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Lattices

An n-dimensional lattice Λ is a discrete set of vectors from Rm,
m ≥ n, given by

Λ = {b1u1 + b2u2 + · · ·+ bnun | u1, . . . un ∈ Z},

where b1, . . . , bn ∈ Rm are basis vectors of Λ.
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Figure : A 2-dimensional lattice.
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Short vectors

Those lattice points with smallest non-zero length are called short
vectors. That is, the short vectors have squared length

min
x∈Λ\{0}

‖x‖2.
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Figure : A 2-dimensional lattice.
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Figure : A 2-dimensional lattice. There are 4 short vectors.
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The shortest vector problem

I Computing a short vector is called the shortest vector
problem.

I Applications in cryptography and number theory.

I NP-hard for arbitrary lattices.

I Easier for specific lattices.

I Short vectors are easy to find in the root lattices Zn, An, and
Dn.

I We will show that the problem is relatively easy to solve for
lattices of Voronoi’s first kind.
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The Voronoi cell

The Voronoi cell of a lattice Λ ⊂ Rm is the subset of Rm at least
as close to the origin than to any lattice point,

Vor(Λ) = {x ∈ Rm | ‖x‖ ≤ ‖x − y‖, y ∈ Λ}.
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Figure : A 2-dimensional lattice and its Voronoi cell.
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Relevant vectors

The relevant vectors of a lattice Λ are those which contribute a
face to the Voronoi cell.
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Figure : A 2-dimensional lattice with 6 relevant vectors.
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Relevant vectors

I Denote the set of relevant vectors by Rel(Λ).

I The Voronoi cell can be defined using the relevant vectors,

Vor(Λ) = {x ∈ Rm | ‖x‖ ≤ ‖x − v‖, v ∈ Rel(Λ)}.

I Short vectors are relevant vectors.
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Figure : A lattice with 6 relevant vectors and 4 short vectors.
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The closest lattice point problem

Given a lattice Λ ⊂ Rm and a vector y ∈ Rm find x ∈ Λ such that

‖y − x‖2

is minimised.

I This is called the closest lattice point problem and a
solution is called a closest lattice point to y .

I The lattice point x ∈ Λ is closest to y ∈ Rm if and only if

y ∈ Vor(Λ) + x .
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yx

Figure : The closest lattice point.
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The closest lattice point problem

Applications to:

I coding and quantisation,

I multi-antenna communication (MIMO),

I unwrapping of phase data for electronic distance measurement
in GPS and surveying,

I single frequency estimation,

I polynomial phase estimation,

I circular statistics.
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The closest lattice point problem

I NP-hard for arbitrary lattices.

I Easier for specific lattices.

I Fast algorithms exist for the root lattices Zn, An, and Dn.

I We will describe a fast algorithm to compute a closest point
in lattices of Voronoi’s first kind.
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Lattices of Voronoi’s first kind

An n-dimensional lattice Λ is of Voronoi’s first kind if it has an
obtuse superbase, that is, a set of n + 1 vectors

b1, . . . , bn+1

such that

I b1, . . . , bn are a basis for Λ,

I b1 + b2 · · ·+ bn+1 = 0 (the superbase condition),

I qij = bi · bj ≤ 0 whenever i 6= j (the obtuse condition).

The qij are called Selling parameters.
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An example

Consider the 3-dimensional lattice with basis

b1 =
[

2 −1 0
]

b2 =
[
−1 2 0

]
b3 =

[
0 0 2

]
.

Define a 4th vector as

b4 = −b1 − b2 − b3 =
[
−1 −1 −2

]
,

so that b1, b2, b3, b4 satisfy the superbase condition.

20 / 46



An example

The Selling parameters can be written in a matrix
q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

q41 q42 q43 q44

 =


5 −4 0 −1
−4 5 0 −1

0 0 4 −4
−1 −1 −4 6

 .

The off diagonal elements are not positive so the obtuse condition
is satisfied.
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Lattices of Voronoi’s first kind

Theorem (Conway and Sloane (1992))

Let Λ be a n-dimensional lattice of Voronoi’s first kind with obtuse
superbase b1, . . . , bn+1. The relevant vectors in Λ are of the form∑

i∈I
bi

where I is a strict subset of {1, 2, . . . , n + 1} and I is not empty.

Corollary

Short vectors in Λ are of the form
∑

i∈I bi .
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Lattices of Voronoi’s first kind

A näıve way to compute a short vector is to compute

‖
∑
i∈I

bi‖2

for all of the 2n+1 − 2 possible subsets I .

I Requires a number of operations that grows exponentially
with the dimension n.

I We can improve this using a minimum cut algorithm.
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Graphs, cuts, and minimum cuts

Let G be a weighted graph with:

I n + 1 vertices v1, . . . , vn+1,

I edges eij connecting vertex vi to vertex vj ,

I edge weights wij ∈ R.
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v1

v2 v3

v4

w12 = 4

w14 = 1

w24 = 1
w34 = 4

Figure : A graph with 4 vertices and 4 weighted edges.
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Graphs, cuts, and minimum cuts

A cut in G is a partition of the vertices into two nonempty sets C
and its complement C̄ .

