Show that the integrator I. with finite ¢ € R is linear, but not shift-
invariant. Solution: The system is linear because, if 2,y € Lioc, then

I.(ax + by) = /t az(t) + by(r)dr

= a/_tC z(T)dr + b/_tC y(7)dr

=al.x + bl.y.

The system is not shift-invariant because

t—k
Tilex = Ic(x,t — k) = / z(7)dT

but .
I.Tpx = / z(1T — k)dr.
—cC
We now need only find some signal x € Ljo. for which the integrals on the right
hand side of the above equations are not equal. Choose the signal z = 1, i.e., the
signal that is equal to 1 for all time. In this case

t—k

t—k
Tklclz/ dT:t—k+c;«ét+c:/ dr = I.Tx1 when k # 0.

—c—k

—c

Show that the integrator I is linear and shift-invariant. Solution: The
system is linear because

t

Io(azx + by) = / az(T) + by(7)dr

— 00

= a/joo x(T)dr + b/joo y(T)dr

= aloox + bloy.

The system is shift-invariant because

t—k
Tilowr = Icx(t — k) = / z(7r)dr,

— 00
and

IoTrx = /t z(t — k)dr = /t_k z(T)dT.

—o0 —o0o



1.21.

1.22.

1.23.

1.24.

State whether the system Hx = x + 1 is linear, shift-invariant, stable.
Solution: It is not linear because for any signal x and real number a # 1,

H(az) =az+1#aHz =a(z+1) = az + a.
It is shift-invariant because
HTrz=z(t—7)+1=T,(x+1) =T, Huz.
It is stable because for any signal x with z(t) < M for all t € R,

Hz(t)=z(t)+1<M+1 for all t € R.

State whether the system Hx = 0 is linear, shift-invariant, stable.
Solution: It is linear because

H(ax +by) =0=aHz +bHy =0.
It is shift-invariant because
HT,z(t)=0= Hzx(t — 7).
It is stable because for any K > 0,

Hz(t)=0< K for all ¢ € R and all signals «.

State whether the system Hx = 1 is linear, shift-invariant, stable.
Solution: It is not linear because for any signal z and real number a # 1

H(ax) =1+# aHx = a.
It is shift-invariant because
HT;z=1=T-(1) =T-Hx.
It is stable because for any K > 1,

|Hz(t)| =1 < K for all t € R and all signals x.

Let x be a signal with period T that is not equal to zero almost every-
where. Show that z is neither absolutely integrable nor square inte-
grable. Solution: This is plain and does not really require further explanation,
but I’ve found some students desire more rigour.

Since x does not equal to zero almost everywhere there exist some finite real num-
bers a and b such that fab |x(t)| dt = C > 0. Let k be an integer such —kT < a and
kT > b so that the integral over 2k + 1 periods

kT b
/ |z(t)| dt > / |x(t)|dt = C > 0.
—kT a
Now, since x has period T'

ckT kT
/ lx(t)| dt = (2¢ + 1)/ ()| dt > (2¢+1)C > 0

—ckT —kT
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for integers ¢ and since this integral is increasing monotonically with ¢ we have
fdz:T |z(t)| dt > [2¢+ 1]|C for all ¢ € R where |2¢ + 1] denotes the largest integer

less than or equal to 2¢ + 1. Now,

o) ckT
|zl = / |z(t)| dt = lim |z(t)| dt > lim |2¢+ 1|C = oo,
oo c—oo [ pr c—o0

and so, x is not absolutely integrable.



Chapter 2

Systems modelled by
differential equations

Exercises

2.1. Analyse the inverting amplifier circuit in Figure 2.7 to obtain the rela-
tionship between input voltage x and output voltage y given by (2.2.1).
You may wish to use a symbolic programming language (for example
Maxima, Sage, Mathematica, or Maple). Solution: We provide two solu-
tions. Let v;, vo, v1 and v2 be the voltages over the input resistor R;, the output
resistor R,, and resistors R; and Rz respectively. We have 8 unknown voltages
T, Y, Vi, V1, V2, Vo, V4, V—. We will need 7 independent equations to find an equation
relating = and y. All currents are considered to be flowing either downwards or to
the right in the circuit diagram. The first 4 equations are given by voltages over
each resitor,

Tr=v_+v1
V- =Y+ v2
V- = V4 + U5
Y=o+ Alvy —v.)

The next two equations apply Kirchoff’s current law to each node betweeen resis-
tors. The currents into the 3 way connection between R;, R1 and Rz sum to zero,

and so
U1 _ V2 Vg
Rl Ry Ri
by Ohm’s law. Finally the currents through R, and Rz are the same, and so
Vo _ V2
R, Ry

The final equation simply observes that the non-inverting terminal vy is connected
to ground
Vy = 0.

We now have 7 linearly independent equations for the 8 unknowns x, y, v, v1, V2, Vo, U4, V—.

We can use these to find an equation that describes y in terms of z. The Mathe-
matica command

11
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Simplify[Solve[{x == vm + vi1,

vm ==y + v2,

vm == vp + Vi,

y == vo + Ax(vp - vm),
vli/rl == vi/ri + v2/r2,
vo/ro == v2/r2,

vp == 0,

rl >0, r2 >0, ro >0, ri > 0, A > 0},
{y,vi,vo,v2,vl,vp,vm}, Reals]]

or Maxima command

linsolve([x=vm+v1l,
vm=y+v2,
vm=vp+vi,
y=vo+A(vp-vm),
v1/R1=v2/R2+vi/Ri,
v2/R2=vo/Ro,
vp=0],
[y,vp,vm,v1,v2,vo,vi]);

readily obtains

B Ri(Ro — ARy) N
Y= Ri(Ra+ Ro) + Ri(Ra+ Ri + AR, + Ro)

The second solution is thanks to Badri Vellambi. Badri sets v; = vy — v_ so that
the voltage over the dependent voltage source is Av;. Consider the operational
amplifier circuit with feedback presented in Fig. 2.1. Suppose that the voltage
signal fed into the circuit is z(¢) and the voltage signal measured at the output of
the opamp is y(t).

Ry
Ry
b
oA
a Lo +
o +
a(t) y(t)
~ 5 o—

Figure 2.1: The circuit

To simplify the circuit, one has to use the model for the opamp given in Fig. 2.2
which involves the voltage-controlled voltage-source (VCVS) at the output side
(indicated in green). While replacing the operational amplifier with its model, it
must be noted that the positive terminal of the operational amplifier is connected
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to the ground.

N
| S o
| S o
~
A S N
| ~
~
| ~
~
| ~
S e
“ : " R, \\\
C = ‘/7, Rl ~
b ' -7
| _ -
_-
| -
-
| -
-
| = _-
b ] -
— -
-
| -
-
I//
v

Figure 2.2: The model for an operational amplifier

Upon replacement, we obtain the following equivalent circuit. Again notice that
since the positive terminal of the opamp was connected to the ground, the voltage
output by the VCVS is AV; where V; is the voltage between the ground and the
top of the resistance R;, and is measured against the flow of the current i — i1 as
is indicated in the figure.

Figure 2.3: The operational amplifier circuit with the model

Applying Kirchoff’s law to the outer loop indicated in blue in Fig. 2.3, we obtain
the following equation.

x(t) = iR+ (i —i1)Ri = i(R1 + Ri) — i1 R (2.0.1)

Note that by definition, the voltage V; that controls the VCVS is the voltage across
R; measured against the indicated direction of the current ¢ — i1, and is given by

Vi = —(i — i1)Ri. (2.0.2)
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Next, writing out the Kirchoff’s law for the inner loop indicated in red, we obtain
the following.

0=141Rs +92Rg + AV; — (Z — il)Ri (203)

Substituting V; in the above equation with the RHS of (2.0.2), we obtain the
following.

0= il(Rz =+ Ro) — A(Z — ll)Rl — (’L — ’Ll)Rz (2.0.4)
= —i(1+A)Ri+i1((1+A)Ri—|—R0 +R2) (205)

Combining (2.0.5) and (2.0.1), we obtain the following linear system of equations
governing the electrical circuit.

[ e R | I 0 IR ETY

Solving the above linear system, we identify the current in the different branches
to be

i i
! (I+A)R; Ri+Ro Ry + Ro R+ Ro R+ Ra R;

. (1+A)R;+Ro+Ra
[ 1] =ew| momm g S | o

Lastly, notice that
y(t) = i1Ro + AV; (2.0.8)
=i1Ro — (i — i1) Ri. (2.0.9)
Substituting the solutions for ¢ and ¢ in terms of z(t), we obtain the following.

