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Chapter 1

Signals and systems

Exercises

1.1. How many distinct functions from the set X = {Mario,Link} to the
set Y = {Freeman,Ryu,Sephiroth} exist? Write down each function,
that is, write down all functions from the set X → Y .

Solution: Each of the two elements in X can be mapped to one of the three
elements of Y . There are thus 32 = 9 distinct functions in X → Y . They are

f1(x) =

{
Freeman x = Mario

Freeman x = Link
f2(x) =

{
Freeman x = Mario

Ryu x = Link

f3(x) =

{
Ryu x = Mario

Freeman x = Link
f4(x) =

{
Freeman x = Mario

Sephiroth x = Link

f5(x) =

{
Sephiroth x = Mario

Freeman x = Link
f6(x) =

{
Ryu x = Mario

Ryu x = Link

f7(x) =

{
Ryu x = Mario

Sephiroth x = Link
f8(x) =

{
Sephiroth x = Mario

Ryu x = Link

f9(x) =

{
Sephiroth x = Mario

Sephiroth x = Link

1.2. State whether the step function u(t) is bounded, periodic, absolutely
integrable, an energy signal. Solution: The magnitude of u is less than or
equal to one and so the signal is bounded. The signal is not periodic, since for
any hypothesised period T > 0 we have u(T ) = 1 but u(0) = 0. The signal is not
absolutely integrable, nor an energy signal since

‖u‖1 = ‖u‖2 =

∫ ∞
−∞
|u(t)| dt =

∫ ∞
0

dt

is not finite.

1.3. Show that the signal t2 is locally integrable, but that the signal 1
t2

is
not.
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Solution: For any a and b ∫ b

a

t2dt =
b3

3
− a3

3

is finite and so t2 is locally integrable. Put a = 0 and b > 0 and∫ b

0

1

t2
dt = −1

b
+ lim
t→0

1

t
=∞.

The limit above diverges and so 1
t2

is not locally integrable.

1.4. Plot the signal

x(t) =

{
1
t+1 t > 0
1
t−1 t ≤ 0.

State whether it is: bounded, locally integrable, absolutely integrable,
square integrable.

Solution:

t

1

−4 −2

2 4

The signal is bounded since |x(t)| < M for any M > 1. The signal is locally
integrable because it is bounded, i.e., for any finite constants a and b∫ b

a

|x(t)| dt <
∫ b

a

Mdt = (b− a)M <∞.

The signal x is not absolutely integrable since

‖x‖1 =

∫ ∞
−∞
|x(t)| dt

= 2

∫ ∞
0

1

t+ 1
dt

= 2

∫ ∞
1

1

t
dt

= 2 log(1) + lim
t→∞

2 log(t)

and the limit diverges. The signal is square integrable since

‖x‖2 =

∫ ∞
−∞
|x(t)|2dt

= 2

∫ ∞
0

1

(t+ 1)2
dt

= 2

∫ ∞
1

1

t2
dt

= 2− lim
t→∞

2

t
= 2.
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1.5. Plot the signal

x(t) =

{
1√
t

0 < t ≤ 1

0 otherwise.

Show that x is absolutely integrable, but not square integrable.

Solution:

t

1

−3 −1 1 3

The integral

‖x‖1 =

∫ ∞
−∞
|x(t)| dt =

∫ 1

0

t−1/2dt = [2
√
t]10 = 2

and so x is absolutely integrable. The integral

‖x‖2 =

∫ ∞
−∞
|x(t)| dt =

∫ 1

0

t−1dt = [log(t)]10 = log(1)− lim
t→0

log(t) =∞

and so x is not square integrable.

1.6. Compute the energy of the signal e−α
2t2 (Hint: use equation (1.1.4)

on page 5 and a change of variables). Solution: From (1.1.4) we the energy

of e−t
2

is
√
π. Now ∫ ∞

−∞
e−αt

2

dt =
1

α

∫ ∞
−∞

e−τ
2

dτ =

√
π

α

by the change of variables τ = αt.

1.7. Show that the signal t2 is differentiable, but the step function u and
rectangular pulse Π are not. Solution: We have

lim
h→0

(t+ h)2 − t2

h
= lim
h→0

2th+ h2

h
= 2t.

lim
h→0

t2 − (t− h)2

h
= lim
h→0

2th− h2

h
= 2t

and so t2 is continuously differentiable with derivative d
dt
t2 = 2t. At t = 0 the

corresponding limits for the step function are

lim
h→0

u(h)− u(0)

h
= lim
h→0

0

h
= 0

but

lim
h→0

u(0)− u(−h)

h
= lim
h→0

1

h
=∞

so the step function u is not differentiable at t = 0. A similar argument at t = 1
2

or t = − 1
2

shows that Π is not differentiable.

1.8. Plot the signal sin(t) + sin(πt). Show that this signal is not periodic.
Solution: A plot of the signal is below:
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t

sin(t) + sin(πt)

10 20 30

The following argument is due to Qiaochu Yuan. Suppose sin(t)+sin(πt) is periodic.
Then

sin(t) + sin(πt) = sin(t+ T ) + sin(πt+ T )

for some T > 0. Differentiating both sides twice with respect to t gives

sin(t) + π2 sin(πt) = sin(t+ T ) + π2 sin(πt+ T )

Subtracting the first equation from the second gives sin(t) = sin(t + T ) and sub-
stituting this into the second equation gives sin(πt) = sin(πt + T ). The equation
sin(t) = sin(t + T ) implies that T = 2πk for some integer k 6= 0. The equation
sin(πt) = sin(πt + T ) implies that T = 2` for some integer ` 6= 0. We would thus
have 2πk = 2` and so π = `

k
. However, this is impossible because π is irrational.

Thus sin(t) + sin(πt) is not periodic.

1.9. Show that the set of locally integrable signals Lloc, the set of absolutely
integrable signals L1, and the set of square integrable signals L2 are
linear shift-invariant spaces. Solution: Let x, y ∈ L1 and a, b ∈ C. Now

‖ax+ by‖1 =

∫ ∞
−∞
|ax(t) + by(t)| dt

≤
∫ ∞
−∞

a |x(t)|+ b |y(t)| dt triangle inequality

= a‖x‖1 + b‖y‖1 <∞

and so ax+ by ∈ L1 and L1 is a linear space. Also

‖Tτx‖1 =

∫ ∞
−∞
|Tτx(t)| dt

=

∫ ∞
−∞
|x(t− τ)| dt

=

∫ ∞
−∞
|x(k)| dk change variable k = t− τ = ‖x‖1 <∞

and so L1 is a shift-invariant space.

Now

‖ax+ by‖22 =

∫ ∞
−∞
|ax(t) + by(t)|2 dt∫ ∞

−∞
|ax(t)|2 + |by(t)|2 + 2 Re

(
a∗x(t)∗by(t)

)
dt

where ∗ denotes the complex cojugate and Re denotes the real part of a complex
number. Now

Re
(
a∗x(t)∗by(t)

)
≤ |ax(t)| |by(t)| ≤ max(|ax(t)|2 , |by(t)|2) ≤ |ax(t)|2 + |by(t)|2

http://math.stackexchange.com/questions/1079/sum-of-two-periodic-functions
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and so

‖ax+ by‖22 ≤
∫ ∞
−∞

3 |ax(t)|2 + 3 |by(t)|2 dt

=

∫ ∞
−∞

3 |a|2 |x(t)|2 + 3 |b|2 |y(t)|2 dt

= 3 |a|2 ‖x‖22 + 3 |b|2 ‖y‖22 <∞

and L2 is thus a linear space. Also

‖Tτx‖22 =

∫ ∞
−∞
|Tτx(t)|2 dt =

∫ ∞
−∞
|x(t− τ)|2 dt =

∫ ∞
−∞
|x(t)|2 dt = ‖x‖22 <∞

and so L2 is a shift-invariant space.

1.10. Show that the set of periodic signals is a shift-invariant space, but not
a linear space. Solution: Let P be the set of periodic signals. If x ∈ P then
there exists T > 0 such that x(t+ kT ) = x(t) for all t ∈ R and k ∈ Z. The shifted
signal Tτx ∈ P since, for the same T , we have

Tτx(t− kT ) = x(t− τ − kT ) = x(t− τ) = Tτx(t)

for all t ∈ R and all k ∈ Z. Since x ∈ P and τ ∈ R are arbitrary, this holds for all
signals x ∈ P and all shifts τ ∈ reals. Thus, the set of periodic signals is a shift
invariant space.

The set of period signals is not a linear space. Consider the signal x(t) = sin(t)

with period 2π and y(t) = sin(πt) with period 2. Both x and y are in P . However,

exercise 1.8 shows that the sum x(t) + y(t) = sin(t) + sin(πt) is not periodic, that

is, x+ y ∈ P .

1.11. Show that the set of bounded signals is a linear shift-invariant space.
Solution: Let B be the set of bounded signals. If x ∈ B there exists M > 0 such
that |x(t)| < M for all t ∈ R then the shift Tτx(t) satisfies |Tτx(t)| < M for all
t ∈ R. Since x and τ are arbitrary this holds for all x ∈ B and τ ∈ R. Thus B is a
shift invariant space.

Let x ∈ B and y ∈ B be bounded signals. There exists Mx > 0 and My > 0 such
that

|x(t)| < Mx |y(t)| < My for all t ∈ R.

Now for a, b ∈ C the signal ax+ by satisfies

|ax(t) + by(t)| ≤ |a| |x(t)|+ |b| |y(t)| < |a|Mx + |b|My

for all t ∈ R. Thus the linear combination ax+ by is bounded. Since a, b ∈ C and

x, y ∈ B are arbtirary this holds for all a, b ∈ C and all x, y ∈ B and so B is a linear

space.

1.12. LetK > 0 be a fixed real number. Show that the set of signals bounded
below K is a shift invariant space, but not a linear space. Solution:
Let BK be the set of signals bounded less than K, that is,

BK = {x ∈ R→ C ; |x(t)| < Kfor all t ∈ R}.

If x ∈ BK then |Tτx(t)| < K for all t ∈ R and so BK is Tτx ∈ BK . Thus, BK is a
shift invariant space.
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Consider constant signals x(t) = K/2 and y(t) = 2K/3. Both x and y are bounded
less than K and so are in BK However, the signal x+ y is such that

|x(t) + y(t)| = K/2 + 2K/3 = 7K/6 > K

and so x+ y /∈ BK . Thus BK is not a linear space.

1.13. Show that the set of even signals and the set of odd signals are not
shift invariant spaces.

1.14. Show that the integrator Ic with finite c ∈ R is not stable. Solution:
Put M > 1. The shifted step function u(t + a) is locally integrable and bounded
below M , i.e. |u(t + a)| ≤ 1 < M for all t ∈ R. However, the response of the
integrator Ia to u(t+ a) is

Iau(t+ a) =

∫ t

−a
u(τ + a)dτ =

{∫ t
−a dτ = t+ a t ≥ −a

0 t < −a
,

and this is not a bounded signal, that is, for every K we have t+ a > K whenever

t > K − a.

1.15. Show that if the signal x is locally integrable and
∫ 0
−∞ |x(t)| dt < ∞

then I∞x(t) =
∫ t
−∞ x(t)dt <∞ for all t ∈ R. Solution: We have

I∞x(t) ≤ |I∞x(t)| =
∣∣∣∣∫ t

−∞
x(t)dt

∣∣∣∣
≤
∫ t

−∞
|x(t)| dt

=

∫ 0

−∞
|x(t)| dt+

∫ t

0

|x(t)| dt

Now
∫ 0

−∞ |x(t)| dt < ∞ by assumption and
∫ t
0
|x(t)| dt because x is locally inte-

grable. It follows that

1.16. Show that the integrator I∞ is not stable. Solution: By default the

domain for I∞ is the subset of locally integrable signals for which
∫ 0

−∞ |x(t)| dt <∞.

The step function u(t) is in this domain. The argument now follows similiarly to

Exercise 1.16.