I The weight of a cut is the sum of the weights on the edges
crossing from the vertices in C to the vertices in C̄ .

I A minimum cut is a pair (C ,C̄ ) with smallest weight.
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Figure : A graph with 4 vertices and 4 weighted edges.
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Figure : The cut C = {v2} and C̄ = {v1, v3, v4}
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Figure : The cut C = {v2} and C̄ = {v1, v3, v4} has weight 5.
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Figure : The minimum cut C = {v3, v4} and C̄ = {v1, v2}
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Figure : The minimum cut C = {v3, v4} and C̄ = {v1, v2} has weight 2.
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Graphs, cuts, and minimum cuts

If the edge weights wij are all nonnegative, a minimum cut can be
computed:

I deterministically in O(n3) operations using the algorithm of
Stoer and Wagner (1997),

I with high probability in O(n2 log(n)3) operations using the
randomised algorithm of Karger and Stien (1996).
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Theorem (McKilliam and Grant (2012))

Let Λ be a n-dimensional lattice of Voronoi’s first kind with obtuse
superbase

b1, . . . , bn+1.

Let G be a graph with n + 1 vertices v1, . . . , vn+1 and edge weights

wij = −qij = −bi · bj ≥ 0 i 6= j .

Let (C , C̄ ) be a minimum cut in G . A short vector in Λ is∑
i∈I

bi where I = {i | vi ∈ C}.

The squared length of the short vector is given by the weight of
the minimum cut.
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An example

Consider again the 3-dimensional lattice with obtuse superbase

b1 =
[

2 −1 0
]

b2 =
[
−1 2 0

]
b3 =

[
0 0 2

]
b4 =

[
−1 −1 −2

]
.

The Selling parameters are given in matrix form as
q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

q41 q42 q43 q44

 =


5 −4 0 −1
−4 5 0 −1

0 0 4 −4
−1 −1 −4 6

 .
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Figure : We have seen this graph before!
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Figure : The minimum cut C = {v3, v4} and C̄ = {v1, v2} has weight 2.
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An example

The minimum cut corresponds with the short vectors

b1 + b2 = [1, 1, 0]

and
b3 + b4 = −b1 − b2 = [−1,−1, 0]

of squared length 2.
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Some questions we asked in 2012

I Can we efficiently decide whether a lattice is of Voronoi’s first
kind?

I Can we efficiently find an obtuse superbase if it exists?

I Can a similar approach be taken to solve the closest lattice
point problem?
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Some questions we asked in 2012

I Can we efficiently decide whether a lattice is of Voronoi’s first
kind? Yes

I Can we efficiently find an obtuse superbase if it exists? Yes

I Can a similar approach be taken to solve the closest lattice
point problem?

39 / 46



Some questions we asked in 2012

I Can we efficiently decide whether a lattice is of Voronoi’s first
kind? Yes

I Can we efficiently find an obtuse superbase if it exists? Yes

I Can a similar approach be taken to solve the closest lattice
point problem? O(n4)
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A series of relevant vectors

Let x0 be some lattice point from Λ and consider the following
iteration,

xk+1 = xk + vk

vk = arg min
v∈Rel(Λ)∪{0}

‖y − xk − v‖

41 / 46



x0
x1

x2
x3

x4
x5

x6
x7

x8 y

Figure : Computing a closest point by a series of relevant vectors.
42 / 46



A series of relevant vectors

I The number of iterations depends on x0 and might be large.

I Minimising over the set of relevant vectors, that is computing

arg min
v∈Rel(Λ)∪{0}

‖y − xk − v‖

might be expensive.

I There are as many as 2n+1 − 2 relevant vectors.
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A series of relevant vectors

For a lattice of Voronoi’s first kind:

I x0 can be chosen to ensure that a closest lattice point is
found after at most n iterations.

I Minimisation over the set of relevant vectors can be
performed by computing a minimum cut in a flow network.

I Using known algorithms a minimum cut can be found in
O(n3) operations.

I In total O(n4) operations are required to compute a closest
lattice point.
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Theorem (McKilliam, Grant, Clarkson (2014))

Let Λ be a n-dimensional lattice of Voronoi’s first kind with obtuse
superbase b1, . . . , bn+1. Let z1, . . . , zn+1 ∈ R minimise

‖y −
n+1∑
i=1

bizi‖

and put

x0 =
n+1∑
i=1

bi bzic .

The iterative procedure, initialized at x0, converges to a closest
lattice point in at most n iterations.
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What now?

I Can good codes or quantisers be constructed from lattices of
Voronoi’s first kind?

I Do applications such as global positioning, phase unwrapping,
etc., involve lattices of Voronoi’s first kind?

I Are there subfamilies of Voronoi’s first kind that admit even
faster algorithms?

I Are there other families of lattices for which similar techniques
lead to polynomial time algorithms?
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