© = RiRo — RaRi A o0
v\ = (1+ A)R;R1 + RoR1 + R2R1 + RoR; + R2R;

(2.0.10)

Figure 2.5 depicts a mechanical system involving two masses, two
springs, and a damper connected between two walls. Suppose that
the spring K> is at rest when the mass M is at position p(t) = 0.
A force, represented by the signal f, is applied to mass M;. Derive
a differential equation relating the force f and the position p of mass
M. Determine the force f in the case that the position p(t) = et
aDdMleg:%andKl:Kg:B:L

Solution: Let p; be a signal representing the position of mass M;. Suppose that
the spring K; connecting masses M; and M> is a rest when the masses are distance
dy apart, i.e., p — p1 = d1. The force applied by spring K; on mass M, is

fi=—-Ki(p—p1—d1) = -Ki(p—g)

where g = p1 + d1. The force applied by spring K7 on mass M; is then —fi;. The
force applied by the damper on M; is

fa=—-BDp1 = —BD(g —di1) = —BDg.
The total force applied to M; is f + fa — fi1 and by Newton’s law
M\D?py = MiD*g = f+ fa— f1 = f — BDg+ K1(p — g).
The force applied to M2 by the spring Ko is

Ja=—Kop
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-3 -2 _1\/ \V 2 3
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K K. Z

Iz 1 2 7

M, —wyey— M. Z

1 2 %
_— —_—

Figure 2.4: Motion of masses M7 and My when postition of masses M is p(t) =

e

—¢2

2.3.

because the spring is assumed to be at rest when p = 0. The total force applied to
Ms is fi1 4+ f2 and by Newton’s law

MyD?*p = f1 + f2 = —Ki(p — g) — Kop.

Rearranging gives
Kig = (K + K2)p+ M2D?p

and
—Ki(p—g) = M2D’p + Kap.
Now,
MiD?*qg+ BDg+ M>D?*p+ Kop = f
and so

K1 Kop+B(K1+Ks) Dp+(M, K1 +M; Ko+ K1 M2) D*p+BMa D*p+ M Mo D*p = K, f.
In the case that M1 = K; = Ko = B =1 and M, = 2 we have
p+2Dp+4D%p +2D*p +2D"*p = f.

and if p(t) = e~ we have

F) = (326 — 16¢° — 8082 + 20t + 1) ", g(t) = (8> — 2)e "
The solultion is animated in Figure 2.4 under the assumption that d = 2.5.
Consider the electromechanical system in Figure 2.6. A direct current
motor is connected to a potentiometer in such a way that the voltage
at the output of the potentiometer is equal to the angle of the motor 6.

This voltage is fed back via a unity gain amplifier to the input terminal
of the motor. An input voltage v is applied to the other terminal on
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the motor. Find the differential equation relating v and 6. What is
the input voltage v if the motor angle satisfies (t) = Z(1 + erf(t))?
Plot 6 and v in this case when the motor coefficients satisfy L = 0,
R=2 and K,=K,=B=J=1.

Solution: The input voltage to the DC motor is v — 6. From (2.4.1) of the lecture
notes the relationship between the input voltage and motor angle is

_ (RB RJ
v—0= <KT +Kb>D9+KTD 0

and so

3 RB RJ
”_GJF(KT —I—Kb)DH-i-KTD 0.

If 0(t) = S (1 + erf(t)) then
Do) = Ve, D0(t) = —2tvme "

and so ; )

o(t) = % Covmte " royme
The signals v and 6 are plotted in the figure below. Observe that as t — oo both
0(t) and v(t) converge to .



17

7
%
7

7

My sy M 7

1 2 Z

7

Z

7

f(®) p(?)

Figure 2.5: Two masses, a spring, and a damper connected between two walls for
Exercise 2.2.

e, O

Figure 2.6: Diagram for a rotary direct current (DC) with potentiometer feedback
for Exercise 2.3.

-
roles _

Figure 2.7: Voltage and corresponding angle for the dc motor with potentiometer
in Figure 2.6 with constants L =0, R = %7 andK, =K, =B=J=1.
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Chapter 3

Linear time-invariant
systems

Exercises

3.1. State whether each of the following systems are: causal, linear, shift-
invariant, or stable. Plot the impulse and step response of the systems
whenever they exist. In each case, assume the domain to be the set of
locally integrable signals.

(a) Hx(t) =3x(t —1) — 2z(t + 1)

(b) Hz(t) = sin (2mxz(t))

(c) Hx(t) = t2x(t)

(d) Ha(t) = [117, cos(nr)a(t + 7)dr
Solution:

(a) The system can be written as H(z) = 37T1(z) — 27-1(x) which is a linear
combination of shifters. Since the shifter is linear and shift-invariant H will be also
(Section 3.3 of the notes). Linearity can also be shown directly

H(az + by) = 3(az(t — 1) + by(t — 1)) — 2(az(t + 1) + by(t + 1))
=a(Bz(t—1) —2z(t+ 1)) + b(3y(t — 1) — 2y(t + 1))
=aHzx + bHy.
Shift-invariance can also be shown directly
T Hx(t) = Hz(t — 1)
=3z(t—1—-7)—2z(t+1-7)
=3T,z(t—1) — 2T z(t + 1)
= HT:z(t).
The system is stable because for every input signal bounded less than M > 0, that

is, for all input signals x such that |z(¢)| < M for all ¢ € R, we can choose K = 5M
and

|Hz(t)| = [Bx(t—1-7)-2z(t+1-7)] < 3|z(t — 1 —71)|[+2]z(t+1—-7)] < 5M = K,

19
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Testable linear shift-invariant systems (Exercise Solutions)

i.e., the output signal is bounded less than K. The system is not causal, because
it depends on the input signal = at time ¢ + 1, i.e., in the ‘future’. The system is
not regular because it is a linear combination of time shifters, and these are not
regular, they don’t formally have an impulse response (Section 3.1 of the notes).
The system does have a step response equal to H(u,t) = 3u(t — 1) — 2u(t + 1) that
is plotted in the figures below.

(b) The system is causal, in fact, it is memoryless since it only depends on the
input signal « at time ¢, i.e. the ‘present’ time. The system Hz(t) = sin (27 (t))
is shift-invariant because

HT,z(t) = sin (2nTrz(t)) = sin (2rz(t — 7)) = Tr Ha(t).

The system is not linear since H(ax,t) = sin (2raz(t)) # asin (2rz(t)) in general.
The system is stable, for every input signal « with absolute value bounded below
M we have

()

+ ’e—jzu)
2

2 _ g—iz(®)

2j

<M

[sin(z(t))| =

<

and so, choosing K = e™ we find that |Hz(t)] < K. Because the system is not
linear, it is not regular. It does have a step response equal to Hu(t) = sin (2ru(t)) =
0. Also acceptable is that is doesn’t have a step response because this is a feature
we developed for linear shift-invariant systems.

(c) The system is causal and also memoryless. The system Hx(t) = t?z(t) is linear
because
H(azx + by) = t*(azx + by) = at’z + bt*y = aHzx + bHy.

The system is not shift-invariant because
T, Hx(t) = (t — 7)°x(t — 1) # HT 2(t) = t*x(t — 1)

in general. The system is not regular because it is not shift-invariant. The system
does not have an impulse response. It does have a step response equal to Hu(t) =
t?u(t). This is plotted in the figures below. Also acceptable is that is doesn’t have
a step response because this is a feature we developed for linear shift-invariant
systems. The system is not stable, for example the input step u is bounded below
M > 1 but the output Hu is not bounded, it grows indefinitely as t — oo.

(d) Put h(t) = cos(wt)II(t) where h is the rectangle function (see (1.1.2) of the
lecture notes). Now

1/2
Hzx(t) = / cos(mr)x(t + T)dT

—1/2
1/2
= / cos(—m7)x(t — 7)dr (change var 7 = —7)
—1/2
= / cos(—m)IL(t)z(t — 7)dT

= /Oo h(r)z(t — 7)dr

—o0

= (h*z)(t).

Thus, H is the regular system with impulse response h(t) = cos(wt)II(¢). A plot
of h is given below. Since H is regular it is also linear and shift-invariant. The
impulse response h is absolutely integrable with |||l = 2 and so H is stable. The
system H is not causal because h is nonzero with some ¢ < 0, specifically those
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te (—%, %) The step response is given by applying the integrator system I to h,
that is,

t 0 t< 7%
Ioh(t) = / h(r)dr = fj1/2 cos(wr)dr = (sin(rt) +1) /7 —3 <t< 3
- 2 t> 1
Hu(t) = 3u(t — 1) — 2u(t + 1) Hu(t) = t*u(t)
3
3<>
1<>
1<>
) t ‘ ) t
-1 1 -1 1
h(t) = cos(mt)II(t)
1
t
_1 i
2 2
Ioh(t)
1

ol
[

3.2. Show that the system Hzx(t) = f_ll sin(n7)xz(t + 7)d7 is linear shift-
invariant and regular. Find and sketch the impulse response and the
step response. Solution: The easy way is to spot the impulse response directly.
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Observe that

/ sin(nw7)z(t + 7)dr

/ II(7/2) sin(n7r)x(t + 7)dT

= / b (=7/2)sin(—n7)z(t — 7)dT (ch. var. 7 — —7)

- /oo II(7/2) sin(n7)z(t — 7)dT

—o0

= (hxx)(t),

where we put h(t) = —I1(¢/2) sin(nt). It follows that h is the impulse response of
H. Since h has an impulse resposne it is regular, and since it is regular its also
linear and time invariant.