1.17. Show that the differentiator system D is not stable. Solution: Put
M > 2. Define the signal

qa(t) =


0 2t < −a
1 + sin

(
πt
a

)
−a < 2t < a

2 2t > a,

and observe that qa is differentiable and bounded below M . The response of the
differentiator D to qa is

Dqa(t) =


0 2t < −a
π
a

cos
(
πt
a

)
−a < 2t < a

1 2t > a.
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The signal pa and the response Dpa are plotted below for a = 1
2
, 1 and 2. The

response Dpa obtains a maximum amplitude of π
a

at t = 0. So D is not stable
because for any K we can choose a < π

K
so that π

a
> K.

t

qa(t)

t

Dqa(t)

Another solution was suggested by Badri Vellambi. Consider the signal x(t) =
sin(t2) plotted in the figure below. This signal is bounded below any M > 1. The
response of the differentiator is Dx(t) = 2t cos(t2) and this is not bounded.

t

sin(t2)

t

2t cos(t2)

1.18. Show that the shifter Tτ is linear and shift-invariant and that the
time-scaler is linear, but not time invariant. Solution: The shifter Tτ is
shift-invariant since

TkTτx = Tkx(t− τ) = x(t− τ − k) = Tτx(t− k) = TτTkx

for all signals x, that is, shifters commute with shifters. The shifter is linear because

Tτ (ax+ by) = ax(t− τ) + by(t− τ) = aTτx+ bTτy.

The time-scaler Hx = x(αt) is linear because

H(ax+ by) = ax(αt) + by(αt) = aHx+ bHy.

The system is not shift-invariant because

HTτx = Hx(t− τ) = x(αt− τ)
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but

TτHx = Tτx(αt) = x(α(t− τ)) = x(αt− ατ),

and these signals are not equal in general. For example consider the rectangular
pulse Π. With time-scaling parameter α = 2 and shift τ = 1,

HT1Π = Π(2t− 1) 6= Π(2t− 2) = T1HΠ.

1.19. Show that the integrator Ic with finite c ∈ R is linear, but not shift-
invariant. Solution: The system is linear because, if x, y ∈ Lloc, then

Ic(ax+ by) =

∫ t

−c
ax(τ) + by(τ)dτ

= a

∫ t

−c
x(τ)dτ + b

∫ t

−c
y(τ)dτ

= aIcx+ bIcy.

The system is not shift-invariant because

TkIcx = Ic(x, t− k) =

∫ t−k

−c
x(τ)dτ

but

IcTkx =

∫ t

−c
x(τ − k)dτ.

We now need only find some signal x ∈ Lloc for which the integrals on the right
hand side of the above equations are not equal. Choose the signal x = 1, i.e., the
signal that is equal to 1 for all time. In this case

TkIc1 =

∫ t−k

−c
dτ = t− k + c 6= t+ c =

∫ t−k

−c−k
dτ = IcTk1 when k 6= 0.

1.20. Show that the integrator I∞ is linear and shift-invariant. Solution: The
system is linear because

I∞(ax+ by) =

∫ t

−∞
ax(τ) + by(τ)dτ

= a

∫ t

−∞
x(τ)dτ + b

∫ t

−∞
y(τ)dτ

= aI∞x+ bI∞y.

The system is shift-invariant because

TkI∞x = I∞x(t− k) =

∫ t−k

−∞
x(τ)dτ,

and

I∞Tkx =

∫ t

−∞
x(τ − k)dτ =

∫ t−k

−∞
x(τ)dτ.
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1.21. State whether the system Hx = x+ 1 is linear, shift-invariant, stable.
Solution: It is not linear because for any signal x and real number a 6= 1,

H(ax) = ax+ 1 6= aHx = a
(
x+ 1

)
= ax+ a.

It is shift-invariant because

HTτx = x(t− τ) + 1 = Tτ (x+ 1) = TτHx.

It is stable because for any signal x with x(t) < M for all t ∈ R,

Hx(t) = x(t) + 1 < M + 1 for all t ∈ R.

1.22. State whether the system Hx = 0 is linear, shift-invariant, stable.
Solution: It is linear because

H(ax+ by) = 0 = aHx+ bHy = 0.

It is shift-invariant because

HTτx(t) = 0 = Hx(t− τ).

It is stable because for any K > 0,

Hx(t) = 0 < K for all t ∈ R and all signals x.

1.23. State whether the system Hx = 1 is linear, shift-invariant, stable.
Solution: It is not linear because for any signal x and real number a 6= 1

H(ax) = 1 6= aHx = a.

It is shift-invariant because

HTτx = 1 = Tτ (1) = TτHx.

It is stable because for any K > 1,

|Hx(t)| = 1 < K for all t ∈ R and all signals x.

1.24. Let x be a signal with period T that is not equal to zero almost every-
where. Show that x is neither absolutely integrable nor square inte-
grable. Solution: This is plain and does not really require further explanation,
but I’ve found some students desire more rigour.

Since x does not equal to zero almost everywhere there exist some finite real num-
bers a and b such that

∫ b
a
|x(t)| dt = C > 0. Let k be an integer such −kT < a and

kT > b so that the integral over 2k + 1 periods∫ kT

−kT
|x(t)| dt ≥

∫ b

a

|x(t)| dt = C > 0.

Now, since x has period T∫ ckT

−ckT
|x(t)| dt = (2c+ 1)

∫ kT

−kT
|x(t)| dt ≥ (2c+ 1)C > 0
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for integers c and since this integral is increasing monotonically with c we have∫ ckT
−ckT |x(t)| dt ≥ b2c+ 1cC for all c ∈ R where b2c+ 1c denotes the largest integer

less than or equal to 2c+ 1. Now,

‖x‖1 =

∫ ∞
−∞
|x(t)| dt = lim

c→∞

∫ ckT

−ckT
|x(t)| dt ≥ lim

c→∞
b2c+ 1cC =∞,

and so, x is not absolutely integrable.



Chapter 2

Systems modelled by
differential equations

Exercises

2.1. Analyse the inverting amplifier circuit in Figure 2.7 to obtain the rela-
tionship between input voltage x and output voltage y given by (2.2.1).
You may wish to use a symbolic programming language (for example
Maxima, Sage, Mathematica, or Maple). Solution: We provide two solu-
tions. Let vi, vo, v1 and v2 be the voltages over the input resistor Ri, the output
resistor Ro, and resistors R1 and R2 respectively. We have 8 unknown voltages
x, y, vi, v1, v2, vo, v+, v−. We will need 7 independent equations to find an equation
relating x and y. All currents are considered to be flowing either downwards or to
the right in the circuit diagram. The first 4 equations are given by voltages over
each resitor,

x = v− + v1

v− = y + v2

v− = v+ + vi

y = vo +A(v+ − v−)

The next two equations apply Kirchoff’s current law to each node betweeen resis-
tors. The currents into the 3 way connection between Ri, R1 and R2 sum to zero,
and so

v1
R1

=
v2
R2

+
vi
Ri

by Ohm’s law. Finally the currents through Ro and R2 are the same, and so

vo
Ro

=
v2
R2

.

The final equation simply observes that the non-inverting terminal v+ is connected
to ground

v+ = 0.

We now have 7 linearly independent equations for the 8 unknowns x, y, vi, v1, v2, vo, v+, v−.
We can use these to find an equation that describes y in terms of x. The Mathe-
matica command

11
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Simplify[Solve[{x == vm + v1,

vm == y + v2,

vm == vp + vi,

y == vo + A*(vp - vm),

v1/r1 == vi/ri + v2/r2,

vo/ro == v2/r2,

vp == 0,

r1 > 0, r2 > 0, ro > 0, ri > 0, A > 0},

{y,vi,vo,v2,v1,vp,vm}, Reals]]

or Maxima command

linsolve([x=vm+v1,

vm=y+v2,

vm=vp+vi,

y=vo+A(vp-vm),

v1/R1=v2/R2+vi/Ri,

v2/R2=vo/Ro,

vp=0],

[y,vp,vm,v1,v2,vo,vi]);

readily obtains

y =
Ri(Ro −AR2)

Ri(R2 +Ro) +R1(R2 +Ri +ARi +Ro)
x.

The second solution is thanks to Badri Vellambi. Badri sets vi = v+ − v− so that
the voltage over the dependent voltage source is Avi. Consider the operational
amplifier circuit with feedback presented in Fig. 2.1. Suppose that the voltage
signal fed into the circuit is x(t) and the voltage signal measured at the output of
the opamp is y(t).

+

�

x(t)

+

�

y(t)

R2

R1

a

b
c

+

�

Figure 2.1: The circuit

To simplify the circuit, one has to use the model for the opamp given in Fig. 2.2
which involves the voltage-controlled voltage-source (VCVS) at the output side
(indicated in green). While replacing the operational amplifier with its model, it
must be noted that the positive terminal of the operational amplifier is connected
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to the ground.

+
�

-

+
⌘

a

b
c

b

Ri

+

�

Vi

a

c

AVi

Ro

+

�

Figure 2.2: The model for an operational amplifier

Upon replacement, we obtain the following equivalent circuit. Again notice that
since the positive terminal of the opamp was connected to the ground, the voltage
output by the VCVS is AVi where Vi is the voltage between the ground and the
top of the resistance Ri, and is measured against the flow of the current i − i1 as
is indicated in the figure.

+

�

x(t)

+

�

y(t)

R1

RiVi
+
� AVi

Ro

+

�

R2

i

i1

i � i1

Figure 2.3: The operational amplifier circuit with the model

Applying Kirchoff’s law to the outer loop indicated in blue in Fig. 2.3, we obtain
the following equation.

x(t) = iR1 + (i− i1)Ri = i(R1 +Ri)− i1R (2.0.1)

Note that by definition, the voltage Vi that controls the VCVS is the voltage across
Ri measured against the indicated direction of the current i− i1, and is given by

Vi = −(i− i1)Ri. (2.0.2)
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Next, writing out the Kirchoff’s law for the inner loop indicated in red, we obtain
the following.

0 = i1R2 + i2R0 +AVi − (i− i1)Ri (2.0.3)

Substituting Vi in the above equation with the RHS of (2.0.2), we obtain the
following.

0 = i1(R2 +R0)−A(i− i1)Ri − (i− i1)Ri (2.0.4)

= −i(1 +A)Ri + i1((1 +A)Ri +R0 +R2) (2.0.5)

Combining (2.0.5) and (2.0.1), we obtain the following linear system of equations
governing the electrical circuit.[

R1 +Ri −Ri
−(1 +A)Ri (1 +A)Ri +R0 +R2

] [
i
i1

]
=

[
x(t)

0

]
(2.0.6)

Solving the above linear system, we identify the current in the different branches
to be [

i
i1

]
= x(t)

[
(1+A)Ri+R0+R2

(1+A)RiR1+R0R1+R2R1+R0Ri+R2Ri
(1+A)Ri

(1+A)RiR1+R0R1+R2R1+R0Ri+R2Ri

]
. (2.0.7)

Lastly, notice that

y(t) = i1R0 +AVi (2.0.8)

= i1R0 − (i− i1)Ri. (2.0.9)

Substituting the solutions for i and i1 in terms of x(t), we obtain the following.

y(t) =

(
RiR0 −R2RiA

(1 +A)RiR1 +R0R1 +R2R1 +R0Ri +R2Ri

)
x(t) (2.0.10)

2.2. Figure 2.5 depicts a mechanical system involving two masses, two
springs, and a damper connected between two walls. Suppose that
the spring K2 is at rest when the mass M2 is at position p(t) = 0.
A force, represented by the signal f , is applied to mass M1. Derive
a differential equation relating the force f and the position p of mass
M2. Determine the force f in the case that the position p(t) = e−t

2

and M1 = M2 = 1
2 and K1 = K2 = B = 1.

Solution: Let p1 be a signal representing the position of mass M1. Suppose that
the spring K1 connecting masses M1 and M2 is a rest when the masses are distance
d1 apart, i.e., p− p1 = d1. The force applied by spring K1 on mass M2 is

f1 = −K1(p− p1 − d1) = −K1(p− g)

where g = p1 + d1. The force applied by spring K1 on mass M1 is then −f1. The
force applied by the damper on M1 is

fd = −BDp1 = −BD(g − d1) = −BDg.

The total force applied to M1 is f + fd − f1 and by Newton’s law

M1D
2p1 = M1D

2g = f + fd − f1 = f −BDg +K1(p− g).

