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Figure : A lattice in 2 dimensions
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Lattices

I A lattice, L, is a set of points in Rm such that

L = {x ∈ Rm | x = Bw,w ∈ Zn}

I The matrix B is an m× n matrix called the generator matrix.

I We write this more succinctly as

L = BZn

I Zn is called the integer lattice.
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The Voronoi Cell

I The Voronoi cell is the region that is closer to the origin than
any other lattice point.

I The Voronoi cell is a convex polytope (an n-dimensional
polygon).

I Translating the Voronoi cell by a lattice point x gives the
region closer to x than any other lattice point.
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The nearest lattice point problem

Definition
Given y ∈ Rn and some lattice L whose lattice points lie in Rn,
find the lattice point x ∈ L that is closest to y.

I The lattice point x is nearest to y if and only if y is inside the
Voronoi cell translated about x.

I Many applications including:
I coding
I quantisation
I communications systems using multiple antennas
I public key cryptography
I frequency and polynomial phase estimation
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The Nearest Point Problem

I NP-complete for general lattices (computationally very hard!).

I Easier for specific lattices.

I We will describe a very fast algorithm for the famous lattice
A∗n.

I Requires only O(n) operations!

I Use this algorithm for delay estimation.
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The lattice A∗n

Figure : In 2 dimensions A∗
2 is the hexagonal lattice
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The lattice A∗n

I More generally A∗n is the projection of Zn+1 into the space
orthogonal to

1 = [1, 1, 1, . . . , 1]′

I The matrix to perform this projection is

Q = I− 11′

n + 1

where I is the (n + 1)× (n + 1) identity matrix.

I The points in A∗n are

A∗n = QZn+1

I Given y ∈ Rn+1 our aim is to find the x ∈ A∗n closest to y.
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The nearest point in A∗n

Definition
Define the function f : R 7→ Zn+1

f(λ) = dy + λ1c

where d·c rounds each element to its nearest integer

Lemma
The nearest point in A∗n to y ∈ Rn+1 is one of

Qf

(
i − 1

n + 1

)
where i = 1, 2, . . . , n + 1.
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The nearest point in A∗n

I So there are only n + 1 candidates for the nearest point.

I A näıve approach to finding the nearest point would be to
calculate each

Qf

(
i − 1

n + 1

)
directly and return the one closest to y.

I This would require O(n2) arithmetic operations.
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The nearest point in A∗n

I The first candidate is

f (0) = dyc

I Construct the set of indices

S1 =

{
j | dyje − yj ∈

(
0,

1

n + 1

]}
I Then

f

(
1

n + 1

)
= dyc+

∑
j∈S1

ej

where ej is a vector of 0’s except the jth element which is 1.
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The nearest point in A∗n

I Continuing this approach we can construct n + 1 sets

Si =

{
j | dyje − yj ∈

(
i − 1

n + 1
,

i

n + 1

]}
for i = 1, 2, . . . , n + 1.

I Then

f

(
i

n + 1

)
= f

(
i − 1

n + 1

)
+
∑
j∈Si

ej
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The nearest point in A∗n

I All the Si can be computed in linear-time using a bucket sort.

I So we can find all of the candidate nearest points in linear
time.

I It remains to show that we can efficiently compute the
distance between each candidate and y.

I We require to compute

di−1 =

∥∥∥∥y −Qf

(
i − 1

n + 1

)∥∥∥∥2
for i = 1, 2, · · · , n + 1.
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The nearest point in A∗n

I We find that the di−1 can be computed by the following
recursion

αi = αi−1 − |Si |

βi = βi−1 + |Si | − 2
∑
j∈Si

yj − dyjc

di = βi −
α2
i

n + 1
+ t

I Where α0, β0 and t can all be computed in linear time.
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The nearest point in A∗n

I So all of the

f

(
i − 1

n + 1

)
and the di−1 can be computed in linear time.

I The algorithm then returns

Qf

(
j

n + 1

)
where dj is the minimum of the di−1.

I Multiplication by Q can be performed in linear time
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Table : Computation time in seconds for 105 trials

Algorithm n=20 n=50 n=100 n=500

CS O(n2) 13.77 80.17 327.01 > 104

IVLC O(n log n) 2.72 5.73 10.99 58.98
MCQ O(n log n) 2.28 4.60 8.61 32.73
O(n) 1.83 3.33 5.86 25.91
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Delay estimation

I We will now apply this nearest point algorithm to a delay
estimation problem.

I Applications are to synchronisation for communications
devices and also radar.

I Consider sampling the time of arrival of N periodic events
with known period T and unknown delay µ0

I Assume that the sampling process is both noisy and sparse.
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v1 = 0 v2 = 2 v3 = 6

X1 X2 X3

µ0 T

Figure : Delay estimation from incomplete data.
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Delay estimation

I The model is
Yn = Tvn + µ0 + Xn

I T is a known period

I µ0 is the delay to estimate

I Xn is noise

I vn are unknown integers representing the pulses that are
received

I Assume N observations so n = 1, . . . ,N
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Delay estimation

I Setting T = 1 for simplicity

Yn = vn + µ0 + Xn

I If the vn were known

µ̂ =
1

N

N∑
n=1

(Yn − vn)

I If the Xn are zero mean i.i.d. with variance σ2g then the
estimator has variance

var (µ̂− µ0) =
σ2g
N
.

I More interested in the case when vn are unknown.
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Delay estimation

I Take a least squares approach

µ̂ = arg min
µ

min
wn∈Z

N∑
n=1

(Yn − µ− wn)2

I In vector form

µ̂ = arg min
µ

min
w∈ZN

‖y − µ1−w‖2

I Fix wn and minimising with respect to µ

µ̂ =
1′(y −w)

N

I Substituting this gives

v̂ = arg min
w∈ZN

‖Qy −Qw‖2

I Where Q is the generator matrix for A∗N−1
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Asymptotic properties

Theorem
If X1,X2, . . . ,XN are i.i.d. random variables and the fractional
parts Xn − dXnc have zero unwrapped mean, variance σ2 and pdf
f . Then:

1. (Strong consistency) µ̂ converges almost surely to µ0 as
N →∞.

2. (Asymptotic normality) The distribution of

√
N(µ̂− µ0)

approaches the normal with zero mean and variance

σ2(
1− f (−1/2)

)2 .
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Theory
Simulated
Variance when vn known
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Figure : Performance when Xn are normal with variance σ2
g

25 / 26



I This delay estimation problem can also be described using
circular statistics.

I Equivalent to estimating the mean direction of a circular
random variable.

I There is another simple estimator called the sample circular
mean.

I Can also be computed in linear time.

I Statistical properties of this estimator are different.

I The problem is substantially harder if the period is also
unknown, but we are working on it!
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