The hard way is to first show linear, then show time invariance, and then find this
impulse response as the limit

h = lim Hp,.
y—00
where the function

v, 0<t<i
py(t) = T
0, otherwise,

is introduced in Section 3.1. We have

H(az +by) = / sin(n7) (az(t +7) + by(t +7))dr

—1
1 1
= a/ sin(r7)z(t + 7)dr + b sin(m7)y(t + 7)) dr
-1 —1

— aH(a) + bH(y),

and so, H is linear. We also have

H(Tw(z)) = / sin(77) Tk (z)(t + 7)dr

= /7 sin(mr)x(t + 7 — k)dr

and so, H is time invariant. Now, if H is regular then its impulse response is
h = limy— o H(py). Let hy be the signal

hy(t) = / sin(77)py (t + 7)dT.

—1

The impulse response exists if h, converges for each fixed ¢ as v — oco. Now,
py(t+7) =~ fort+7 €0, %), ie. 7€ [—t, % —t), and zero otherwise. The integral
ranges from —1 to 1 so we are also interested in those 7 € [—1,1]. When ¢ > % +1
or t < —1 the intervals [—1,1] and [—t, % — t) are disjoint and we obtain h(t) = 0.
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Otherwise, when [—t, = —1) C [ 1,1],i.e, =t > —1 and % 5 —t <1 we obtain

sm wT)p~(t + 7)dT

1/~y—t
/ sin(7r)dr
_
s
¥
s

\

(cos (w(1/y —t)) — cos(—mt))
—~(cos (m(t— £ ) — cos(mt)).

Put A = —% and

hy () = 1 cos (7r(t + 5;) — cos(mt) .

Recognising the limit as v — oo, or equivalently as A — 0 as

cos (w(t 4 0)) — cos(wt)  d
lim 5 =% cos(7rt)

3

we immediately have

lim h~(t) = h(t) = 1d cos(mt) = — sin(nt).

Y=o mdt

on the interval t € [% —1,1). It remains to show what happens on the interval
-1, % — 1) that shrinks as v — oo.

2NN
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The step response can be found directly by inputing the step function u to the
system. That is
1
Hu(t) = / sin(mr)u(t + 7)dr.

-1
To find an explicit expression for this integral 3 cases must be considered separately.
Observe that u(t + 7) is nozero only when 7 > —t. If ¢ < —1 then u(t + 7) = 0 for
all 7 € [-1,1] and so

Hu(t) = /_1 sin(m7)u(t 4+ 7)dr =0 t<—1.

1
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3.3.

Testable linear shift-invariant systems (Exercise Solutions)

If ¢t > 1 then u(t+7) =1 for all 7 € [—1,1] and so

Hult) = /1 sin(rr)dr _ cos(T) |1 _ —cos(m) + cos(—m) _ 0 t>1.

1 s -1 0

Finally, if =1 <t¢ <1 then u(t+7) is 1 for 7 € [—¢,1] and 0 for 7 € [-1, —t) and so

Hu(t) = / 1 sin(r7)dr

—t

7cos( )|1

_ fcos(w) + cos(—mt) _ cos(mt) + 1 l<t<1.
T ™

An alternative way to find the step response is to apply the integrator system Io,
to the impulse response h(t) = —II(¢t/2) sin(nt) we derived earlier. We have

Hu(t) = Ich(t) = — /_ II(7/2) sin(w7)dr.

Again the integral needs to be split into cases. When ¢ < —1 the II(7/2) occuring
inside the integral is always zero and so H(u,t) =0 for t < —1. When ¢t > 1

Hu(t) = — /jl sin(n7)dr = 0.

Finally, when —1 <t < 1 we have

(77) |z _ cos(rt) + 1.

t
Hu(t) = — / sin(rr)dr = <2
-1

T -1 T

Observe that this is the same as previously. The step response is plotted below.

3|

Let h be a locally integrable signal. Show that the set dom A defined
in Section 3.1 on page 33 is a linear shift-invariant space. Solution:
The set dom h contains those signals = for which

/ |[h(T)z(t — 7)| dT < o0 for all t € R.

— 00

Suppose that z,y € domh and a,b € C. Then

/jo |h(T)(ax(t —T) + by(t — 7)| dr

<\a\/ t—7’|dT+|b\/ y(t —7)|dr.
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Both integrals on the right hand side are finite for all ¢ € R becase x and y are in
dom h. Thus the right hand side is finite for all ¢ € R and so the linear combination
ax + by € dom h. It follows that dom A is a linear space.

If £ € dom h then
/ |h(T)Thx(t — 7)|dT = / |h(T)x(t — T — k)| dT < o0

for all ¢ € R and so the shifted signal Tyx € domh. It follows that dom#h is a

shift-invariant space.

Show that domu where u is the step function is the subset of locally

integrable signals such that ffoo |z(t)|dt < co. Solution: By definition
domwu is the set of signals x such that

/ lu(r)z(t — )| dr < o0 for all t € R.

—o0

Denote by B the subset of locally integrable signals such that ffoo |z(t)| dt < oo.
We first show that domwu is a subset of B, that is domu C B. We do so by
contraposition, that is, we show that if z ¢ B then = ¢ domwu. Suppose that x is
not locally integrable, that is, suppose there exists a,b € R such that f: |z(t)| dT is
not finite. Then = ¢ B. Now

/: () (t — 7)| dr = /: lut — k)z(k)| dk = /; (k)| dk

the second equation following from the change of variable & = ¢ — 7. Choosing
k > b we have

/_0:0 |U(T)1:(t—'r)|dT:/_t(><> |x(7)|d72/:|1,(7)‘d7

which, by assumption, is not finite, and so = ¢ dom wu.
We now show that B C domu. Suppose that x € dom u, that is, suppose that
/ lu(r)z(t — 7)|dr < o
for all t. Then
oo t a t
/ lu(T)x(t — 7)|dr = / lz(T)| dr = / |z (7)| dr + / |x(7)| dr

for all a,t € R and so, the two integrals on the right are finite for all a,t € R. In
particular

t
/ |z(7)| dr < o0
for all a,t € R and so z is locally integrabls and putting a = 0 we have that

/0 |z(7)| dr < 0.

—o0

It follows that x € B. We have now show that domwu C B and that B C domu

and so it must be that B = dom u.
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3.5.

3.6.

Testable linear shift-invariant systems (Exercise Solutions)

Show that a regular system is stable if and only if its impulse response
is absolutely integrable. Solution: Let H be a regular system and h its
impulse response. By default the domain of H is assumed to be dom h, that is
H € domh — C. If h is absolutely integrable then for all signals x € dom h such
that |z ()] < M for all ¢,

|[Hz(t)| = [(h* 2)(t)]
= l/_ h(T)z(t — 7)dr
< /OO |h(T)x(t — 7)|dT

</ MIh(r)|dr
= M||h|x

for all ¢, and so Hz(t) is bounded.
On the other hand if h is not absolutely integrable then consider the bounded signal

) = 1 h(—t)>0,
TS w(en <o

Observe that s is not in the domain dom h because
/ |h(T)s(—T)|dT:/ Ih(r)| dr = oo

However, for all x > 0 the signal

s(t) |t <k

otherwise

is in dom h since

|7 mra-ntar = [ inmlar < oo

— 00 —K

because h is locally integrable (the impulse response is always locally integrable by
assumption. See Section 3.1). Put M > 1 and suppose that H was stable. Then
there exists K > 0 such that |Hz(t)| < K for all t € R and all € dom h bounded
less that M. Observe that r. is bounded less than M, that is, |r.(¢)] <1 < M for
all kK € R and all t € R. The response of H to r, at time zero is

K

Hr.(0) = /Do h(T)re(—7)dr :/ |h(T)|dT

—o0 —K

and because h is not absolutely integrable the integral on the right diverges as
get large. Thus, we can choose k large enough that

o (0)] = Hrn (0) = /K Ih(r)| dr > K

—K

violating our assumption that H was stable. Thus, H is not stable.

Define signals z(t) = u(t), y(t) = u(—t), and z(t) = II(¢t) — II(t — 1)
where u is the step function and II is the rectangular pulse. Plot z, y,
and z and show that the associative property of convolution does not
hold for these signals. That is, show that = * (y * z) # (z *x y) * 2.
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3.8.

Show that 25:1 Pt = %

Solution: Put r = ¢’ and put

This is the sum of the first L terms of a geometric progression. We have
rSp — S =r" —p

and so

Pl GBI B
SL = =

r—1 ef—1

as required.
Show that .
27 -
fj Zsin(’y( — e =a+a*C
/=1

—jy(L+1) sin(yL)

_ ,—J0 _
where o = ¢ and C = e Ten()"

27

(Hint: sum a geometric progression).

(Hint: solve Exercise 3.7

first and then use the formula 2jsin(z) = €/ — e77%). Solution: We

have

25 sin(yf — 0) = I (=0) _ —i(v£=0)

and so the sum becomes

L L L
%Z(ej('yéfé’) N L %Zeﬂ‘o _ %Ze’%”e”
=1

The sum is a geometric progression and, using the answer to Exercise 3.7, we have

L Yy Dy
) Jy(L+1) _ ,—2jv

o207 e e )

E —2j5v 1
e —
=1

The denominator satisfies

e P 1= efm(e*j7 — ejw) = —2jefjﬁY sin(y).
The numerator satisfies

—2jy(L+1 —2j
e 20 (L+1) _ =20y

e

—2jv (672ML _ 1)

(& €

— e 27 —ij(e—ij _ ij)
= —2je " EF D gin(yL).
Thus

— —2je=77 sin(7y) - sin(y) =Le

where C' is defined in the question statement. Now

Z o2 _ —2je IV EF D gin(yL) eIV EHD gin(y L)

*

L
ij Zsin(’yf —0)e N =a— o%LC’ =a—-a'C
=1

as required.
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%x3.9. Show that the convolution of two absolutely integrable signals is ab-
solutely integrable. Solution: Let 2 and y be absolutely integrable. We want
to show that the convolution

@e)®) = [ atryue - ryr
is absolutely integrable. Write

|\x*yu1=/°° (%) ()] dt

‘/ y(t —7)dr
/ / z(T)y(t — 7)| drdt
/ / )| |y(t — )| dtdr (change order of integration, Tonelli’s theorem)
/ / y(t —7)|dt|z(r)| dr
=l [ latrar

= [yl flzlh

dt

which is finite by our assumption that x and y are absolutely integrable. This result

also follows as a special case of Young’s Theorem [Rudin, 1986].



Chapter 4

The Laplace transform

Exercises
4.1. Sketch the signal
z(t) = e ?tu(t) + elu(—t)

where u(t) is the step function. Find the Laplace transform of x(t)
and the corresponding region of convergence. Sketch the region of
convergence on the complex plane. Solution:

e 2tu(t) 4 etu(—t)

The Laplace transform of e~ *'u(t) is

L(e * u(t),s) = /00 e *tu(t)e *dt

—o0

= / e~ Dty
0

—(s+2)t
e+t

s+2 ©

and the Laplace transform of e‘u(—t) is

0
Lle'u(—t),s) = / e Dty

e—(s—l)t o
s—1 7=
1

29
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Thus, the Laplace transform of e™>*u(t) + e*u(—t) is
1 1
L u(t) + e'u(—t),s) = o e —2 < Re(s) <1
and the region of convergence is the subset of the complex plane satisfying —2 <
Re(s) < 1. The unshaded region in the plot below depicts the ROC.

Im

=]
o

4.2. Find the Laplace transform of the signal t"u(t) where n > 0 is an
integer. Solution: We have

L(t"u(t)) :/ t"u(t)e*”dt:/o t"e”*"dt.

Integration by parts gives the indefinite integral

_ o o
/t"e st = e 5t+3/t" Lemst s,
S S

So, when Re(s) > 0,
n

L(t"u(t)) = lim t—efst — lim t—efst + 7/ t" et dt
0

t—=0 S t—oo 8 S
n

= —L(t" u(t)),
s
since both limits converge to zero. Unravelling the above recursive equation gives

n!
gn+1 !

n n—1

L(t"u(t)) = X T XX é x L(u(t)) =

Re(s) > 0,
since £(u(t)) = 2 when Re(s) > 0.

4.3. Let n > 0 be an integer. Show that the Laplace transform of the signal
(—t)"u(—t) is the same as the Laplace transform of the signal t"u(t),
but with a different region of convergence. Solution: We have

L((=t)"u(-t)) = /Oo (—t) u(—t)e™*dt

= / t"u(t)e® dt (change variable t = -t)
= L(t"u(t),—s) Re(s) <0
n!
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4.4. Show that equation (4.3.5) on page 57 holds when the system H the
time shifter 7. Solution: Put y = Tyx = z(t — 7). Taking Laplace transforms

Ly=LT:z
= / TTx(t)efstdt
= / x(t—1)e *tdt

= / a(k)e " dk (ch. vars. k=t —1)

= e_ST/ z(k)e *"dk

=e " Lx s € roc(z)
=\ Lx s € roc(x)

as required. Observe that the region of convergence of Ly is the same as that of

Lx.

4.5. Show that equation (4.3.5) on page 57 holds when the system H is the
differentiator under the added assumption that

lim 2(t)e " = lim z(t)e " =0 when s € roc(x).
t—00 t——00

Solution:

Put y = Dz. Taking Laplace transforms
Ly = LDz = /OO Dz(t)e”*"dt.
Integrating by parts
Ly = [m(t)e_St]iooo +s /OO z(t)e *'dt = [m(t)e_“]iooo + sLx.

and, by assumption,

[Jc(t)e_“]oo = lim x(t)e_“ _ lim x(t)e_“ -0

- t— 00 t——o0
whenever s is in the region of convergence of . In this case Ly = sLx as required.

The result follows for the kth differentiator D* under the assumption that

lim D°x(t)e”*" =0 and lim Dx(t)e " =0

t—o0 t——o0

forallc=1,2,...,k — 1 because
LD*z = £LDD* 'z = s£DF '
and unravelling this recursion gives

LDMy =sxsx---xsxLDy=s"Ly=AD*Ly.
—_————

k — 1 times
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4.6. Let x be the signal with Laplace transform

1

L(x,s) = e

Re(s) > 1.

Define the signal y by
y(t) = etz (2t +1).

Find the Laplace transform and region of convergence of y. Sketch the
region of convergence of y. Solution: The easiest approach is the write

o) = [ woear
:/ e‘x(2t + 1)e *'dt
:/ z(2t +1)e Dt

= %/ w(k)e”CTVED 20 (v k=2t +1)
- ée“*lw/oo w(k)e FED2 g

The integral is the Laplace transform of x evaluated as 351 and so

- . 4els—1)/2
£l = 3L ) = g

The region of convergence of y is those complex numbers with real part greater
than 3. A plot of the region of convergence is below.

Im

A direct approach is to apply the inverse Laplace transform (by formula (4.2.3)) to
find
z(t) = HePelu(t)

where u(t) is the step function. Now
y(t) = e'z(2t + 1) = 12t + 1)%* (2t + 1).

One can now apply the Laplace transform formula to this expression for y. After

a lengthy integration by parts, the same answer is obtained.
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What is the transfer function of the integrator system I.,? What is
the domain of this transfer function? Solution: We can do this in two ways.
First by obtaining the transfer function directly and second by using the fact that
the impulse response of I is the step signal u (Section 3.1).

Recall from Section 1.4 that by default the domain of I, is the set of locally
integrable signals x for which the integral ono |z(t)| dt. This set of precisley dom u
(see also Exercise 3.4). Observe first that e** € domwu if and only if the real part
of s is nonegative. Thus, the domain of the transfer function A\l is the set of
complex numbers s with Res > 0. The response of I, to e is

S t——oc0 8§

t st st
Joo(est):/ eTdr =5 — lim

and the limit exists only when Res > 0 and in this case it is zero. So
; 1
Ioo(eét) = ¢t Res >0
S
and Moo (s) = L.
The second approach is to use that A\H = Lu. We have, from Section 4.1, that that
the Laplace transform of the signal e®‘u(t) takes the form

L(eu(t)) = ! Res > Rea.

s —«

Setting o = 0 we find that
Lu(s) = Moo (s) = é Res >0
as before.

By partial fractions, or otherwise, assert that

as ab

= Qq —
5+0b 5+0b
Solution: Adding and subtracting ab from the numerator
as+ab—ab a(s+b)—ab a(s+b) ab _ ab
s+b B s+b T s+b s+b s+b

By partial fractions, or otherwise, assert that

s+c a—c¢ c—>b

= +
(s+a)(s+b) (a—Db)(s+a) (a—0b)(s+D)
Solution: Hypothesise the solution
s+c _ A B

(s+a)(s+D) s+a+s+b'
Multiplying both sides by (s + a)(s + b),

s+c=A(s+b)+ B(s+a).

