[1] | M. D. McDonnell, R. G. McKilliam, and P. de Chazal. On the importance of pair-wise feature correlations for image classification. In International Joint Conference on Neural Networks (IJCNN), 2016. [ bib ] |
[2] | R. G. McKilliam, D. Haley, A. Pollok, A. Grant, A. Beck, and Z. Zhou. Small data, low cost, anywhere on earth. IEEE Potentials, 38(2):18–20, Mar 2019. [ bib ] |
[3] |
D. Haley, A. Beck, A. Pollok, A. Grant, and R. G. McKilliam.
Massive scale, long battery life, direct to orbit connectivity for
the internet of things.
Acta Astronautica, 151:318 -- 323, 2018.
[ bib |
DOI |
http ]
Applications delivered by the internet of things have the potential to increase operational efficiency, reliability and safety. However, a challenge exists to deliver connectivity to industries with remote operations at a cost, battery life and form factor that is able to close the business case for deployment. This is especially true in cases where the system must scale to support large numbers of devices. Typical applications include sensor telemetry, low-value asset tracking, and device monitoring and control. Myriota provides global reach for the internet of things by securely delivering high-value small-data direct to a constellation of low Earth orbit satellites. This paper provides an overview of the Myriota communications architecture, and the process taken to transfer Myriota foundation technology into a highly scalable commercial product and service. Recent results from customer facing pilot deployments are also presented. Keywords: Internet of things, Direct-to-orbit, Massive scale communications, Low power, Nanosatellites |
[4] |
A. Akhlaq, R. G. McKilliam, R. Subramanian, and A. Pollok.
Selecting wavelengths for least squares range estimation.
IEEE Transactions on Signal Processing, 64(20):5205--5216, Oct
2016.
[ bib |
DOI ]
Keywords: Estimation;Lattices;Optical transmitters;Optimization;Receivers;Signal processing algorithms;Wrapping;Range estimation;lattice theory;phase ambiguity |
[5] |
A. Akhlaq, R. G. McKilliam, and R. Subramanian.
Basis construction for range estimation by phase unwrapping.
IEEE Signal Process. Letters, 22(11):2152--2156, Nov 2015.
[ bib |
DOI ]
Keywords: Estimation;Lattices;Least squares approximations;Receivers;Signal processing algorithms;Wavelength measurement;Zinc;Closest lattice point;phase unwrapping;range estimation |
[6] | D. Haley, A. Grant, W. Cowley, L. Davis, I. Land, M. Lavenant, G. Lechner, R. McKilliam, and A. Pollok. Enabling technologies for a microsatellite-based global sensor network. In Small Satellites Systems and Services Symposium, Majorca, Spain, May 2014. [ bib ] |
[7] |
R.G. McKilliam, I. V.L. Clarkson, and B.G. Quinn.
Fast sparse period estimation.
IEEE Signal Process. Letters, 22(1):62--66, Jan. 2015.
[ bib |
DOI ]
Keywords: Chirp;Estimation;Fast Fourier transforms;Least squares approximations;Noise measurement;Quantization (signal);Fast Fourier Transform;period estimation |
[8] | David Haley, Linda M. Davis, Andre Pollok, Ying Chen, Gottfried Lechner, Marc Lavenant, S. Adrian Barbulescu, John Buetefuer, William G. Cowley, Alex Grant, Terry Kemp, Ingmar Land, Rick Luppino, Robby McKilliam, and Hidayat Soetiyono. Software defined radio based global sensor network architecture. In Wireless Innovation Forum Conference on Communications Technologies and Software Defined Radio, 2014. [ bib ] |
[9] | J. Kodithuwakku, N. Letzepis, R. G. McKilliam, and A. Grant. Decoder-assisted timing synchronization in multiuser CDMA systems. IEEE Trans. Commun., 62(5):2061--2071, Jun. 2014. [ bib | DOI ] |
[10] |
A. Pollok and R. G. McKilliam.
Modified Cramér-Rao bounds for continuous-phase modulated
signals.
IEEE Trans. Commun., 62(5):1681--1690, May 2014.
[ bib |
DOI ]
Keywords: Accuracy;Estimation;Modulation;Noise;Polynomials;Satellites;Vectors;Continuous phase modulation;Craméer-Rao bound;channel estimation |
[11] |
J. Kodithuwakku, N. Letzepis, A. Grant, and R. McKilliam.
Decoder-aided synchronization for multiuser CDMA systems.
In Communications Theory Workshop (AusCTW), 2013 Australian,
pages 31--36, Jan. 2013.
[ bib |
DOI ]
Keywords: Monte Carlo methods;code division multiple access;decoding;interference suppression;iterative methods;probability;radiofrequency interference;synchronisation;Monte-Carlo simulations;code division multiple access systems;data-aided scenario;decoder iterations;decoder-aided synchronization;frame synchronization;linear pre-processing;missed detection probability;multiple access interference mitigation;multiuser CDMA systems;nondata-aided scenario;partial interference cancellation;residual interference;soft information;time offset estimator;user signals |
[12] | A. Grant, D. Haley, R. G. McKilliam, W. G. Cowley, and T. Chan. Multi-access communication system. World patent WO2013AU01079, 2013. [ bib ] |
[13] | D. Haley, J. Buetefuer, A. Grant, W. Cowley, G. Lechner, I. R. Land, R. G. McKilliam, A. Pollok, L. M. Davis, R. R. Luppino, and A. Barbulescu. Communication system and method. World patent WO2013AU01078, 2013. [ bib ] |
[14] | A. Grant, D. Haley, D. Lawrie, R. G. McKilliam, W. Cowley, and L. M. Davis. Multi-access communication system. World patent WO2013AU00895, 2013. [ bib ] |
[15] | A. Grant, B. Cowley, D. Haley, A. Barbulescu, G. Lechner, I. Land, R. G. McKilliam, A. Pollok, and L. Davis. Communication system and method. Provisional Patent: AU 2012904130, 2013. [ bib ] |
[16] | R. G. McKilliam, A. Pollok, and B. Cowley. Carrier phase and amplitude estimation for phase shift keying using pilots and data. Provisional Patent: AU 2012905489, 2013. [ bib ] |
[17] | R. G. McKilliam, A. Grant, and I. V. L. Clarkson. Finding a closest point in a lattice of Voronoi's first kind. SIAM Journal on Discrete Mathematics, 28(3):1405--1422, 2014. [ bib | DOI ] |
[18] | A. Akhlaq, R. G. McKilliam, and R. Subramanian. Basis construction for range estimation by phase unwrapping. submitted to IEEE Signal Processing Letters, Feb. 2015. [ bib | .pdf ] |
[19] | A. Pollok and R. G. McKilliam. Modified Cramér-Rao bounds for continuous-phase modulated signals. accepted to IEEE Transactions on Communications, 2014. [ bib ] |
[20] | R. McKilliam and A. Pollok. On the Cramér–Rao bound for polynomial phase signals. Signal Processing, 95:27--31, Feb. 2014. [ bib | DOI ] |
[21] | R. G. McKilliam, B. G. Quinn, and I. V. L. Clarkson. Direction estimation by minimum squared arc length. IEEE Trans. Sig. Process., 60(5):2115--2124, May 2012. [ bib | DOI ] |
[22] | R. G. McKilliam, A. Pollok, B. Cowley, V. Clarkson, and B. Quinn. Carrier phase and amplitude estimation for phase shift keying using pilots and data. IEEE Trans. Sig. Process., 61(15):3976--3989, Aug. 2014. [ bib ] |
[23] |
R. G. McKilliam, A. Pollok, and W. Cowley.
Simultaneous symbol timing and frame synchronization for phase shift
keying.
IEEE Trans. Commun., 62(3):1114--1123, Mar. 2014.
[ bib |
DOI ]
Keywords: Complexity theory;Linear programming;Phase shift keying;Receivers;Signal to noise ratio;Synchronization;Synchronisation;phase shift keying |
[24] |
R. G. McKilliam, A. Pollok, B. Cowley, I. V. L. Clarkson, and B. G. Quinn.
Noncoherent least squares estimators of carrier phase and amplitude.
In Proc. Internat. Conf. Acoust. Spe. Sig. Process., pages
4888--4892, Vancouver, May 2013.
[ bib |
DOI ]
Keywords: Noncoherent detection;asymptotic statistics;phase shift keying |
[25] | B. G. Quinn, I. V. L. Clarkson, and R. G. McKilliam. On the periodogram estimators of periods from interleaved sparse, noisy timing data. In IEEE Statistical Signal Processing Workshop, pages 232--235, Gold Coast, Australia, Jul. 2014. [ bib | DOI ] |
[26] | B. G. Quinn, I. V. L. Clarkson, and R. G. McKilliam. Estimating period from sparse, noisy timing data. In IEEE Statistical Signal Processing Workshop (SSP), pages 193--196, Aug. 2012. [ bib | DOI ] |
[27] |
R. G. McKilliam and A. Grant.
Finding short vectors in a lattice of Voronoi's first kind.
In IEEE International Symposium on Information Theory
Proceedings (ISIT), pages 2157--2160, July 2012.
[ bib |
DOI ]
Keywords: Voronoi first kind lattices;n-dimensional lattice;obtuse superbasis;polynomial time;short vector finding;shortest nonzero Euclidean length;weighted graph;computational complexity;computational geometry;graph theory;lattice theory;vectors; |
[28] | R. G. McKilliam, R. Subramanian, E. Viterbo, and I. V. L. Clarkson. On the error performance of the An lattices. IEEE Trans. Inform. Theory, 58(9):5941--5949, Sep. 2012. [ bib | DOI ] |
[29] | R. G. McKilliam and B. G. Quinn. Estimating the circular mean from correlated observations. In Defence App. Sig. