Theory Assignment 1

Answer in no more than 10 pages total
Minimum 10pt font size

August 14, 2015

1. (Complex arithmetic) With $j=\sqrt{-1}$ find the real part, the imaginary part, the complex amplitude, and the complex argument in radians of the following complex numbers.
(a) $e^{j \pi}$
(b) $(1+\sqrt{3} j)^{2}$
(c) $\frac{e^{j \pi / 4}}{1-j}$
(d) $2 \sin (j)$

All answers must be written as an exact rational expression perhaps involving square roots and the transcendental numbers π and e. Answers correct to only a finite number of decimal places are not acceptable. Answers involving functions such as sin, cos, tan and their inverses are also not acceptable. Draw/mark each number on the complex plane.
2. (Properties of signals) Plot each of the following signals and show whether they are: bounded, periodic, right sided, left sided, of finite support, absolutely integrable, square integrable.
(a) $u(t+1) e^{-t}$ where $u(t)$ is the step function
(b) $\sin (\pi t / 4)+\cos (\pi t / 3)$
(c) $\cos (t) \cos (\pi t)$
(d) $\Pi\left(t-\frac{1}{2}\right) t^{-1 / 3}$ where $\Pi(t)$ is the rectangle pulse
3. (Spaces of signals) Show that the set of signals x such that $x(t)=0$ for all $t<0$ is a linear space, but not a shift-invariant space.
4. (Properties of systems) State whether each of the following systems are: causal, linear, shift-invariant, stable.
(a) $H x(t)=3 x(t-5)+x(t+1)$
(b) $H x(t)=e^{-|x(t)|}$
(c) $H x(t)=t$
(d) $H x(t)=\int_{0}^{1} \sin (\pi \tau) x(t+\tau) d \tau$