Putting s = —a gives ¢ — a = A(b — a), and pitting s = —b gives ¢ — b = B(a — b),
and so,
s+c a—c c—b

(s+a)(s+b) (a—b)(s+a) (a—0b)(s+b)
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x4.10. By partial fractions, or otherwise, assert that

1 A A A A
s(s—a)(s—b)(s—b*) s s—a s—b s—b

where a € R and b € C and Im(b) # 0 and

1 1 1

e A= Ay= .
alb|?’ ! 2T bb—a)(b—b)

Ay = _
0 ala — b2’

You might wish to check your solution using a symbolic programming
language (for example Sage, Mathematica, or Maple). Solution: The
mathemtica command

Apart[1/s/(s - a)/(s - b)/(s - ¢), s]
or the maxima command
partfrac(1/s/(s - a)/(s - b)/(s - ¢), s)

returns the equation

1 _ﬂ_'_ Al + AQ + A3
s(s—a)(s—b)(s—c) s s—a s—b s—c
where 1 1
Ao = =
0 abc’ a(a —b)(a—c)’
1 1
A A .
T bb—a)b-c)’ 27 cle—a)(c—b)
Setting ¢ = b* gives
_ 1 _ 1
O Talp)? YT ala— b2
1 1
Az = As = = A3
2T b(b—a)(b—b%)’ T —a)br—b) O ?

as required.
4.11. Let y be a signal with Laplace transform taking the form

2s+1

Ly(s) = 5———=
y(s) s2+5—2
By partial fractions, or otherwise, find all possible signals y with this
Laplace transform and the corresponding region of convergence. Solu-
tion: Factorise the polynomial on the denominator

2s+1
(s+2)(s—1)
Adding and subtracting s — 1 on the numerator
2s4+1+(s—1)—(s—1) s—1 s+2
(s+2)(s—1) T(s=1D(s+2)  (s—1(s+2)
1 1

s+2+s—1'
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There are two time domain signals with Laplace transform S—}rz,

e *'u(t), Re(s) > —2 and — e *'u(—t), Re(s) < —2,
and two time domain signals with Laplace transform —ﬁ,
e‘u(t), Re(s) > 1 and —e'u(—t), Re(s) < 1.
There are three possible signals with nonempty regions of convergence

y(t) = e *tu(t) — e'u(—t) —2 < Re(s) <1,

—2t

y(t) = e > u(t) + e'ult) 1 < Re(s),
y(t) = —e P u(—t) — e'u(—t)  Re(s) < —2.

Let x be a signal. Show that the time scaled signal x(at) with a # 0
satisfies equation (4.2.4) on page 55. Solution: First consider when o = —1
so that x(—t) is the reflection of the signal x in time (see Section 1.4). We have

L(z(—t),s) = / z(—t)e *'dt

—0o0

= —/ z(r)e* dr (change variable 7 = —t)

oo

= /OO z(r)e’ dr = L(x, —s) Re(—s) € R.

—o0

This special case is called the time reversal property. Now, when o > 0,

L(oat).s) = [ atatyear
1 * —s7/a .
=- z(7)e dr (change variable 7 = at)

@ Jo

1
Eﬁ(x,s/a) Re(s/a) € R.
Combining this with the time reversal property we obtain

L(z(at),s) = ﬁﬁ(z,s/a), a # 0,Re(s/a) € R.

as required.

Consider the active electrical circuit from Figure 2.8 described by the
differential equation from (2.2.3). Derive the transfer function of this
system. Find an explicit system H that maps the input voltage x
to the output voltage y. State whether this system is stable and/or
regular. Solution: The differential equation modelling the circuit is

T y
—— —C1Dx = Z +C3D
7 Ci1Dx o Cy Dy,

and taking Laplace transforms on both sides of this equation

1
*‘i‘ClS o+ s
Ly=-"[L(z) = —
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where a = ﬁ, B = ﬁ, and v = %2 The transfer function of the system

mapping = to y is correspondingly
_«a +vs o 9s
B+s B+s B+s

Applying partial fraction (as in Exercise 4.8) to the second term gives

A(H) =

AH) =~ & +8
B+s
The first term — a[;:’f corresponds with a regular system, say Hz, having impulse
response

ha = —(a+B)u(t)e ™
by using the Laplace transform pair from (4.2.3) with the integer n = 0. The term
—~ correspond with the system H; = ~Tp, i.e, the identity system multiplied by
—~. The system H that describes the mapping between input voltage x and output
voltage y is thus
H(x) = Hi(z) + H2(x) = —yx + h2 * x.

The system is not regular because the H; is not regular. The system is stable

because H; is stable and H> is stable because the impulse response hs is absolutely

1
RoCoy

the transfer function does not have more poles than zero, and the system is stable

integrable since 8 = > 0. Equivalently the system is not regular because

because the transfer function has at least as many poles as zeros (equal in this
case), and because all the poles lie strictly in the left half plane.

Given the mass spring damper system described by (4.5.1), find the
position signal p given that the force signal

1 0<t<1

0 otherwise

is the rectangular function time shifted by % Consider three cases:

»

(a) M =1, K=" and B = %,
(b) M=1, K=" and B =,
(c) M =1, K=" and B = 2,

N

N

Plot the solution in each case, and comment on whether the system
is underdamped, overdamped, or critically damped. Solution: Observe
that the input force signal can be written as the sum of the step function v and its
negated time-shift, that is,

f() =u(t) —u(t —1) = u(t) — Tru(t)
and so, the response of the linear, time invariant system H modelling the mass
spring damper to input force signal f is

Hf =H(u—Twu)=Hu—T Hu,

and so, Hf(t) = Hu(t) — Hu(t — 1), where Hu is the step response of the sys-

tem. The step responses are described in Section 4.5. As described in Section 4.5,

™

the system is underdamped when B = %, critically damped when B = 7 and

overdamped when B = 27.
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Plot the signal z(t) = sin(te’)u(t) and find and plot its derivative
Dz. Show that the region of convergence of x contains those complex
numbers s with Res > 0 and that the region of convergence of Dz
contains those with Re s > 1. Solution: By application of the chain rule the
derivative of sin(te’) is (¢ + 1)e’ cos(e’)u(t). These signals are plotted below.

sin(te )u(t)
1<>
] t
—14
(t + 1)e’ cos(te’)u(t)
4
301 ’
//
- t
_____ V V
~301 ,

We have |z(t)| = |sin(te’)u(t)| < 1 for all t € R and so

L(z,s) = /00 sin(te’)u(t)e™*'dt

— 00

:/ sin(te’)e” " dt

0
o0

§:/ ‘sm (te") St‘dt
0

oo
< / e~ Rc(s)tdt
0

which is finite for all s with Re(s) > 0 as required. For the derivative we have

LDzx(s (t+ 1)e’ cos(te’)u(t)e * dt

88

(t + 1) cos(te')e™ =Vt

\o\o\\

e}

t+1 ) cos(tet)e ™V dt

t+1 —(Re(s)— 1>tdt
which is finite for all s with Re(s) > 1 as required.

Show that the limit as |s| — 0 of
e5/2 _ o—s/2

S
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is equal to 1.

Consider the mechanical system in Figure 2.5 from Exercise 2.2. After
solving Exercise 2.2, find the transfer function of a linear shift-invariant
H system mapping f to p. Now suppose that M1 = K1 =Ko, =B =1
and My = 2. Find the poles and zeros of H and draw a pole zero plot.
Determine whether H is stable and/or regular. Find and plot the
impulse response and the step response of H if they exist.

Solution: Let H be a linear time invariant system mapping f to p. The transfer

function of H is 1

T 1425+ 452 + 283 + 254
Factorising the polynomial on the denominator we obtain

1
(s = Bo)(s = B1)(s = B2)(s — Bs)

AH (s)

AH(s) =

where the roots are
Bo = B7 = —0.193622 + 1.170465, B2 = B3 = —0.306378 + 0.5112555

The system has no zeros and four poles. A pole zero plot is shown below.

Bo

X

Im
Re

B1 -—1

Because there are atleast as many poles as zeros and the real part of all the poles is
negative the system is stable. Because there are more poles than zeros the system
is regular and has an impulse response. Applying partial fractions gives

Ag n A, Ao As
s—Bo s—pP1 s—P2 s—ps

AH(s) =
where
Ao = A7 = —0.0887401 + 0.368434;j, A, = A5 = 0.0887401 + 0.863059;.
The impulse response is
h(t) = u(t) (Aoeﬁot AP ¢ Ayt 4 Ageﬂst) .
The step response is
Hu = Ioh = u(t) (C’oeﬂot + 1Pt 4+ Cre®?t + 0383t — B)

where C, = A, /Bn, n =0,1,2,3 and B = Cp + C1 + C2 + C5. These responses are
plotted below.
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h
10
1 L I t
H(u)
2 4
10
1 1 1 t
5 10 15

4.18. Consider the electromechanical system in Figure 2.6 from Exercise 2.3.
After solving Exercise 2.3, find the transfer function of a linear shift-
invariant system that maps the input voltage v to the motor angle
f. Under the assumption that the motor coefficients satisfy L = 0
and K, = K, = B = R = J =1 draw a pole zero plot and deter-
mine whether this system is stable and/or regular. Find and plot the
impulse response and step response if they exist.

Solution: Exercise 2.3 finds the following differential equation relating v and 6,

_ RB RJ
U_9+(KT +Kb) D0+KTD 0.

The transfer function is

1
1+(%§+Kb)s+§—j52'

Under the assumption that K, = K = B = R = J = 1 the transfer function is

1 1

1+2s+s2  (1+9)2

There are two equal real poles at s = —1 and no zeros. A pole zero plot is below.
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Im

The system is regular because there are more poles than zeros. The system is stable
because there are at least as many poles as zeros and all poles have negative real
part. The impulse response is found to be h(t)u(t)te™* by application of the inverse
Laplace transform. The step response is given by application of the integrator

system
t t
Hu=Ix(h)= / u(r)te” Tdr = / te Tdr =u(t)(1—e (t+1)).
—o00 0
These responses are plotted below
u(t)te™?
0.3+
) t
1 7
u(t)(1—e " (t+1))
1<,
1 1 t
1 7

xx4.19. Let = be a signal. Show that the complex exponential signal e* €
dom z if and only if the signal x(t)e%! is absolutely integrable. Solu-
tion: The set dom x contains all those signals such that

/ |z(T)z(t — 7| dr < o0 for all t € R.

If e € dom « then

/ ‘x(T)es(tfﬂ

Setting ¢t = 0 we find that

dr = ’eSt‘ /00 |z(T)e ™| dr < o0 for all t € R.

/Oo !.’E(T)6_87| dr < o©

— 00
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and so z(t)e”*! is absolutely integrable. On the other hand, if z(t)e™** is absolutely
integrable then

oo
/ ‘1}(7‘)63“77—)

since e*! is finite for all ¢, and so, e** € dom x.

dr = [e*'| |z (t)e™"||1 < oo for all ¢ € R.

Show that the complex exponential signal ! € dom f g if and only if
s € roc f Nroc g, that is, cepdom f g = roc f Nrocg.
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Chapter 5

The Fourier transform

Exercises

5.1. Plot the signal e~ where @ > 0 and find its Fourier transform.
Solution:

]_—(e—a\t\) :/ e—a\t\@—j?wftdt
— o0

0o 0

:/ e—ate—jQWftdt+/ eate—]Qﬁftdt
0 —o00

_ / o2l gy +/ - Emr—a)t gy
0 —oo

3 { e—(i2mf+a)t ]OO N [ e (i2nf—a)t }0
—@2rf+a)l, L-(2rf-a)]_ o

Because a > 0, the limits as ¢ — oo and t — —oo go to zero leaving

1 B 1 _Jj2rfHta—j2nf+a 2a
j2rf+a  j2nf—a  (j2nf+)(i2nf —a)  4An2f? + a2’

5.2. Plot the signal
t+1 —-1<t<0
At)y=L1-t 0<t<l1
0 otherwise

and find its Fourier transform. Solution: This signal is often called the
triangle function or triangle pulse.

43



44

xH.3.

Testable linear shift-invariant systems (Exercise Solutions)

You can do this directly using the formula for the Fourier transform and integrat-
ing by parts. However, it is easier to first realise that the triangle pulse is the
convolution of the rectangular function with itself. That is IT* IT = A. To see this

write

[eS) 1/2

II(r)I(t — 7)dr = /71/2 II(t — 7)dr

e - |

—o0

Now II(t — 7) = 1 for 7 in the interval (— + ¢, 3 + t) and zero otherwise. Thus,
the integral evaluates to zero if t > 1 or t < —1. When t € (—1,0]

1/2+t
(H*H)(t):/ dr=t+1

—1/2

and when ¢ € [0, 1)
1/2
(H*H)(t):/ dr=1-t¢

—1/2+t
as required. Now, by the convolution theorem (5.0.3)

FI+ 1) = FA = FILFII = sinc*(t).

Show that the sinc function is square integrable, but not absolutely in-
tegrable. Solution: Our proof is by contradiction. Assume that sinc is absolutely
integrable. Then

I sine | :/ Isine(t)] dt

— 00

> / |sinc(t)| dt
0
/o

Gn

sin(7rt)
7t

K

e 11

n=1

n
=
n—1

Under our assumption that sinc is absolutely integrable we must have that the
infinite sum a1 + a2 + ... converge to a finite number. Now

n
an > /
n—1

However, the sum

where we put
sin(mt)
Tt

dt.

Si 1 " 2
sin(rt) ’ dt = — / |sin(mt)| dt = ——.
™ ™ .1 m2n

S

o0 2 oo

IEDS

n=1 ™ n=1
involves the harmonic series (a p-series with p = 1) and so diverges (to show this
use either an integral test or the condensation test). Thus, our initial hypothesis
that sinc is absolutely integrable is false.

Graphically, the argument we have used bounds |sinc| above the function

0 t<0
b(t) = sin(mt) te (n _ 17 TL]

™
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and then shows that b is not absolutely integrable. The function |sinc| (dashed)
and b (solid) are plotted in the figure below.

To show that sinc is square integrable observe that sinc®(t) is bounded below the

function
1 ¢ <1
g(t) = .
= otherwise,

that is sinc?(¢t) < g(t) for all t € R. Thus

|| sinc ||2 = / |sinc(t)|? dt

—o0

< [ gta

— o0

1 [e5S]
— [ ez
-1 1

=

T t r
—4 -3 -2

T

x5.4. Show the the magnitude spectrum of the normalised Butterworth filter

B,, satisfies
1
[ABm(f)| =4/ P

Solution: Recall that the transfer function of B,, is
1 2mm
ABT""L(S) = m s = m )
Hi:1(§ - Bi) Hi:1(5 —27nB;)
where f1, ..., m are the roots of the polynomial s*™ 4+ (—1)™ that lie strictly in

the left half of the complex plane (have negative real part). Specifically, these roots
are

By = exp(jg(l—l—%)), k=1,...,m
b GI(1—21)) k=m+1,....2m
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or equivalently

B = jcos("@;j;l))—sin(iﬂz;i;l))7 k=1,...,m
jcos("(%_l))—&—sin(%), k=m+1,...,2m.

2m

Observe that the roots Sm+41,...,02m are given by negating the real parts of
Biy. .., Bm, that is, Bm+: = j(B:/7)". The squared magnitude of the polynomial on

the denominator is
2 m m *
(H if =B ) (H(jf —@-))

=1 i=1

m

11Gr—-8)

=1

H Gf=B)Gf—Bi)”

1

.
Il

éls

(Jf B3 (f = (Bi/3)")

.
Il

and because j*/j = —1 we have
m 2 m
[1Gr =80 = 0" [16GS = BIGS = 3(B:/))
= (_ ) H(]f ﬂz)(]f 5m+z)
.
= (_ )m H(]f ﬂz)
=1
Because fi,. .., B2m are the roots of the polynomial ™ + (—1)™ we have
m 2
H(]’f —B)| =ED™(GEH+ (=D)T) =+

It follows that the magnitude spectrum of B,, is
1

A(Bp)| =/ .

MBI =\ s

x5.5. Find and plot the impulse response of the normalised lowpass Butter-
worth filters B, By and Bs.

5.6. Plot the signal

() =4 —2 <13
0 otherwise

and find its Fourier transform. Solution:

#11(t)
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A direct approach is

oo 1/2

tH(t)e_Sftdt:/ te”*'dt

—1/2

cen) = [

— o0

and integrating by parts gives
—st71/2 1/2 _—st
{te } - / €t
—S 112 -1/2 —S

- 675/2_’_65/2 B |:est:|1/2

L(tTI(¢))

—2s 52 _1/2
7 675/2 +€S/2 675/2 _ 65/2
- —2s s2
1 65/2 _’_675/2 s/2 _ ,—s/2
_1 (7 n e e '
s 2 s

Because tII(t) is absolutely integrable its region of convergence includes the imag-
inary axis and we can obtain the Fourier transform by evaluating the Laplace
transform at s = j2n f,

F(II(8)(f) = La(527f)

1 I 4 gminf  ginf _ —inf
w7 (T )
= 27T1jf (sinc(f) — cos(nf)) .

An alternative approach is to observe that
FDsinc(f) = ADFsinc(f) = j2r fII(f),
and so, by duality,
F(j2mtll(t))(f) = FFDsinc(f) = Dsinc(—f)

The derivative of the sinc function is given in (2.2.5)

Dsinc(—f) = %ﬁ(sin(ﬂf) —nfcos(nf)) = %(sinc(f) — cos(mf)).
Dividing by j27 we obtain
FIL)(f) = ﬁ(ﬂ'fcos(ﬂf) —sin(nf)) = 2;# (sinc(f) — cos(m f))

again. A plot of the Fourier transform is below. Observe that the Fourier transform
is purely imaginary so we plot the imaginary part.

Im F(I1(t))
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5.7. Let z be the signal with Fourier transform 2(f) = II(f)( cos(27 f)+1).
Plot the Fourier transform Z and find and plot x. Solution:

1+ cos(27f)
2

N
NI 4

We will solve the problem in two ways. Firstly, by directly application of the inverse
Fourier transform and secondly, by applications of the duality and modulation
properties. Application of the inverse Fourier transform gives

v = F (L) + T cos(2r)) = F (1) + F ' (IL(F) cos(2nf).

Now
FI) = [ e
- /1/2 2t gy
—1/2
et —e ™ 2jsin(nt)  sin(mt) sinc(t)
27t T 2@t @t
and

FHII(f) cos(2mf)) = /oo TI(f) cos(2r f)e> 3t df

—o0

1/2 ,
= / cos(2m f)e*™ It qf

—1/2
1/2 ) ) .
:/ %(627r]f + e—27r]f)627r]ftdf
—1/2
1/2 1/2
- / 2rif ) g ;/ (21 (1) g
—1/2 2 —-1/2
= Lsinc(t + 1) 4 1 sinc(t — 1)

by working similarly to the previous equation. Putting these together we obtain
the time domain signal

x(t) = sinc(t) + 4 sinc(t + 1) + 3 sinc(t — 1).

We now derive the same result using duality (5.1.5) and the modulation (5.0.7)
properties. By duality

a(=f) = F(I(f)) + F(TI(f) cos(2m[))
Because F(II) = sinc the time shift properties yields

F(II(t)) = sinc(t).
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Now, by the modulation property
F(II(t) cos(2mt), f)

LR, £ 1) + LF(I), £+ 1)
Lsinc(f — 1) + 1 sinc(f + 1).

Now
z(—f) = sinc(f) + 4 sinc(f — 1) + & sinc(f + 1)
Putting t = — f
z(t) = sinc(t) + & sinc(t + 1) + 1 sinc(t — 1)

because sinc is even. A plot of the Fourier transform is below. The shape of the
Fourier transform is somewhat sinc-like, but the oscillations decay faster as |t| — oco.

sinc(t) + 5 sinc(t + 1) + £ sinc(t — 1)
1

N|=

f
N

5.8. State whether the following signals are bandlimited and, if so, find the
bandwidth:

(a) sinc(4t),

(b) TI(t/4),

(c) cos(2mt) sinc(t),
(d) eI,

Solution: Let Sa(z,t) = z(at) be the time scaler system. We have

F(Salz), f) = /OO z(at)e™ > dt

— o0

1

= E/ z(y)e 2™ % gy (ch. var. v = at)

= é]—"(m, fla)
= 51u(F (@), f).
The Fourier transform of S, (sinc)(t) = sinc(4¢) is
F(sinc(4t)) = 1I1(f/4),

and the signal is bandlimited with bandwidth 2 because II(f/4) = 0 whenever
|f] > 2. By duality

$F(IL(f/4)) = sinc(4t)
and so F(II(f/4)) = 4sinc(4t). This signal is not bandlimited because the sinc func-
tion is unbounded in time. By the modulation property of Fourier transform (5.0.7),

]-'(cos(27rt) sinc(t), f) = F(sinc, f — 1) + F(sinc, f + 1) =I(f — 1) + II(f + 1).
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This is bandlimited with bandwidth % In Exercise 5.1 we showed that

2

Fle = Ar2f2 41

This signal is not bandlimited.

Show that

2
aln| -1
n

if @ < 0 (Hint: solve Exercise 3.7 first). Solution: Put r = . Because
a < 0 the series 7 4+ 72 4+ 7% 4 ... converges absolutely and so

(oo}

SRR SAEIRD o
nez nez n=1

The sum in the equation on the right is a geometric series evaluating to

r e 1

I—r 1-e eo—1

Show that if a sequence is absolutely summable then it is also square
summable. Solution: Suppose that the discrete time signal a is absolutely
summable so that |lall1 = Y ., lan] < co. Let A be the subset of Z such that
|an| > 1 whenever n € A. That is

A={n; |an| > 1}.

Let |A| denote the number of elements in the set A. We have
0o > llalli =) lan| 2 Y lan| > |A]
ne’ neA

and so, A contains a finite number of elements. Thus

B:Z|an|2<oo

neA

Now, |an|* < |an| < 1 for all n ¢ A and so

C=> lanl’ <Y lan| < Jlall < oo

n¢A n¢A

lall3 = lan® =D lan* + > lan]* = B+ C < oo

nez neA n¢gA

Thus

Show that ij:—ol eI2mk/N g equal to N if n is a multiple of N and

zero if n is any integer not a multiple of N. (Hint: use the result from
Exersise 3.7) Solution: First observe when is a multiple of N,

N-1 N-1
e]27rnk/N — z : 1=N.
k=0 k=0
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It remains to show that the sum is zero if n is an integer not a multiple of N. It is
helpful to reparameterise in order make the connection with Exercise 3.7. We have

N
ej27‘rnk/N — 2 :eBZ
=1

where £ = k + 1 and 8 = j27n/N. From Exercise 3.7, this sum is equal to

N-1

k=0

SINHY) _ B
ef —1
The numerator is equal to

PNHD _ B — BeBN/2(BN/2 _ o=BN/2) _ BBN/295gin(aN)

where oo = mn/N so that 8 = j2a. The denominator is equal to
el 1= 66/2(66/2 — 675/2) = 66/22jsin(a).

Using these expression for the numerator and denominator we obtain
N-1 . .
j2mnk/N _ (N+1)/2 sin(aN) _ T (N1 /N sin(7n)

c sin(a) sin(mn/N)

k=0

If n is an integer not a multiple of N then sin(nmn/N) # 0 while sin(7n) = 0 and so
N-1 ]
j2mnk/N _ iwn(N+1)/N sin(7n)

c sin(mn/N)

k=0

=0
as required.

5.12. Let d = Dyc be the discrete Fourier transform of the sequence c. Show

that
N—-1

1 .
cn:N;Odkeﬂ”"k/N n=0,...,N—1.

(Hint: use the result from Exersize 5.11) Solution: We have

N—-1
dk — DN(C, k) _ Z cn67j27r7Lk/N
n=0

and so
1 N-1 1 N-1 /N-1
+ j2mnk/N __ L —j2nmk/N j2nnk/N
N dre =N Z Cme > e
k=0 k=0 \m=0
] Mol
_ j2w(n—m)k/N
=% > eme
k=0 m=0
] V-1 Nl
_ j2m(n—m)k/N
=5 2o e .
m=0 k=0
The integers n and m are from the set {0,..., N — 1} and so the difference n —m

takes values from the set {—N +1,..., N —1}. From Exersise 5.11 the inner sum

satisfies

N-1

5 = Gm—myi/N _ )N n—m =0
e P 0 n—m#0
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5.13.

5.14.
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and so
L N _ L Nl
—deejgﬂnk/N:—Zcmén,m:cn n=0,...,N—1.
N k=0 N m=0

as required.

Plot the sequence cos(n) and determine whether it is bounded or pe-
riodic. Solution: A plot is below.

—n
27Uy,

The sequence is bounded below any number greater than 1 because |cos(z)| < 1
(precisely 1 would also work in this case). The sequence is not periodic. To see
this, suppose the sequence has period T' € Z so that cos(n) = cos(n + kT') for all
k € Z. The period of cos(x) is 27 and cos(z) = cos(y) only if x = y + 27¢ for some
¢ € Z. Thus, we must have n = n 4+ kT + 27/ for some ¢ and each k. But, now
= % which violates the fact that 7 is irrational. Thus, no such period T exists.

Find the discrete time Fourier transform of the sequence a™u,, where

la| < 1 and wu, is the step sequence. Plot the sequence and the mag-

nitude of the discrete time Fourier transform when o = 2.1 1. Solu-

572°10°
tion: The discrete time Fourier transform is
D(a"un) = Z au, e 72

neZ
o

z : ane—j27rnf

n=0

7j277f)n _ 1
1— ae927f

M

(ae

n=0

by the formula for the sum of a geometric progression. The sum converges because
|a] < 1. In the case that « is real the magnitude of the discrete time Fourier
transform is

. B 1
ID(a"un)| = \/1 —2acos(2nf) + a2’

Plots of the sequence and the discrete time Fourier transform for a = %, %,
below.