The force applied to M2 by the spring K2 is

f2 = −K2p
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t

−3 −2 −1 1 2 3

2

−2

f(t)
p(t)

p1(t)

M1

BB

f(t)

M2

K1

p(t)

K2

210−1−2−3−4

Figure 2.4: Motion of masses M1 and M2 when postition of masses M1 is p(t) =

e−t
2

.

because the spring is assumed to be at rest when p = 0. The total force applied to
M2 is f1 + f2 and by Newton’s law

M2D
2p = f1 + f2 = −K1(p− g)−K2p.

Rearranging gives
K1g = (K1 +K2)p+M2D

2p

and
−K1(p− g) = M2D

2p+K2p.

Now,
M1D

2g +BDg +M2D
2p+K2p = f

and so

K1K2p+B(K1+K2)Dp+(M1K1+M1K2+K1M2)D2p+BM2D
3p+M1M2D

4p = K1f.

In the case that M1 = K1 = K2 = B = 1 and M2 = 2 we have

p+ 2Dp+ 4D2p+ 2D3p+ 2D4p = f.

and if p(t) = e−t
2

we have

f(t) = (32t4 − 16t3 − 80t2 + 20t+ 17)e−t
2

, g(t) = (8t2 − 2)e−t
2

The solultion is animated in Figure 2.4 under the assumption that d = 2.5.

2.3. Consider the electromechanical system in Figure 2.6. A direct current
motor is connected to a potentiometer in such a way that the voltage
at the output of the potentiometer is equal to the angle of the motor θ.
This voltage is fed back via a unity gain amplifier to the input terminal
of the motor. An input voltage v is applied to the other terminal on
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the motor. Find the differential equation relating v and θ. What is
the input voltage v if the motor angle satisfies θ(t) = π

2 (1 + erf(t))?
Plot θ and v in this case when the motor coefficients satisfy L = 0,
R = 3

4 , and Kb = Kτ = B = J = 1.

Solution: The input voltage to the DC motor is v− θ. From (2.4.1) of the lecture
notes the relationship between the input voltage and motor angle is

v − θ =

(
RB

Kτ
+Kb

)
Dθ +

RJ

Kτ
D2θ

and so

v = θ +

(
RB

Kτ
+Kb

)
Dθ +

RJ

Kτ
D2θ.

If θ(t) = π
2

(1 + erf(t)) then

Dθ(t) =
√
πe−t

2

, D2θ(t) = −2t
√
πe−t

2

and so

v(t) =
π (erf (t) + 1)

2
− 2
√
π t e−t

2

+ 2
√
π e−t

2

The signals v and θ are plotted in the figure below. Observe that as t → ∞ both
θ(t) and v(t) converge to π.



17

M1

BB

f(t)

M2

K1

p(t)

K2

Figure 2.5: Two masses, a spring, and a damper connected between two walls for
Exercise 2.2.

R

v

−

+

θ

motor Jvb

θ

Figure 2.6: Diagram for a rotary direct current (DC) with potentiometer feedback
for Exercise 2.3.

t

π

v(t)

θ(t)

−3 −2 −1 1 2 3

0

1
2π

π

3
2π

θ(t)

motor

Figure 2.7: Voltage and corresponding angle for the dc motor with potentiometer
in Figure 2.6 with constants L = 0, R = 3

4 , andKb = Kτ = B = J = 1.
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Chapter 3

Linear time-invariant
systems

Exercises

3.1. State whether each of the following systems are: causal, linear, shift-
invariant, or stable. Plot the impulse and step response of the systems
whenever they exist. In each case, assume the domain to be the set of
locally integrable signals.

(a) Hx(t) = 3x(t− 1)− 2x(t+ 1)

(b) Hx(t) = sin
(
2πx(t)

)
(c) Hx(t) = t2x(t)

(d) Hx(t) =
∫ 1/2
−1/2 cos(πτ)x(t+ τ)dτ

Solution:

(a) The system can be written as H(x) = 3T1(x) − 2T−1(x) which is a linear
combination of shifters. Since the shifter is linear and shift-invariant H will be also
(Section 3.3 of the notes). Linearity can also be shown directly

H(ax+ by) = 3
(
ax(t− 1) + by(t− 1)

)
− 2
(
ax(t+ 1) + by(t+ 1)

)
= a

(
3x(t− 1)− 2x(t+ 1)

)
+ b
(
3y(t− 1)− 2y(t+ 1)

)
= aHx+ bHy.

Shift-invariance can also be shown directly

TτHx(t) = Hx(t− τ)

= 3x(t− 1− τ)− 2x(t+ 1− τ)

= 3Tτx(t− 1)− 2Tτx(t+ 1)

= HTτx(t).

The system is stable because for every input signal bounded less than M > 0, that
is, for all input signals x such that |x(t)| < M for all t ∈ R, we can choose K = 5M
and

|Hx(t)| = |3x(t−1−τ)−2x(t+1−τ)| ≤ 3 |x(t− 1− τ)|+2 |x(t+ 1− τ)| < 5M = K,

19
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i.e., the output signal is bounded less than K. The system is not causal, because
it depends on the input signal x at time t + 1, i.e., in the ‘future’. The system is
not regular because it is a linear combination of time shifters, and these are not
regular, they don’t formally have an impulse response (Section 3.1 of the notes).
The system does have a step response equal to H(u, t) = 3u(t− 1)− 2u(t+ 1) that
is plotted in the figures below.

(b) The system is causal, in fact, it is memoryless since it only depends on the
input signal x at time t, i.e. the ‘present’ time. The system Hx(t) = sin

(
2πx(t)

)
is shift-invariant because

HTτx(t) = sin
(
2πTτx(t)

)
= sin

(
2πx(t− τ)

)
= TτHx(t).

The system is not linear since H(ax, t) = sin
(
2πax(t)

)
6= a sin

(
2πx(t)

)
in general.

The system is stable, for every input signal x with absolute value bounded below
M we have

|sin(x(t))| =
∣∣∣∣ejx(t) − e−jx(t)2j

∣∣∣∣ ≤
∣∣∣ejx(t)∣∣∣+

∣∣∣e−jx(t)∣∣∣
2

< eM

and so, choosing K = eM we find that |Hx(t)| < K. Because the system is not
linear, it is not regular. It does have a step response equal toHu(t) = sin

(
2πu(t)

)
=

0. Also acceptable is that is doesn’t have a step response because this is a feature
we developed for linear shift-invariant systems.

(c) The system is causal and also memoryless. The system Hx(t) = t2x(t) is linear
because

H(ax+ by) = t2(ax+ by) = at2x+ bt2y = aHx+ bHy.

The system is not shift-invariant because

TτHx(t) = (t− τ)2x(t− τ) 6= HTτx(t) = t2x(t− τ)

in general. The system is not regular because it is not shift-invariant. The system
does not have an impulse response. It does have a step response equal to Hu(t) =
t2u(t). This is plotted in the figures below. Also acceptable is that is doesn’t have
a step response because this is a feature we developed for linear shift-invariant
systems. The system is not stable, for example the input step u is bounded below
M > 1 but the output Hu is not bounded, it grows indefinitely as t→∞.

(d) Put h(t) = cos(πt)Π(t) where h is the rectangle function (see (1.1.2) of the
lecture notes). Now

Hx(t) =

∫ 1/2

−1/2

cos(πτ)x(t+ τ)dτ

=

∫ 1/2

−1/2

cos(−πτ)x(t− τ)dτ (change var τ = −τ)

=

∫ ∞
−∞

cos(−πτ)Π(t)x(t− τ)dτ

=

∫ ∞
−∞

h(τ)x(t− τ)dτ

= (h ∗ x)(t).

Thus, H is the regular system with impulse response h(t) = cos(πt)Π(t). A plot
of h is given below. Since H is regular it is also linear and shift-invariant. The
impulse response h is absolutely integrable with ‖h‖1 = 2

π
and so H is stable. The

system H is not causal because h is nonzero with some t < 0, specifically those
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t ∈ (− 1
2
, 1
2
). The step response is given by applying the integrator system I∞ to h,

that is,

I∞h(t) =

∫ t

−∞
h(τ)dτ =


0 t ≤ − 1

2∫ t
−1/2

cos(πτ)dτ =
(

sin(πt) + 1
)
/π − 1

2
< t ≤ 1

2
2
π

t > 1
2
.

t

Hu(t) = 3u(t− 1)− 2u(t+ 1)

3

1

−1 1

t

Hu(t) = t2u(t)

3

1

−1 1

t

h(t) = cos(πt)Π(t)

1

− 1
2

1
2

t

I∞h(t)

1

− 1
2

1
2

3.2. Show that the system Hx(t) =
∫ 1
−1 sin(πτ)x(t + τ)dτ is linear shift-

invariant and regular. Find and sketch the impulse response and the
step response. Solution: The easy way is to spot the impulse response directly.
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Observe that

H(x)(t) =

∫ 1

−1

sin(πτ)x(t+ τ)dτ

=

∫ ∞
−∞

Π(τ/2) sin(πτ)x(t+ τ)dτ

= −
∫ −∞
∞

Π(−τ/2) sin(−πτ)x(t− τ)dτ (ch. var. τ → −τ)

= −
∫ ∞
−∞

Π(τ/2) sin(πτ)x(t− τ)dτ

= (h ∗ x)(t),

where we put h(t) = −Π(t/2) sin(πt). It follows that h is the impulse response of
H. Since h has an impulse resposne it is regular, and since it is regular its also
linear and time invariant.

The hard way is to first show linear, then show time invariance, and then find this
impulse response as the limit

h = lim
γ→∞

Hpγ .

where the function

pγ(t) =

{
γ, 0 < t ≤ 1

γ

0, otherwise,

is introduced in Section 3.1. We have

H(ax+ by) =

∫ 1

−1

sin(πτ)
(
ax(t+ τ) + by(t+ τ)

)
dτ

= a

∫ 1

−1

sin(πτ)x(t+ τ)dτ + b

∫ 1

−1

sin(πτ)y(t+ τ)
)
dτ

= aH(x) + bH(y),

and so, H is linear. We also have

H
(
Tk(x)

)
=

∫ 1

−1

sin(πτ)Tk(x)(t+ τ)dτ

=

∫ 1

−1

sin(πτ)x(t+ τ − k)dτ

= Tk

(∫ 1

−1

sin(πτ)x(t+ τ)dτ

)
= Tk

(
H(x)

)
,

and so, H is time invariant. Now, if H is regular then its impulse response is
h = limγ→∞H(pγ). Let hγ be the signal

hγ(t) =

∫ 1

−1

sin(πτ)pγ(t+ τ)dτ.

The impulse response exists if hγ converges for each fixed t as γ → ∞. Now,
pγ(t+τ) = γ for t+τ ∈ [0, 1

γ
), i.e. τ ∈ [−t, 1

γ
− t), and zero otherwise. The integral

ranges from −1 to 1 so we are also interested in those τ ∈ [−1, 1]. When t > 1
γ

+ 1

or t < −1 the intervals [−1, 1] and [−t, 1
γ
− t) are disjoint and we obtain h(t) = 0.
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Otherwise, when [−t, 1
γ
− t) ⊂ [−1, 1], i.e, −t > −1 and 1

γ
− t < 1 we obtain

hγ(t) =

∫ 1

−1

sin(πτ)pγ(t+ τ)dτ

= γ

∫ 1/γ−t

−t
sin(πτ)dτ

= −γ
π

(
cos
(
π(1/γ − t)

)
− cos(−πt)

)
= −γ

π

(
cos
(
π(t− 1

γ
)
)
− cos(πt)

)
.

Put ∆ = − 1
γ

and

hγ(t) =
1

π

cos
(
π(t+ δ)

)
− cos(πt)

δ
.

Recognising the limit as γ →∞, or equivalently as ∆→ 0 as

lim
δ→0

cos
(
π(t+ δ)

)
− cos(πt)

δ
=

d

dt
cos(πt)

we immediately have

lim
γ→∞

hγ(t) = h(t) =
1

π

d

dt
cos(πt) = − sin(πt).

on the interval t ∈ [ 1
γ
− 1, 1). It remains to show what happens on the interval

[−1, 1
γ
− 1) that shrinks as γ →∞.

t

1

1−1

The step response can be found directly by inputing the step function u to the
system. That is

Hu(t) =

∫ 1

−1

sin(πτ)u(t+ τ)dτ.

To find an explicit expression for this integral 3 cases must be considered separately.
Observe that u(t+ τ) is nozero only when τ > −t. If t < −1 then u(t+ τ) = 0 for
all τ ∈ [−1, 1] and so

Hu(t) =

∫ 1

−1

sin(πτ)u(t+ τ)dτ = 0 t < −1.
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If t > 1 then u(t+ τ) = 1 for all τ ∈ [−1, 1] and so

Hu(t) =

∫ 1

−1

sin(πτ)dτ = −cos(πτ)

π

∣∣1
−1

=
− cos(π) + cos(−π)

π
= 0 t > 1.

Finally, if −1 ≤ t ≤ 1 then u(t+ τ) is 1 for τ ∈ [−t, 1] and 0 for τ ∈ [−1,−t) and so

Hu(t) =

∫ 1

−t
sin(πτ)dτ

= −cos(πτ)

π

∣∣1
−t

=
− cos(π) + cos(−πt)

π
=

cos(πt) + 1

π
1 ≤ t ≤ 1.

An alternative way to find the step response is to apply the integrator system I∞
to the impulse response h(t) = −Π(t/2) sin(πt) we derived earlier. We have

Hu(t) = I∞h(t) = −
∫ t

−∞
Π(τ/2) sin(πτ)dτ.

Again the integral needs to be split into cases. When t < −1 the Π(τ/2) occuring
inside the integral is always zero and so H(u, t) = 0 for t < −1. When t > 1

Hu(t) = −
∫ 1

−1

sin(πτ)dτ = 0.

Finally, when −1 ≤ t ≤ 1 we have

Hu(t) = −
∫ t

−1

sin(πτ)dτ =
cos(πτ)

π

∣∣t
−1

=
cos(πt) + 1

π
.

Observe that this is the same as previously. The step response is plotted below.

t

2
π

1−1

3.3. Let h be a locally integrable signal. Show that the set domh defined
in Section 3.1 on page 33 is a linear shift-invariant space. Solution:
The set domh contains those signals x for which∫ ∞

−∞
|h(τ)x(t− τ)| dτ <∞ for all t ∈ R.

Suppose that x, y ∈ domh and a, b ∈ C. Then∫ ∞
−∞
|h(τ)(ax(t− τ) + by(t− τ)| dτ

≤ |a|
∫ ∞
−∞
|h(τ)x(t− τ)| dτ + |b|

∫ ∞
−∞
|h(τ)y(t− τ)| dτ.
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Both integrals on the right hand side are finite for all t ∈ R becase x and y are in
domh. Thus the right hand side is finite for all t ∈ R and so the linear combination
ax+ by ∈ domh. It follows that domh is a linear space.

If x ∈ domh then∫ ∞
−∞
|h(τ)Tkx(t− τ)| dτ =

∫ ∞
−∞
|h(τ)x(t− τ − k)| dτ <∞

for all t ∈ R and so the shifted signal Tkx ∈ domh. It follows that domh is a

shift-invariant space.

3.4. Show that domu where u is the step function is the subset of locally

integrable signals such that
∫ 0
−∞ |x(t)| dt < ∞. Solution: By definition

domu is the set of signals x such that∫ ∞
−∞
|u(τ)x(t− τ)| dτ <∞ for all t ∈ R.

Denote by B the subset of locally integrable signals such that
∫ 0

−∞ |x(t)| dt < ∞.
We first show that domu is a subset of B, that is domu ⊆ B. We do so by
contraposition, that is, we show that if x /∈ B then x /∈ domu. Suppose that x is
not locally integrable, that is, suppose there exists a, b ∈ R such that

∫ b
a
|x(t)| dτ is

not finite. Then x /∈ B. Now∫ ∞
−∞
|u(τ)x(t− τ)| dτ =

∫ ∞
−∞
|u(t− k)x(k)| dk =

∫ t

−∞
|x(k)| dk

the second equation following from the change of variable k = t − τ . Choosing
k > b we have ∫ ∞

−∞
|u(τ)x(t− τ)| dτ =

∫ t

−∞
|x(τ)| dτ ≥

∫ b

a

|x(τ)| dτ

which, by assumption, is not finite, and so x /∈ domu.

We now show that B ⊆ domu. Suppose that x ∈ domu, that is, suppose that∫ ∞
−∞
|u(τ)x(t− τ)| dτ <∞

for all t. Then∫ ∞
−∞
|u(τ)x(t− τ)| dτ =

∫ t

−∞
|x(τ)| dτ =

∫ a

−∞
|x(τ)| dτ +

∫ t

a

|x(τ)| dτ

for all a, t ∈ R and so, the two integrals on the right are finite for all a, t ∈ R. In
particular ∫ t

a

|x(τ)| dτ <∞

for all a, t ∈ R and so x is locally integrabls and putting a = 0 we have that∫ 0

−∞
|x(τ)| dτ <∞.

It follows that x ∈ B. We have now show that domu ⊆ B and that B ⊆ domu

and so it must be that B = domu.
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3.5. Show that a regular system is stable if and only if its impulse response
is absolutely integrable. Solution: Let H be a regular system and h its
impulse response. By default the domain of H is assumed to be domh, that is
H ∈ domh → C. If h is absolutely integrable then for all signals x ∈ domh such
that |x(t)| < M for all t,

|Hx(t)| = |(h ∗ x)(t)|

=

∣∣∣∣∫ ∞
−∞

h(τ)x(t− τ)dτ

∣∣∣∣
≤
∫ ∞
−∞
|h(τ)x(t− τ)|dτ

<

∫ ∞
−∞

M |h(τ)|dτ

= M‖h‖1

for all t, and so Hx(t) is bounded.

On the other hand if h is not absolutely integrable then consider the bounded signal

s(t) =

{
1 h(−t) > 0,

−1 h(−t) ≤ 0.

Observe that s is not in the domain domh because∫ ∞
−∞
|h(τ)s(−τ)| dτ =

∫ ∞
−∞
|h(τ)| dτ =∞

However, for all κ > 0 the signal

rκ(t) = Π
(
t
2κ

)
s(t) =

{
s(t) |t| < κ

0 otherwise

is in domh since ∫ ∞
−∞
|h(τ)rκ(−τ)| dτ =

∫ κ

−κ
|h(τ)| dτ <∞

because h is locally integrable (the impulse response is always locally integrable by
assumption. See Section 3.1). Put M > 1 and suppose that H was stable. Then
there exists K > 0 such that |Hx(t)| < K for all t ∈ R and all x ∈ domh bounded
less that M . Observe that rκ is bounded less than M , that is, |rκ(t)| ≤ 1 < M for
all κ ∈ R and all t ∈ R. The response of H to rκ at time zero is

Hrκ(0) =

∫ ∞
−∞

h(τ)rκ(−τ)dτ =

∫ κ

−κ
|h(τ)| dτ

and because h is not absolutely integrable the integral on the right diverges as κ
get large. Thus, we can choose κ large enough that

|Hrκ(0)| = Hrκ(0) =

∫ κ

−κ
|h(τ)| dτ > K

violating our assumption that H was stable. Thus, H is not stable.

3.6. Define signals x(t) = u(t), y(t) = u(−t), and z(t) = Π(t) − Π(t − 1)
where u is the step function and Π is the rectangular pulse. Plot x, y,
and z and show that the associative property of convolution does not
hold for these signals. That is, show that x ∗ (y ∗ z) 6= (x ∗ y) ∗ z.
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3.7. Show that
∑L

`=1 e
β` = eβ(L+1)−eβ

eβ−1 (Hint: sum a geometric progression).

Solution: Put r = eβ and put

SL =

L∑
`=1

eβ` =

L∑
`=1

r`.

This is the sum of the first L terms of a geometric progression. We have

rSL − SL = rL+1 − r

and so

SL =
rL+1 − r
r − 1

=
eβ(L+1) − eβ

eβ − 1
as required.

3.8. Show that

2j

L

L∑
`=1

sin(γ`− θ)e−jγ` = α+ α∗C

where α = e−jθ and C = e−jγ(L+1) sin(γL)
L sin(γ) . (Hint: solve Exercise 3.7

first and then use the formula 2j sin(x) = ejx − e−jx). Solution: We
have

2j sin(γ`− θ) = ej(γ`−θ) − e−j(γ`−θ)

and so the sum becomes

1

L

L∑
`=1

(ej(γ`−θ) − e−j(γ`−θ))e−jγ` =
1

L

L∑
`=1

e−jθ − 1

L

L∑
`=1

e−2jγejθ

= α− α∗

L

L∑
`=1

e−2jγ .

The sum is a geometric progression and, using the answer to Exercise 3.7, we have

L∑
`=1

e−2jγ =
e−2jγ(L+1) − e−2jγ)

e−2jγ − 1
.

The denominator satisfies

e−2jγ − 1 = e−jγ(e−jγ − ejγ) = −2je−jγ sin(γ).

The numerator satisfies

e−2jγ(L+1) − e−2jγ = e−2jγ(e−2jγL − 1)

= e−2jγe−jγL(e−jγL − ejγL)

= −2je−jγ(L+2) sin(γL).

Thus
L∑
`=1

e−2jγ =
−2je−jγ(L+2) sin(γL)

−2je−jγ sin(γ)
=
e−jγ(L+1) sin(γL)

sin(γ)
= LC

where C is defined in the question statement. Now

2j

L

L∑
`=1

sin(γ`− θ)e−jγ` = α− α∗

L
LC = α− α∗C

as required.
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∗3.9. Show that the convolution of two absolutely integrable signals is ab-
solutely integrable. Solution: Let x and y be absolutely integrable. We want
to show that the convolution

(x ∗ y)(t) =

∫ ∞
−∞

x(τ)y(t− τ)dτ

is absolutely integrable. Write

‖x ∗ y‖1 =

∫ ∞
−∞
|(x ∗ y)(t)| dt

=

∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

x(τ)y(t− τ)dτ

∣∣∣∣ dt
≤
∫ ∞
−∞

∫ ∞
−∞
|x(τ)y(t− τ)| dτdt

=

∫ ∞
−∞

∫ ∞
−∞
|x(τ)| |y(t− τ)| dtdτ (change order of integration, Tonelli’s theorem)

=

∫ ∞
−∞

∫ ∞
−∞
|y(t− τ)| dt |x(τ)| dτ

= ‖y‖1
∫ ∞
−∞
|x(τ)| dτ

= ‖y‖1‖x‖1

which is finite by our assumption that x and y are absolutely integrable. This result

also follows as a special case of Young’s Theorem [Rudin, 1986].



Chapter 4

The Laplace transform

Exercises

4.1. Sketch the signal

x(t) = e−2tu(t) + etu(−t)
where u(t) is the step function. Find the Laplace transform of x(t)
and the corresponding region of convergence. Sketch the region of
convergence on the complex plane. Solution:

t

e−2tu(t) + etu(−t)

The Laplace transform of e−2tu(t) is

L(e−2tu(t), s) =

∫ ∞
−∞

e−2tu(t)e−stdt

=

∫ ∞
0

e−(s+2)tdt

= −e
−(s+2)t

s+ 2
|∞0

=
1

s+ 2
, Re(s) > −2

and the Laplace transform of etu(−t) is

L(etu(−t), s) =

∫ 0

−∞
e−(s−1)tdt

= −e
−(s−1)t

s− 1
|0−∞

= − 1

s− 1
, Re(s) < 1.

29
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Thus, the Laplace transform of e−2tu(t) + etu(−t) is

L(e−2tu(t) + etu(−t), s) =
1

s+ 2
− 1

s− 1
, −2 < Re(s) < 1

and the region of convergence is the subset of the complex plane satisfying −2 <
Re(s) < 1. The unshaded region in the plot below depicts the ROC.

−2 1
Re

Im

4.2. Find the Laplace transform of the signal tnu(t) where n ≥ 0 is an
integer. Solution: We have

L
(
tnu(t)

)
=

∫ ∞
−∞

tnu(t)e−stdt =

∫ ∞
0

tne−stdt.

Integration by parts gives the indefinite integral∫
tne−stdt =

tn

s
e−st +

n

s

∫
tn−1e−stdt.

So, when Re(s) > 0,

L
(
tnu(t)

)
= lim
t→0

tn

s
e−st − lim

t→∞

tn

s
e−st +

n

s

∫ ∞
0

tn−1e−stdt

=
n

s
L
(
tn−1u(t)

)
,

since both limits converge to zero. Unravelling the above recursive equation gives

L
(
tnu(t)

)
=
n

s
× n− 1

s
× · · · × 1

s
× L

(
u(t)

)
=

n!

sn+1
, Re(s) > 0,

since L
(
u(t)

)
= 1

s
when Re(s) > 0.

4.3. Let n ≥ 0 be an integer. Show that the Laplace transform of the signal
(−t)nu(−t) is the same as the Laplace transform of the signal tnu(t),
but with a different region of convergence. Solution: We have

L
(
(−t)nu(−t)

)
=

∫ ∞
−∞

(−t)nu(−t)e−stdt

=

∫ ∞
−∞

tnu(t)estdt (change variable t = -t)

= L(tnu(t),−s) Re(s) < 0

=
n!

sn+1
Re(s) < 0.
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4.4. Show that equation (4.3.5) on page 57 holds when the system H the
time shifter Tτ . Solution: Put y = Tτx = x(t− τ). Taking Laplace transforms

Ly = LTτx

=

∫ ∞
−∞

Tτx(t)e−stdt

=

∫ ∞
−∞

x(t− τ)e−stdt

=

∫ ∞
−∞

x(κ)e−s(κ+τ)dκ (ch. vars. κ = t− τ)

= e−sτ
∫ ∞
−∞

x(κ)e−sκdκ

= e−sτLx s ∈ roc(x)

= λTτLx s ∈ roc(x)

as required. Observe that the region of convergence of Ly is the same as that of

Lx.

4.5. Show that equation (4.3.5) on page 57 holds when the system H is the
differentiator under the added assumption that

lim
t→∞

x(t)e−st = lim
t→−∞

x(t)e−st = 0 when s ∈ roc(x).

Solution:

Put y = Dx. Taking Laplace transforms

Ly = LDx =

∫ ∞
−∞

Dx(t)e−stdt.

Integrating by parts

Ly =
[
x(t)e−st

]∞
−∞ + s

∫ ∞
−∞

x(t)e−stdt =
[
x(t)e−st

]∞
−∞ + sLx.

and, by assumption,[
x(t)e−st

]∞
−∞ = lim

t→∞
x(t)e−st − lim

t→−∞
x(t)e−st = 0

whenever s is in the region of convergence of x. In this case Ly = sLx as required.

The result follows for the kth differentiator Dk under the assumption that

lim
t→∞

Dcx(t)e−st = 0 and lim
t→−∞

Dcx(t)e−st = 0

for all c = 1, 2, . . . , k − 1 because

LDkx = LDDk−1x = sLDk−1x

and unravelling this recursion gives

LDky = s× s× · · · × s︸ ︷︷ ︸
k − 1 times

×LDy = skLy = λDkLy.
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4.6. Let x be the signal with Laplace transform

L(x, s) =
1

(s− 1)3
Re(s) > 1.

Define the signal y by

y(t) = etx(2t+ 1).

Find the Laplace transform and region of convergence of y. Sketch the
region of convergence of y. Solution: The easiest approach is the write

L(y, s) =

∫ ∞
−∞

y(t)e−stdt

=

∫ ∞
−∞

etx(2t+ 1)e−stdt

=

∫ ∞
−∞

x(2t+ 1)e−(s−1)tdt

= 1
2

∫ ∞
−∞

x(k)e−(s−1)(k−1)/2dk (c.v. k = 2t+ 1)

= 1
2
e(s−1)/2

∫ ∞
−∞

x(k)e−k(s−1)/2dk

The integral is the Laplace transform of x evaluated as s−1
2

and so

L(y, s) = 1
2
e(s−1)/2L

(
x, s−1

2

)
=

4e(s−1)/2

(s− 3)3
Re
(
s−1
2

)
> 1.

The region of convergence of y is those complex numbers with real part greater
than 3. A plot of the region of convergence is below.

3

Re

Im

A direct approach is to apply the inverse Laplace transform (by formula (4.2.3)) to
find

x(t) = 1
2
t2etu(t)

where u(t) is the step function. Now

y(t) = etx(2t+ 1) = 1
2
(2t+ 1)2e3t+1u(2t+ 1).

One can now apply the Laplace transform formula to this expression for y. After

a lengthy integration by parts, the same answer is obtained.
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4.7. What is the transfer function of the integrator system I∞? What is
the domain of this transfer function? Solution: We can do this in two ways.
First by obtaining the transfer function directly and second by using the fact that
the impulse response of I∞ is the step signal u (Section 3.1).

Recall from Section 1.4 that by default the domain of I∞ is the set of locally
integrable signals x for which the integral

∫ 0

−∞ |x(t)| dt. This set of precisley domu

(see also Exercise 3.4). Observe first that est ∈ domu if and only if the real part
of s is nonegative. Thus, the domain of the transfer function λI∞ is the set of
complex numbers s with Re s > 0. The response of I∞ to est is

I∞(est) =

∫ t

−∞
esτdτ =

est

s
− lim
t→−∞

est

s

and the limit exists only when Re s > 0 and in this case it is zero. So

I∞(est) =
1

s
est Re s > 0

and λI∞(s) = 1
s
.

The second approach is to use that λH = Lu. We have, from Section 4.1, that that
the Laplace transform of the signal eαtu(t) takes the form

L(eαtu(t)) =
1

s− α Re s > Reα.

Setting α = 0 we find that

Lu(s) = λI∞(s) =
1

s
Re s > 0

as before.

4.8. By partial fractions, or otherwise, assert that

as

s+ b
= a− ab

s+ b

Solution: Adding and subtracting ab from the numerator

as+ ab− ab
s+ b

=
a(s+ b)− ab

s+ b
=
a(s+ b)

s+ b
− ab

s+ b
= a− ab

s+ b

4.9. By partial fractions, or otherwise, assert that

s+ c

(s+ a)(s+ b)
=

a− c
(a− b)(s+ a)

+
c− b

(a− b)(s+ b)

Solution: Hypothesise the solution

s+ c

(s+ a)(s+ b)
=

A

s+ a
+

B

s+ b
.

Multiplying both sides by (s+ a)(s+ b),

s+ c = A(s+ b) +B(s+ a).

Putting s = −a gives c− a = A(b− a), and pitting s = −b gives c− b = B(a− b),
and so,

s+ c

(s+ a)(s+ b)
=

a− c
(a− b)(s+ a)

+
c− b

(a− b)(s+ b)
.
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∗4.10. By partial fractions, or otherwise, assert that

1

s(s− a)(s− b)(s− b∗) =
A0

s
+

A1

s− a +
A2

s− b +
A∗2

s− b∗

where a ∈ R and b ∈ C and Im(b) 6= 0 and

A0 = − 1

a|b|2 , A1 =
1

a|a− b|2 , A2 =
1

b(b− a)(b− b∗) .

You might wish to check your solution using a symbolic programming
language (for example Sage, Mathematica, or Maple). Solution: The
mathemtica command

Apart[1/s/(s - a)/(s - b)/(s - c), s]

or the maxima command

partfrac(1/s/(s - a)/(s - b)/(s - c), s)

returns the equation

1

s(s− a)(s− b)(s− c) =
A0

s
+

A1

s− a +
A2

s− b +
A3

s− c

where

A0 = − 1

abc
, A1 =

1

a(a− b)(a− c) ,

A2 =
1

b(b− a)(b− c) , A3 =
1

c(c− a)(c− b) .

Setting c = b∗ gives

A0 = − 1

a|b|2 , A1 =
1

a|a− b|2 ,

A2 =
1

b(b− a)(b− b∗) , A3 =
1

b∗(b∗ − a)(b∗ − b) = A∗2

as required.

4.11. Let y be a signal with Laplace transform taking the form

Ly(s) =
2s+ 1

s2 + s− 2

By partial fractions, or otherwise, find all possible signals y with this
Laplace transform and the corresponding region of convergence. Solu-
tion: Factorise the polynomial on the denominator

2s+ 1

(s+ 2)(s− 1)
.

Adding and subtracting s− 1 on the numerator

2s+ 1 + (s− 1)− (s− 1)

(s+ 2)(s− 1)
=

s− 1

(s− 1)(s+ 2)
+

s+ 2

(s− 1)(s+ 2)

=
1

s+ 2
+

1

s− 1
.
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There are two time domain signals with Laplace transform 1
s+2

,

e−2tu(t), Re(s) > −2 and − e−2tu(−t), Re(s) < −2,

and two time domain signals with Laplace transform − 1
s−1

,

etu(t), Re(s) > 1 and − etu(−t), Re(s) < 1.

There are three possible signals with nonempty regions of convergence

y(t) = e−2tu(t)− etu(−t) − 2 < Re(s) < 1,

y(t) = e−2tu(t) + etu(t) 1 < Re(s),

y(t) = −e−2tu(−t)− etu(−t) Re(s) < −2.

4.12. Let x be a signal. Show that the time scaled signal x(αt) with α 6= 0
satisfies equation (4.2.4) on page 55. Solution: First consider when α = −1
so that x(−t) is the reflection of the signal x in time (see Section 1.4). We have

L
(
x(−t), s

)
=

∫ ∞
−∞

x(−t)e−stdt

= −
∫ −∞
∞

x(τ)esτdτ (change variable τ = −t)

=

∫ ∞
−∞

x(τ)esτdτ = L(x,−s) Re(−s) ∈ R.

This special case is called the time reversal property. Now, when α > 0,

L
(
x(αt), s

)
=

∫ ∞
−∞

x(αt)e−stdt

=
1

α

∫ ∞
∞

x(τ)e−sτ/αdτ (change variable τ = αt)

=
1

α
L(x, s/α) Re(s/α) ∈ R.

Combining this with the time reversal property we obtain

L
(
x(αt), s

)
=

1

|α|L(x, s/α), a 6= 0,Re(s/α) ∈ R.

as required.

4.13. Consider the active electrical circuit from Figure 2.8 described by the
differential equation from (2.2.3). Derive the transfer function of this
system. Find an explicit system H that maps the input voltage x
to the output voltage y. State whether this system is stable and/or
regular. Solution: The differential equation modelling the circuit is

− x

R1
− C1Dx =

y

R2
+ C2Dy,

and taking Laplace transforms on both sides of this equation

Ly = −
1
R1

+ C1s
1
R2

+ C2s
L(x) = −α+ γs

β + s
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where α = 1
R1C2

, β = 1
R2C2

, and γ = C1
C2

. The transfer function of the system
mapping x to y is correspondingly

λ(H) = −α+ γs

β + s
= − α

β + s
− γs

β + s

Applying partial fraction (as in Exercise 4.8) to the second term gives

λ(H) = −α+ γβ

β + s
− γ

The first term −α+γβ
β+s

corresponds with a regular system, say H2, having impulse
response

h2 = −(α+ γβ)u(t)e−βt

by using the Laplace transform pair from (4.2.3) with the integer n = 0. The term
−γ correspond with the system H1 = γT0, i.e, the identity system multiplied by
−γ. The system H that describes the mapping between input voltage x and output
voltage y is thus

H(x) = H1(x) +H2(x) = −γx+ h2 ∗ x.

The system is not regular because the H1 is not regular. The system is stable

because H1 is stable and H2 is stable because the impulse response h2 is absolutely

integrable since β = 1
R2C2

> 0. Equivalently the system is not regular because

the transfer function does not have more poles than zero, and the system is stable

because the transfer function has at least as many poles as zeros (equal in this

case), and because all the poles lie strictly in the left half plane.

∗4.14. Given the mass spring damper system described by (4.5.1), find the
position signal p given that the force signal

f(t) = Π
(
t− 1

2

)
=

{
1 0 < t ≤ 1

0 otherwise

is the rectangular function time shifted by 1
2 . Consider three cases:

(a) M = 1, K = π2

4 and B = π
3 ,

(b) M = 1, K = π2

4 and B = π,

(c) M = 1, K = π2

4 and B = 2π,

Plot the solution in each case, and comment on whether the system
is underdamped, overdamped, or critically damped. Solution: Observe
that the input force signal can be written as the sum of the step function u and its
negated time-shift, that is,

f(t) = u(t)− u(t− 1) = u(t)− T1u(t)

and so, the response of the linear, time invariant system H modelling the mass
spring damper to input force signal f is

Hf = H(u− T1u) = Hu− T1Hu,

and so, Hf(t) = Hu(t) − Hu(t − 1), where Hu is the step response of the sys-

tem. The step responses are described in Section 4.5. As described in Section 4.5,

the system is underdamped when B = π
3

, critically damped when B = π and

overdamped when B = 2π.
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4.15. Plot the signal x(t) = sin(tet)u(t) and find and plot its derivative
Dx. Show that the region of convergence of x contains those complex
numbers s with Re s > 0 and that the region of convergence of Dx
contains those with Re s > 1. Solution: By application of the chain rule the
derivative of sin(tet) is (t+ 1)et cos(et)u(t). These signals are plotted below.

t

sin(tet)u(t)

1

−1

t

(t+ 1)et cos(tet)u(t)

30

−30

We have |x(t)| =
∣∣sin(tet)u(t)

∣∣ < 1 for all t ∈ R and so

L
(
x, s
)

=

∫ ∞
−∞

sin(tet)u(t)e−stdt

=

∫ ∞
0

sin(tet)e−stdt

≤=

∫ ∞
0

∣∣sin(tet)e−st
∣∣ dt

≤
∫ ∞
0

e−Re(s)tdt

which is finite for all s with Re(s) > 0 as required. For the derivative we have

LDx(s) =

∫ ∞
−∞

(t+ 1)et cos(tet)u(t)e−stdt

=

∫ ∞
0

(t+ 1) cos(tet)e−(s−1)tdt

≤
∫ ∞
0

∣∣∣(t+ 1) cos(tet)e−(s−1)t
∣∣∣ dt

≤
∫ ∞
0

(t+ 1)e−(Re(s)−1)tdt

which is finite for all s with Re(s) > 1 as required.

4.16. Show that the limit as |s| → 0 of

es/2 − e−s/2
s



38 Testable linear shift-invariant systems (Exercise Solutions)

is equal to 1.

∗4.17. Consider the mechanical system in Figure 2.5 from Exercise 2.2. After
solving Exercise 2.2, find the transfer function of a linear shift-invariant
H system mapping f to p. Now suppose that M1 = K1 = K2 = B = 1
and M2 = 2. Find the poles and zeros of H and draw a pole zero plot.
Determine whether H is stable and/or regular. Find and plot the
impulse response and the step response of H if they exist.

Solution: Let H be a linear time invariant system mapping f to p. The transfer
function of H is

λH(s) =
1

1 + 2s+ 4s2 + 2s3 + 2s4
.

Factorising the polynomial on the denominator we obtain

λH(s) =
1

(s− β0)(s− β1)(s− β2)(s− β3)

where the roots are

β0 = β∗1 = −0.193622 + 1.17046j, β2 = β∗3 = −0.306378 + 0.511255j

The system has no zeros and four poles. A pole zero plot is shown below.

β0

β1

β2

β3

Re
Im

1

−1

− 1
10

− 2
10

− 3
10

Because there are atleast as many poles as zeros and the real part of all the poles is
negative the system is stable. Because there are more poles than zeros the system
is regular and has an impulse response. Applying partial fractions gives

λH(s) =
A0

s− β0
+

A1

s− β1
+

A2

s− β2
+

A3

s− β3

where

A0 = A∗1 = −0.0887401 + 0.368434j, A2 = A∗3 = 0.0887401 + 0.863059j.

The impulse response is

h(t) = u(t)
(
A0e

β0t +A1e
β1t +A2e

β2t +A3e
β3t
)
.

The step response is

Hu = I∞h = u(t)
(
C0e

β0t + C1e
β1t + C2e

β2t + C3e
β3t −B

)
where Cn = An/βn, n = 0, 1, 2, 3 and B = C0 +C1 +C2 +C3. These responses are
plotted below.
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t

h

5 10 15

1

t

H(u)

5 10 15

1

2

4.18. Consider the electromechanical system in Figure 2.6 from Exercise 2.3.
After solving Exercise 2.3, find the transfer function of a linear shift-
invariant system that maps the input voltage v to the motor angle
θ. Under the assumption that the motor coefficients satisfy L = 0
and Kb = Kτ = B = R = J = 1 draw a pole zero plot and deter-
mine whether this system is stable and/or regular. Find and plot the
impulse response and step response if they exist.

Solution: Exercise 2.3 finds the following differential equation relating v and θ,

v = θ +

(
RB

Kτ
+Kb

)
Dθ +

RJ

Kτ
D2θ.

The transfer function is

1

1 +
(
RB
Kτ

+Kb

)
s+ RJ

Kτ
s2
.

Under the assumption that Kb = Kτ = B = R = J = 1 the transfer function is

1

1 + 2s+ s2
=

1

(1 + s)2
.

There are two equal real poles at s = −1 and no zeros. A pole zero plot is below.
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−1

Re

Im

The system is regular because there are more poles than zeros. The system is stable
because there are at least as many poles as zeros and all poles have negative real
part. The impulse response is found to be h(t)u(t)te−t by application of the inverse
Laplace transform. The step response is given by application of the integrator
system

Hu = I∞(h) =

∫ t

−∞
u(τ)te−τdτ =

∫ t

0

te−τdτ = u(t)
(
1− e−t(t+ 1)

)
.

These responses are plotted below

t

u(t)te−t

0.3

1 7

t

u(t)
(
1− e−t(t+ 1)

)
1

1 7

∗∗4.19. Let x be a signal. Show that the complex exponential signal est ∈
domx if and only if the signal x(t)e−st is absolutely integrable. Solu-
tion: The set domx contains all those signals such that∫ ∞

−∞
|x(τ)x(t− τ | dτ <∞ for all t ∈ R.

If est ∈ domx then∫ ∞
−∞

∣∣∣x(τ)es(t−τ)
∣∣∣ dτ =

∣∣est∣∣ ∫ ∞
−∞

∣∣x(τ)e−sτ
∣∣ dτ <∞ for all t ∈ R.

Setting t = 0 we find that ∫ ∞
−∞

∣∣x(τ)e−sτ
∣∣ dτ <∞
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and so x(t)e−st is absolutely integrable. On the other hand, if x(t)e−st is absolutely
integrable then∫ ∞

−∞

∣∣∣x(τ)es(t−τ)
∣∣∣ dτ =

∣∣est∣∣ ‖x(t)e−st‖1 <∞ for all t ∈ R.

since est is finite for all t, and so, est ∈ domx.

∗∗4.20. Show that the complex exponential signal est ∈ dom f g if and only if
s ∈ roc f ∩ roc g, that is, cep dom f g = roc f ∩ roc g.
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Chapter 5

The Fourier transform

Exercises

5.1. Plot the signal e−α|t| where α > 0 and find its Fourier transform.
Solution:

F(e−α|t|) =

∫ ∞
−∞

e−α|t|e−j2πftdt

=

∫ ∞
0

e−αte−j2πftdt+

∫ 0

−∞
eαte−j2πftdt

=

∫ ∞
0

e−(j2πf+α)tdt+

∫ 0

−∞
e−(j2πf−α)tdt

=

[
e−(j2πf+α)t

−(j2πf + α)

]∞
0

+

[
e−(j2πf−α)t

−(j2πf − α)

]0
−∞

.

Because α > 0, the limits as t→∞ and t→ −∞ go to zero leaving

1

j2πf + α
− 1

j2πf − α =
j2πf + α− j2πf + α

(j2πf + α)(j2πf − α)
=

2α

4π2f2 + α2
.

5.2. Plot the signal

4(t) =


t+ 1 −1 < t < 0

1− t 0 ≤ t < 1

0 otherwise

and find its Fourier transform. Solution: This signal is often called the
triangle function or triangle pulse.

t

1−1

1

43
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You can do this directly using the formula for the Fourier transform and integrat-
ing by parts. However, it is easier to first realise that the triangle pulse is the
convolution of the rectangular function with itself. That is Π ∗Π = 4. To see this
write

(Π ∗Π)(t) =

∫ ∞
−∞

Π(τ)Π(t− τ)dτ =

∫ 1/2

−1/2

Π(t− τ)dτ

Now Π(t − τ) = 1 for τ in the interval (− 1
2

+ t, 1
2

+ t) and zero otherwise. Thus,
the integral evaluates to zero if t ≥ 1 or t ≤ −1. When t ∈ (−1, 0]

(Π ∗Π)(t) =

∫ 1/2+t

−1/2

dτ = t+ 1

and when t ∈ [0, 1)

(Π ∗Π)(t) =

∫ 1/2

−1/2+t

dτ = 1− t

as required. Now, by the convolution theorem (5.0.3)

F(Π ∗Π) = F4 = FΠFΠ = sinc2(t).

∗5.3. Show that the sinc function is square integrable, but not absolutely in-
tegrable. Solution: Our proof is by contradiction. Assume that sinc is absolutely
integrable. Then

‖ sinc ‖1 =

∫ ∞
−∞
|sinc(t)| dt

>

∫ ∞
0

|sinc(t)| dt

=

∞∑
n=1

∫ n

n−1

∣∣∣∣ sin(πt)

πt

∣∣∣∣ dt
=

∞∑
n=1

an

where we put

an =

∫ n

n−1

∣∣∣∣ sin(πt)

πt

∣∣∣∣ dt.
Under our assumption that sinc is absolutely integrable we must have that the
infinite sum a1 + a2 + . . . converge to a finite number. Now

an ≥
∫ n

n−1

∣∣∣∣ sin(πt)

πn

∣∣∣∣ dt =
1

πn

∫ n

n−1

|sin(πt)| dt =
2

π2n
.

However, the sum
∞∑
n=1

an =
2

π2

∞∑
n=1

1

n

involves the harmonic series (a p-series with p = 1) and so diverges (to show this
use either an integral test or the condensation test). Thus, our initial hypothesis
that sinc is absolutely integrable is false.

Graphically, the argument we have used bounds |sinc| above the function

b(t) =

{
0 t ≤ 0∣∣∣ sin(πt)πn

∣∣∣ t ∈ (n− 1, n]
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and then shows that b is not absolutely integrable. The function |sinc| (dashed)
and b (solid) are plotted in the figure below.

t

42 31

1

To show that sinc is square integrable observe that sinc2(t) is bounded below the
function

g(t) =

{
1 |t| ≤ 1
1
t2

otherwise,

that is sinc2(t) ≤ g(t) for all t ∈ R. Thus

‖ sinc ‖2 =

∫ ∞
−∞
|sinc(t)|2 dt

≤
∫ ∞
−∞

g(t)dt

=

∫ 1

−1

dt+ 2

∫ ∞
1

1
t2

= 2−
[

1

t

]∞
1

= 2 + 1 = 3.

The figure below plots sinc2 (dashed) and the bounding function g.

t

42 31−4 −2−3 −1

1

∗5.4. Show the the magnitude spectrum of the normalised Butterworth filter
Bm satisfies

|ΛBm(f)| =
√

1

f2m + 1
.

Solution: Recall that the transfer function of Bm is

λBm(s) =
1∏m

i=1( s
2π
− βi)

=
(2π)m∏m

i=1(s− 2πβi)
,

where β1, . . . , βm are the roots of the polynomial s2m + (−1)m that lie strictly in
the left half of the complex plane (have negative real part). Specifically, these roots
are

βk =

{
exp

(
j π
2

(1 + 2k−1
m

)
)
, k = 1, . . . ,m

exp
(
j π
2

(1− 2k−1
m

)
)
, k = m+ 1, . . . , 2m
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or equivalently

βk =

{
j cos

(π(2k−1)
2m

)
− sin

(π(2k−1)
2m

)
, k = 1, . . . ,m

j cos
(π(2k−1)

2m

)
+ sin

(π(2k−1)
2m

)
, k = m+ 1, . . . , 2m.

Observe that the roots βm+1, . . . , β2m are given by negating the real parts of
β1, . . . , βm, that is, βm+i = j(βi/j)

∗. The squared magnitude of the polynomial on
the denominator is∣∣∣∣∣

m∏
i=1

(jf − βi)

∣∣∣∣∣
2

=

(
m∏
i=1

(jf − βi)

)(
m∏
i=1

(jf − βi)

)∗

=

m∏
i=1

(jf − βi)(jf − βi)∗

=

m∏
i=1

(jf − βi)j∗(f − (βi/j)
∗)

and because j∗/j = −1 we have∣∣∣∣∣
m∏
i=1

(jf − βi)

∣∣∣∣∣
2

= (−1)m
m∏
i=1

(jf − βi)(jf − j(βi/j)∗)

= (−1)m
m∏
i=1

(jf − βi)(jf − βm+i)

= (−1)m
2m∏
i=1

(jf − βi).

Because β1, . . . , β2m are the roots of the polynomial s2m + (−1)m we have∣∣∣∣∣
m∏
i=1

(jf − βi)

∣∣∣∣∣
2

= (−1)m
(
(jf)2m + (−1)m

)
= f2m + 1.

It follows that the magnitude spectrum of Bm is

|Λ(Bm)| =
√

1

f2m + 1
.

∗5.5. Find and plot the impulse response of the normalised lowpass Butter-
worth filters B1, B2 and B3.

5.6. Plot the signal

tΠ(t) =

{
t −1

2 < t ≤ 1
2

0 otherwise

and find its Fourier transform. Solution:

t

tΠ(t)

1−1

1
2

− 1
2
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A direct approach is

L(tΠ(t)) =

∫ ∞
−∞

tΠ(t)e−sftdt =

∫ 1/2

−1/2

te−stdt

and integrating by parts gives

L(tΠ(t)) =

[
t
e−st

−s

]1/2
−1/2

−
∫ 1/2

−1/2

e−st

−s dt

=
e−s/2 + es/2

−2s
−
[
e−st

s2

]1/2
−1/2

=
e−s/2 + es/2

−2s
− e−s/2 − es/2

s2

=
1

s

(
−e

s/2 + e−s/2

2
+
es/2 − e−s/2

s

)
.

Because tΠ(t) is absolutely integrable its region of convergence includes the imag-
inary axis and we can obtain the Fourier transform by evaluating the Laplace
transform at s = j2πf ,

F(tΠ(t))(f) = Lx(j2πf)

=
1

2πjf

(
−e

jπf + e−jπf

2
+
ejπf − e−jπf

2jπf

)
=

1

2πjf
(sinc(f)− cos(πf)) .

An alternative approach is to observe that

FD sinc(f) = ΛDF sinc(f) = j2πfΠ(f),

and so, by duality,

F(j2πtΠ(t))(f) = FFD sinc(f) = D sinc(−f)

The derivative of the sinc function is given in (2.2.5)

D sinc(−f) =
1

πf2

(
sin(πf)− πf cos(πf)

)
=

1

f

(
sinc(f)− cos(πf)

)
.

Dividing by j2π we obtain

F(tΠ(t))(f) =
1

2jπ2f2

(
πf cos(πf)− sin(πf)

)
=

1

2jπf

(
sinc(f)− cos(πf)

)
again. A plot of the Fourier transform is below. Observe that the Fourier transform
is purely imaginary so we plot the imaginary part.

f

ImF(tΠ(t))

1−1

1
4

− 1
4
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5.7. Let x be the signal with Fourier transform x̂(f) = Π(f)
(

cos(2πf)+1
)
.

Plot the Fourier transform x̂ and find and plot x. Solution:

f

1 + cos(2πf)

2

1
2

− 1
2

We will solve the problem in two ways. Firstly, by directly application of the inverse
Fourier transform and secondly, by applications of the duality and modulation
properties. Application of the inverse Fourier transform gives

x = F−1(Π(f) + Π(f) cos(2πf)
)

= F−1(Π(f)
)

+ F−1(Π(f) cos(2πf)
)
.

Now

F−1(Π(f)
)

=

∫ ∞
−∞

Π(f)e2πjftdf

=

∫ 1/2

−1/2

e2πjftdf

=
eπjt − e−πjt

2πjt
=

2j sin(πt)

2πjt
=

sin(πt)

πt
= sinc(t)

and

F−1(Π(f) cos(2πf)
)

=

∫ ∞
−∞

Π(f) cos(2πf)e2πjftdf

=

∫ 1/2

−1/2

cos(2πf)e2πjftdf

=

∫ 1/2

−1/2

1
2
(e2πjf + e−2πjf )e2πjftdf

=

∫ 1/2

−1/2

e2πjf(t+1)df + 1
2

∫ 1/2

−1/2

e2πjf(t−1)df

= 1
2

sinc(t+ 1) + 1
2

sinc(t− 1)

by working similarly to the previous equation. Putting these together we obtain
the time domain signal

x(t) = sinc(t) + 1
2

sinc(t+ 1) + 1
2

sinc(t− 1).

We now derive the same result using duality (5.1.5) and the modulation (5.0.7)
properties. By duality

x(−f) = F
(
Π(f)

)
+ F

(
Π(f) cos(2πf)

)
Because F(Π) = sinc the time shift properties yields

F
(
Π(t)

)
= sinc(t).
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Now, by the modulation property

F
(
Π(t) cos(2πt), f

)
= 1

2
F
(
Π(t), f − 1

)
+ 1

2
F
(
Π(t), f + 1

)
= 1

2
sinc(f − 1) + 1

2
sinc(f + 1).

Now
x(−f) = sinc(f) + 1

2
sinc(f − 1) + 1

2
sinc(f + 1)

Putting t = −f

x(t) = sinc(t) + 1
2

sinc(t+ 1) + 1
2

sinc(t− 1)

because sinc is even. A plot of the Fourier transform is below. The shape of the
Fourier transform is somewhat sinc-like, but the oscillations decay faster as |t| → ∞.

t

sinc(t) + 1
2

sinc(t+ 1) + 1
2

sinc(t− 1)

1

1
2

− 1
2

5.8. State whether the following signals are bandlimited and, if so, find the
bandwidth:

(a) sinc(4t),

(b) Π(t/4),

(c) cos(2πt) sinc(t),

(d) e−|t|.

Solution: Let Sα(x, t) = x(αt) be the time scaler system. We have

F
(
Sα(x), f

)
=

∫ ∞
−∞

x(αt)e−2πjtdt

=
1

α

∫ ∞
−∞

x(γ)e−2πjγ/αdγ (ch. var. γ = αt)

=
1

α
F
(
x, f/α

)
=

1

α
S1/α

(
F(x), f

)
.

The Fourier transform of Sα(sinc)(t) = sinc(4t) is

F
(

sinc(4t)
)

= 1
4
Π(f/4),

and the signal is bandlimited with bandwidth 2 because Π(f/4) = 0 whenever
|f | > 2. By duality

1
4
F(Π(f/4)) = sinc(4t)

and so F(Π(f/4)) = 4 sinc(4t). This signal is not bandlimited because the sinc func-
tion is unbounded in time. By the modulation property of Fourier transform (5.0.7),

F
(

cos(2πt) sinc(t), f
)

= F(sinc, f − 1) + F(sinc, f + 1) = Π(f − 1) + Π(f + 1).
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This is bandlimited with bandwidth 3
2
. In Exercise 5.1 we showed that

F(e−|t|) =
2

4π2f2 + 1
.

This signal is not bandlimited.

5.9. Show that ∑
n∈Z

eα|n| = 1 +
2

e−α − 1

if α < 0 (Hint: solve Exercise 3.7 first). Solution: Put r = eα. Because
α < 0 the series r + r2 + r3 + . . . converges absolutely and so

∑
n∈Z

eα|n| =
∑
n∈Z

r|n| = 1 + 2

∞∑
n=1

rn

The sum in the equation on the right is a geometric series evaluating to

r

1− r =
eα

1− eα =
1

e−α − 1
.

5.10. Show that if a sequence is absolutely summable then it is also square
summable. Solution: Suppose that the discrete time signal a is absolutely
summable so that ‖a‖1 =

∑
n∈Z |an| < ∞. Let A be the subset of Z such that

|an| ≥ 1 whenever n ∈ A. That is

A = {n ; |an| ≥ 1}.

Let |A| denote the number of elements in the set A. We have

∞ > ‖a‖1 =
∑
n∈Z

|an| ≥
∑
n∈A

|an| ≥ |A|

and so, A contains a finite number of elements. Thus

B =
∑
n∈A

|an|2 <∞

Now, |an|2 < |an| < 1 for all n /∈ A and so

C =
∑
n/∈A

|an|2 ≤
∑
n/∈A

|an| ≤ ‖a‖1 <∞.

Thus

‖a‖22 =
∑
n∈Z

|an|2 =
∑
n∈A

|an|2 +
∑
n/∈A

|an|2 = B + C <∞.

5.11. Show that
∑N−1

k=0 e
j2πnk/N is equal to N if n is a multiple of N and

zero if n is any integer not a multiple of N . (Hint: use the result from
Exersise 3.7) Solution: First observe when is a multiple of N ,

N−1∑
k=0

ej2πnk/N =

N−1∑
k=0

1 = N.
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It remains to show that the sum is zero if n is an integer not a multiple of N . It is
helpful to reparameterise in order make the connection with Exercise 3.7. We have

N−1∑
k=0

ej2πnk/N =

N∑
`=1

eβ`

where ` = k + 1 and β = j2πn/N . From Exercise 3.7, this sum is equal to

eβ(N+1) − eβ

eβ − 1
.

The numerator is equal to

eβ(N+1) − eβ = eβeβN/2(eβN/2 − e−βN/2) = eβeβN/22j sin(αN)

where α = πn/N so that β = j2α. The denominator is equal to

eβ − 1 = eβ/2(eβ/2 − e−β/2) = eβ/22j sin(α).

Using these expression for the numerator and denominator we obtain

N−1∑
k=0

ej2πnk/N = e(N+1)β/2 sin(αN)

sin(α)
= ejπn(N+1)/N sin(πn)

sin(πn/N)
.

If n is an integer not a multiple of N then sin(πn/N) 6= 0 while sin(πn) = 0 and so

N−1∑
k=0

ej2πnk/N = ejπn(N+1)/N sin(πn)

sin(πn/N)
= 0

as required.

5.12. Let d = DNc be the discrete Fourier transform of the sequence c. Show
that

cn =
1

N

N−1∑
k=0

dke
j2πnk/N n = 0, . . . , N − 1.

(Hint: use the result from Exersize 5.11) Solution: We have

dk = DN (c, k) =

N−1∑
n=0

cne
−j2πnk/N

and so

1

N

N−1∑
k=0

dke
j2πnk/N =

1

N

N−1∑
k=0

(
N−1∑
m=0

cme
−j2πmk/N

)
ej2πnk/N

=
1

N

N−1∑
k=0

N−1∑
m=0

cme
j2π(n−m)k/N

=
1

N

N−1∑
m=0

cm

N−1∑
k=0

ej2π(n−m)k/N .

The integers n and m are from the set {0, . . . , N − 1} and so the difference n−m
takes values from the set {−N + 1, . . . , N − 1}. From Exersise 5.11 the inner sum
satisfies

δn−m =

N−1∑
k=0

ej2π(n−m)k/N =

{
N n−m = 0

0 n−m 6= 0
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and so

1

N

N−1∑
k=0

dke
j2πnk/N =

1

N

N−1∑
m=0

cmδn−m = cn n = 0, . . . , N − 1.

as required.

5.13. Plot the sequence cos(n) and determine whether it is bounded or pe-
riodic. Solution: A plot is below.

n

2−nun

The sequence is bounded below any number greater than 1 because |cos(x)| ≤ 1
(precisely 1 would also work in this case). The sequence is not periodic. To see
this, suppose the sequence has period T ∈ Z so that cos(n) = cos(n + kT ) for all
k ∈ Z. The period of cos(x) is 2π and cos(x) = cos(y) only if x = y+ 2π` for some
` ∈ Z. Thus, we must have n = n + kT + 2π` for some ` and each k. But, now
π = kT

2`
which violates the fact that π is irrational. Thus, no such period T exists.

