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Figure : A lattice in 2 dimensions
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Lattices

I A lattice, L, is a discrete set of points in Rm such that

L = {x ∈ Rm | x = Bw,w ∈ Zn}

I The matrix B is an m× n matrix called the generator matrix.

I Can write this more succinctly as

L = BZn

I Zn is called the integer lattice.
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The Voronoi Cell

Definition
The Voronoi cell is the region that is closer to the origin than any
other lattice point.
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The Voronoi Cell

I The Voronoi cell is a convex polytope (an n-dimensional
polygon).

I Translating the Voronoi cell by a lattice point x gives the
region closer to x than any other lattice point.
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The Voronoi Cell

The Voronoi cell encodes many interesting properties about a
lattice.
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Figure : There are 6 relevant vectors
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Figure : The packing radius
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Figure : The kissing number is 4
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The quantiser constant

I Consider using the points of a lattice Λ as a quantiser for a
uniform source.

I The integral

D(Λ) =

∫
Vor(Λ)

‖x‖2dx

tells us the average distortion of this quantiser.

Example

The Voronoi cell of the integer lattice Zn is the hypercube[
−1

2
,

1

2

)n

and

D(Zn) =

∫ 1/2

−1/2

. . .

∫ 1/2

−1/2

‖x‖2dx =
n

12
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The quantiser constant

Conway and Sloane (1982) calculated D for the root lattices

Zn, An, Dn, E6, E7 and E8

and the dual lattices
A∗n and D∗n
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The quantiser constant

They obtain:

D(Dn) =
n

6
+

n

n + 1
, D(D∗n) = long formula!

D(An) =
n
√
n + 1

12
+

n

6
√
n + 1)

, D(A∗n) = long formula!

D(E8) =
929

1620
, D(E7) =

√
2

163

288
, D(E6) =

√
3

15

28

We know precisely how these lattices perform as quantisers.

15 / 28



The probability of coding error

I Consider using the points of a lattice Λ as a code for the
Gaussian channel.

I The integral

PC (Λ) =
1

(
√

2πσ)n

∫
Vor(Λ)

e−‖x‖
2/2σ2

dx

tells us the probability of correct decoding for this code.

I So we are interested in integrals of the form∫
Vor(Λ)

e−‖x‖
2
dx

I Conway and Sloane (1982) hinted that computing such
integrals might be possible.

I We are going to solve it for the lattice An.
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The probability of coding error

I By expanding ex = 1 + x + x2

2 + . . . we obtain

PC (Λ) =
1

(
√

2πσ)n

∫
Vor(Λ)

1− ‖x‖
2

2σ2
+
‖x‖2m

4σ42!
− . . . dx

=
1

(
√

2πσ)n

∞∑
m=0

(−1)m

2mσ2mm!

∫
Vor(Λ)

‖x‖2mdx.

I To obtain accurate approximations to the probability of error
it is enough to know the values of∫

Vor(Λ)
‖x‖2mdx

for sufficiently large m.

I We call these the moments of the Voronoi cell.
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The lattice An

I The lattice An are all those points from Zn+1 with elements
that sum to zero,

An =

{
x ∈ Zn+1 |

n+1∑
i=1

xi = 0

}

I A generator matrix for An is the (n + 1)× n matrix

1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1
0 0 0 · · · 0 −1
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The lattice An

Figure : In 2 dimensions A2 is the hexagonal lattice
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The lattice An

Figure : In 2 dimensions A2 is the hexagonal lattice
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The lattice An

I A3 is called the body centered cubic lattice.

I It is the densest packing in 3 dimensions.

I We are interested in the moments for An,

Cn(m) =

∫
Vor(An)

‖x‖2mdx.
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The lattice An

Theorem
The Voronoi cell of An is the projection of the n + 1 dimensional
hypercube orthogonal to one of its vertices.
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The lattice An

Figure : Orthogonal projection of a cube as it is rotated about its center
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The lattice An

I Lattices with this property are called zonotopal lattices.

I Allows us to write integrals over Vor(An) as integrals over
(almost) the n + 1 dimensional hypercube.
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The moments of the lattice An

The moment Cn(m) is

Cn(m) = m!
n
√
n + 1

n + 2m

m∑
k=0

k∑
a=0

k−a∑
b=0

G (n − 1, a, 2k − 2a− b)

H(n,m, k, a, b)

where the function

H(n,m, k, a, b) =
(n + 1)m−aa!(m − k)!b!(k − a− b)!

(−1)k−a2bnm−k

and the function G (n, c , d) satisfies the recursion

G (n, c , d) =
c∑

c ′=0

d∑
d ′=0

(
c

c ′

)(
d

d ′

)
G (n − 1, c − c ′, d − d ′)

2c ′ + d ′ + 1

with the initial conditions

G (1, c , d) =
1

2c + d + 1
and G (n, 0, 0) = 1.
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The moments of the lattice An

For fixed m it is possible to solve this recursion in n and obtain
formula for the Cm(n) in terms of n. The first four formula are:

C0(n) =
√
n + 1 the volume of Vor(An),

C1(n) =
n(n + 3)

12
√
n + 1

the second moment of Vor(An),

C2(n) =
50n + 55n2 + 34n3 + 5n4

720(1 + n)3/2
,

C3(n) =
1960n + 2142n2 + 2681n3 + 1423n4 + 399n5 + 35n6

60480(1 + n)5/2
,

...

We have tabulated these formula for m = 0 to 40.
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Approximation
Exact
Monte Carlo

A1

A2A3

A8

E8

10 12 14 16

10−12

10−10

10−8

10−6

10−4

SNR (dB)

PE
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What now?

I An does not produce good codes in large dimension.

I Can similar ideas be applied to other lattices or codes?
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