1 -
10 1S
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n

5.15. Given (5.1.3) show that (5.1.4) holds. Solution: From (5.1.3) we have
that
|2 = / () dt = / B(F) 2 dt = |22

— o0 — o0

Denote by
)= [ a0y v
typically referred to as the inner product of signals z and y. We have
l2ll3 = (z,2) = |&]3 = (&, %).
Replacing z with x 4+ y we have
llz +ylI* = llel® + 20z, y) + Ilyl* = |12 + 911 = 121" + 2, 9) + 91|
And since ||z||3 = ||Z||3 and ||y||3 = ||9]|3 as a result of (5.1.3) we find that
(z,y) = (Z,9)
which is precisely (5.1.4).

xx5.16. Let x and y be square integrable signals. Show that F(xy) = Z*7. So-

lution: Seehttp://math.stackexchange.com/questions/605232/fourier-transform-of-convolution-for-12-fur


http://math.stackexchange.com/questions/605232/fourier-transform-of-convolution-for-l2-functions#
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*x%5.17. Let ¢ be an absolutely summable sequence. Show that

]:Z cpsine(t —n) = Z cnF(sinc(t — n)).

nel nez

x%5.18. Let ¢ be a square summable sequence and let

x(t) = Z e sine(t — n)

nez
be the bandlimited signal with samples z(n) = ¢,. Show that

N
Fx = lim cnF (sinc(t —n))  ae.

N—o0
n=—

Find an example where equality does not hold pointwise.

*x%5.19. Let x be an absolutely integrable signal. Show that the periodic sum-
mation ), x(t +mP) is a locally integrable signal. Show that this
is not necessarily true if x is square integrable, but not absolutely
integrable.



Chapter 6

Discrete time systems

Exercises
6.1. Let x be the signal with Fourier transform
&(t) = 3TL(f) — cos(2m f) (TII(2f — 3) + II(2f + 3)).

Plot the Fourier transform. Find and plot x. Solution: A plot of the
Fourier transform is below.

f

-4 -2 2 4

The time domain signal x can be found by direct application of the inverse Fourier
transform, but a simpler approach uses the time shifting, time scaling properties,
and modulation properties of the Fourier transform (Section 5). Let a be the signal
with Fourier transform a(f) = II(2f). The time scaling property asserts that

a(t) = §sinc (%).

From the modulation property of the Fourier transform
F(cos(3mt)a(t)) = ta(f — 2) + La(f + 2) = 3TI(2f — 3) + $11(2f + 3)
Let b(t) = cos(3nt)a(t) so that b(f) = iI(2f — 3) + L(2f + 3). Now, put

c(t) = T-1b(t) + T1b(t)
b(t+1)+b(t—1)
cos(3mt + 3m)a(t + 1) + cos(3wt — 3m)a(t — 1)

55



56

6.2.
6.3.

6.4.

Testable linear shift-invariant systems (Exercise Solutions)

and because
— cos(3mt) = cos(37t + 3w) = cos(3wt — 3m)

we have
c(t) = — cos(3mt) (a(t + 1) + a(t — 1)).
From the time shift property of the Fourier transform
é(f) = F(T-1b+ T1b)
= "™b(f) + e b(f)
= 2cos(27f)b(f)
= cos(2r f) (II(2f — 3) + II(2f + 3)).

It remains to observe that

and so

sinc(f) — c(t)
smc(f) + cos(3mt) (a(t + 1) + a(t — 1))
nc(f) + 3 cos(3xt) (sinc (£5%) + sinc (151))

This signal is plotted below.

CA«\% Wk ol

Find the Fourier transform of the Blackman window (6.4.1).

Show that the z-transform of the sequence a™u,, is z/(z—a) with region
of convergence ]z\ > ]a\ Solution: The z-transform is

oo —n
—n z
a un a UnZ = E .
nez n=0

This sum is a geometric progression that converges to

1 z

1—az"1? z—a

when |z/a| > 1 and diverges otherwise. The region of convergence is thus |z| > |a].

Show that the z-transform of the sequence [n]iu,, where [n]; = n(n —
1)...(n—k+1) is a falling factorial is

klz

Z([nleun) = v

|z| > 1.
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Solution: Observe that

Z([n]kun) = Z[n]kunz_"

Z

= Z[n]szn

[ee]

Z [TL+ 1]k2—(n+1)
=—1

n

oo

z Z [n+1kz"".

n=-—1

Because [0]x =0 x —1 X -+ X (1 — k) = 0 we have

2Z([n]kun) = Z[n + 12"
n=0
Now

(z = 1D Z([n]run) = Z[n + k" — Z[n]kunz_"

M

([ + 1]k = [nfe)2™"

Il
<}

n

Observe that the falling factorial satisfies

m+1k—[nlk=(n+nn—-1)...(n—k+2)) — (n(n—1)...(n—k+1))
=[nJg—in+1—-n+k—-1)
= [nlk-1k

and so

(z = DZ([nleun) =k > _[nlx12""

n=0

= kZ([n]k_lun).
We obtain the following recursive equation for Z([n]kun),

k
Z([n]kun) = 72([n]k,1un).
z—1
Unravelling this recursion we obtain
k k—1_ k-2
Z([n]kun) = s T d x Z([n]oun).
By definition [n]o = 1 for all n € Z and so Z([nJoun) = Z(un) = z/(z — 1) with
region of convergence |z| > 1. Thus,

klz

Z([rlkun) = =y

|z| > 1
as required.

Find the discrete impulse response of the discrete time system corre-
sponding with the second order difference equation ¢, = d,, — ad,—1 —
bd,—o.
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6.7.

Testable linear shift-invariant systems (Exercise Solutions)

Let d, be a sequence satisfying d, = 2d,,_1 + 27+l and suppose that

do = 0. Show that d,, = 2ntln for n = 1,2,.... Solution: In Section 6.6
we found the discrete time system H with discrete impulse response h,, = 2"u,, is
such that the respone y = Hz is input signal = satisfied the equation

=y —2Tr(y).

Suppose that the sample period is P = 1. The response of H to input signal is
x(t) = 2" () is

y=H(x) =Y hTo()

nez

= Z 2"yt — n)
n=0
=271 [t]u(t)
Let ¢ and d be sequences with elements
cn = x(nP) = 2" 1, dn, = y(nP) = 2"

and observe that dop = 0. By definition of H these sequences satisfy the difference
equation
en =2""u, = dp — 2dn_s

as required.

Let us now consider an alternative method of solution that applyies the z-transform
directly to the difference equation

dn — 2dn71 = 2"+1un,1.

Applying the z-transform to both sides and using the time shift property we have
4

Z(d) — 227" 2(d) = 22" u,) = — 2| > 2.
The z-transform of d is then
4z

The inverse z-transform is found by putting k =1 and @ = 2 in (6.5.2). We obtain

dn, = 2" nu,. Observing that d, = 0 we have a solution.

The Fibonacci sequence 0,1,1,2,3,5,8,13,... satisfies the recursive
equation dy = 0,d; = 1, and d,, = dj,_1+dp_o for n > 2. Find a closed
form expression for the nth Fibonacci number. Solution: Consider the
recursive equation

dnp —dp—1 — dn_2 = 0p.

Applying z-transforms to both sides gives
Z(d)— 2 "Z(d) — 2z 2Z(d) = Z(6) = 1.

The region of convergence is the whole complex plane. We have

22 z
Z(d)ZZQ—z—lzz(zQ—z—1>
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Our formula for the inverse z-transformation (6.5.2) involves z on the numerator
and so applying partial fractions to the term within the brackets will be convenient.
The roots of 22 — z — 1 are

a—li\/5
- 2

_1+V5
T2

. b

and by partial fractions (see Exercise 4.9) we obtain.

z a b

C-a)-0 (@-bz-a) (a-b)-0)

and so
az bz

@-HGE-a @-be-b
Both of these terms are in the form of (6.5.2) when k& = 0 and so

Z(d) =

1 b"* —a”
aun + b u, = Un

1
a—b b—a NG

Observe that dp = 0 and that d; =1 as aresult of b —a = 1.

dn =

Show that a discrete time system is stable if and only if its discrete
impulse response is absolutely summable.

Let f and g be absolutely summable sequences. Show that the discrete
convolution f * g is also absolutely summable.

Let H be a discrete time system with discrete impulse response h. The
set roc, h is defined as those complex numbers z = e*F such that s =
cepdomp h. Show that roc, h is precisely the set of nonzero complex
numbers such that the sequence h,z~" is absolutely summable.

Let f, g, h be complex valued sequences such that

Z Z ’fkhmgnfm—ﬂ < 00.

meZ keZ

Show that the discrete convolution is associative for these sequences.
That is, show that (f xg) *h = f % (g * h). Solution: Let f,g,h be

sequences. We have

(f*9)*P)n =D hu(f * g)n-m

meZL

5 e

meZ kEeZ

= Z hm Z frGn—m—k commutivity fxg=gx* f

meEZ kEZ

= Z Z fkhmgnfmfk

MmELKEZL
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Under the assumptions stated on f, g, h Fubini’s theorem [Rudin, 1986, Theo-
rem 8.8] may be used to justify swapping the order of summation leading to

((f *g) * h’)n = Z Z fehmgn—k—m

kEZ mEL

= Z fk Z hmgnfkfm

kEZ mEeEZL

=Y filg*h)a-s

keZ

= (f*(g*h))n-
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