5.14. Find the discrete time Fourier transform of the sequence αnun where
|α| < 1 and un is the step sequence. Plot the sequence and the mag-
nitude of the discrete time Fourier transform when α = 4

5 ,
1
2 ,

1
10 . Solu-

tion: The discrete time Fourier transform is

D(αnun) =
∑
n∈Z

αnune
−j2πnf

=

∞∑
n=0

αne−j2πnf

=

∞∑
n=0

(αe−j2πf )n =
1

1− αe−j2πf

by the formula for the sum of a geometric progression. The sum converges because
|α| < 1. In the case that α is real the magnitude of the discrete time Fourier
transform is

|D(αnun)| =

√
1

1− 2α cos(2πf) + α2
.

Plots of the sequence and the discrete time Fourier transform for α = 4
5
, 1
2
, 1
10

is
below.

n

( 4
5
)nun
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n

( 1
2
)nun

n

( 1
10

)nun

f

D
(
αnun

)
4
5

1
2

1
10

1

2

3

4

5

5.15. Given (5.1.3) show that (5.1.4) holds. Solution: From (5.1.3) we have
that

‖x‖22 =

∫ ∞
−∞
|x(t)|2 dt =

∫ ∞
−∞
|x̂(f)|2 dt = ‖x̂‖22.

Denote by

〈x, y〉 =

∫ ∞
−∞

x(t)y∗(t)dt

typically referred to as the inner product of signals x and y. We have

‖x‖22 = 〈x, x〉 = ‖x̂‖22 = 〈x̂, x̂〉.

Replacing x with x+ y we have

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 = ‖x̂+ ŷ‖2 = ‖x̂‖2 + 2〈x̂, ŷ〉+ ‖ŷ‖2.

And since ‖x‖22 = ‖x̂‖22 and ‖y‖22 = ‖ŷ‖22 as a result of (5.1.3) we find that

〈x, y〉 = 〈x̂, ŷ〉

which is precisely (5.1.4).

∗∗5.16. Let x and y be square integrable signals. Show that F(xy) = x̂∗ ŷ. So-

lution: See http://math.stackexchange.com/questions/605232/fourier-transform-of-convolution-for-l2-functions#.

http://math.stackexchange.com/questions/605232/fourier-transform-of-convolution-for-l2-functions#
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∗∗5.17. Let c be an absolutely summable sequence. Show that

F
∑
n∈Z

cn sinc(t− n) =
∑
n∈Z

cnF(sinc(t− n)).

∗∗5.18. Let c be a square summable sequence and let

x(t) =
∑
n∈Z

cn sinc(t− n)

be the bandlimited signal with samples x(n) = cn. Show that

Fx = lim
N→∞

N∑
n=−N

cnF
(

sinc(t− n)
)

a.e.

Find an example where equality does not hold pointwise.

∗∗5.19. Let x be an absolutely integrable signal. Show that the periodic sum-
mation

∑
m∈Z x(t+mP ) is a locally integrable signal. Show that this

is not necessarily true if x is square integrable, but not absolutely
integrable.



Chapter 6

Discrete time systems

Exercises

6.1. Let x be the signal with Fourier transform

x̂(t) = 4
3Π(f)− cos(2πf)

(
Π(2f − 3) + Π(2f + 3)

)
.

Plot the Fourier transform. Find and plot x. Solution: A plot of the
Fourier transform is below.

f

−2 2−4 4

1

The time domain signal x can be found by direct application of the inverse Fourier
transform, but a simpler approach uses the time shifting, time scaling properties,
and modulation properties of the Fourier transform (Section 5). Let a be the signal
with Fourier transform â(f) = Π(2f). The time scaling property asserts that

a(t) = 1
2

sinc
(
t
2

)
.

From the modulation property of the Fourier transform

F
(

cos(3πt)a(t)
)

= 1
2
â(f − 3

2
) + 1

2
â(f + 3

2
) = 1

2
Π(2f − 3) + 1

2
Π(2f + 3)

Let b(t) = cos(3πt)a(t) so that b̂(f) = 1
2
Π(2f − 3) + 1

2
Π(2f + 3). Now, put

c(t) = T−1b(t) + T1b(t)

= b(t+ 1) + b(t− 1)

= cos(3πt+ 3π)a(t+ 1) + cos(3πt− 3π)a(t− 1)

55
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and because
− cos(3πt) = cos(3πt+ 3π) = cos(3πt− 3π)

we have
c(t) = − cos(3πt)

(
a(t+ 1) + a(t− 1)

)
.

From the time shift property of the Fourier transform

ĉ(f) = F(T−1b+ T1b)

= e2πfj b̂(f) + e−2πfj b̂(f)

= 2 cos(2πf)b̂(f)

= cos(2πf)
(
Π(2f − 3) + Π(2f + 3)

)
.

It remains to observe that
x̂(f) = 4

3
Π(f)− ĉ(f)

and so

x(t) = 4
3

sinc(f)− c(t)
= 4

3
sinc(f) + cos(3πt)

(
a(t+ 1) + a(t− 1)

)
= 4

3
sinc(f) + 1

2
cos(3πt)

(
sinc

(
t+1
2

)
+ sinc

(
t−1
2

))
This signal is plotted below.

f

−2 2−4 4

1

6.2. Find the Fourier transform of the Blackman window (6.4.1).

6.3. Show that the z-transform of the sequence anun is z/(z−a) with region
of convergence |z| > |a|. Solution: The z-transform is

Z(anun) =
∑
n∈Z

anunz
−n =

∞∑
n=0

( z
a

)−n
.

This sum is a geometric progression that converges to

1

1− az−1
=

z

z − a

when |z/a| > 1 and diverges otherwise. The region of convergence is thus |z| > |a|.

6.4. Show that the z-transform of the sequence [n]kun where [n]k = n(n−
1) . . . (n− k + 1) is a falling factorial is

Z
(
[n]kun

)
=

k!z

(z − 1)k+1
|z| > 1.
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Solution: Observe that

Z
(
[n]kun

)
=
∑
n∈Z

[n]kunz
−n

=

∞∑
n=0

[n]kz
−n

=

∞∑
n=−1

[n+ 1]kz
−(n+1)

= z−1
∞∑

n=−1

[n+ 1]kz
−n.

Because [0]k = 0×−1× · · · × (1− k) = 0 we have

zZ
(
[n]kun

)
=

∞∑
n=0

[n+ 1]kz
−n.

Now

(z − 1)Z
(
[n]kun

)
=

∞∑
n=0

[n+ 1]kz
−n −

∞∑
n=0

[n]kunz
−n

=

∞∑
n=0

([n+ 1]k − [n]k)z−n.

Observe that the falling factorial satisfies

[n+ 1]k − [n]k =
(
(n+ 1)n(n− 1) . . . (n− k + 2)

)
−
(
n(n− 1) . . . (n− k + 1)

)
= [n]k−1(n+ 1− n+ k − 1)

= [n]k−1k

and so

(z − 1)Z
(
[n]kun

)
= k

∞∑
n=0

[n]k−1z
−n

= kZ
(
[n]k−1un

)
.

We obtain the following recursive equation for Z
(
[n]kun

)
,

Z
(
[n]kun

)
=

k

z − 1
Z
(
[n]k−1un

)
.

Unravelling this recursion we obtain

Z
(
[n]kun

)
=

k

z − 1
× k − 1

z − 1
× k − 2

z − 1
× · · · × Z([n]0un).

By definition [n]0 = 1 for all n ∈ Z and so Z([n]0un) = Z(un) = z/(z − 1) with
region of convergence |z| > 1. Thus,

Z
(
[n]kun

)
=

k!z

(z − 1)k+1
|z| > 1

as required.

6.5. Find the discrete impulse response of the discrete time system corre-
sponding with the second order difference equation cn = dn− adn−1−
bdn−2.
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6.6. Let dn be a sequence satisfying dn = 2dn−1 + 2n+1 and suppose that
d0 = 0. Show that dn = 2n+1n for n = 1, 2, . . . . Solution: In Section 6.6
we found the discrete time system H with discrete impulse response hn = 2nun is
such that the respone y = Hx is input signal x satisfied the equation

x = y − 2TP (y).

Suppose that the sample period is P = 1. The response of H to input signal is
x(t) = 2t+1u(t) is

y = H(x) =
∑
n∈Z

hnTn(x)

=

∞∑
n=0

2n2t−n+1u(t− n)

= 2t+1btcu(t)

Let c and d be sequences with elements

cn = x(nP ) = 2n+1un−1, dn = y(nP ) = 2n+1nun

and observe that d0 = 0. By definition of H these sequences satisfy the difference
equation

cn = 2n+1un = dn − 2dn−1

as required.

Let us now consider an alternative method of solution that applyies the z-transform
directly to the difference equation

dn − 2dn−1 = 2n+1un−1.

Applying the z-transform to both sides and using the time shift property we have

Z(d)− 2z−1Z(d) = Z(2n+1un) =
4

z − 2
|z| > 2.

The z-transform of d is then

Z(d) =
4z

(z − 2)2
|z| > 2.

The inverse z-transform is found by putting k = 1 and a = 2 in (6.5.2). We obtain

dn = 2n+1nun. Observing that dn = 0 we have a solution.

6.7. The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . satisfies the recursive
equation d0 = 0, d1 = 1, and dn = dn−1+dn−2 for n ≥ 2. Find a closed
form expression for the nth Fibonacci number. Solution: Consider the
recursive equation

dn − dn−1 − dn−2 = δn.

Applying z-transforms to both sides gives

Z(d)− z−1Z(d)− z−2Z(d) = Z(δ) = 1.

The region of convergence is the whole complex plane. We have

Z(d) =
z2

z2 − z − 1
= z

(
z

z2 − z − 1

)
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Our formula for the inverse z-transformation (6.5.2) involves z on the numerator
and so applying partial fractions to the term within the brackets will be convenient.
The roots of z2 − z − 1 are

a =
1−
√

5

2
, b =

1 +
√

5

2

and by partial fractions (see Exercise 4.9) we obtain.

z

(z − a)(z − b) =
a

(a− b)(z − a)
− b

(a− b)(z − b)

and so

Z(d) =
az

(a− b)(z − a)
− bz

(a− b)(z − b)
Both of these terms are in the form of (6.5.2) when k = 0 and so

dn =
1

a− ba
nun +

1

b− ab
nun =

bn − an√
5

un

Observe that d0 = 0 and that d1 = 1 as a result of b− a = 1.

∗6.8. Show that a discrete time system is stable if and only if its discrete
impulse response is absolutely summable.

∗6.9. Let f and g be absolutely summable sequences. Show that the discrete
convolution f ∗ g is also absolutely summable.

∗6.10. Let H be a discrete time system with discrete impulse response h. The
set rocz h is defined as those complex numbers z = esP such that s =
cep domP h. Show that rocz h is precisely the set of nonzero complex
numbers such that the sequence hnz

−n is absolutely summable.

∗6.11. Let f, g, h be complex valued sequences such that∑
m∈Z

∑
k∈Z
|fkhmgn−m−k| <∞.

Show that the discrete convolution is associative for these sequences.
That is, show that (f ∗ g) ∗ h = f ∗ (g ∗ h). Solution: Let f, g, h be
sequences. We have

((f ∗ g) ∗ h)n =
∑
m∈Z

hm(f ∗ g)n−m

=
∑
m∈Z

hm
∑
k∈Z

gkfn−m−k

=
∑
m∈Z

hm
∑
k∈Z

fkgn−m−k commutivity f ∗ g = g ∗ f

=
∑
m∈Z

∑
k∈Z

fkhmgn−m−k
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Under the assumptions stated on f, g, h Fubini’s theorem [Rudin, 1986, Theo-
rem 8.8] may be used to justify swapping the order of summation leading to

((f ∗ g) ∗ h)n =
∑
k∈Z

∑
m∈Z

fkhmgn−k−m

=
∑
k∈Z

fk
∑
m∈Z

hmgn−k−m

=
∑
k∈Z

fk(g ∗ h)n−k

= (f ∗ (g ∗ h))n.
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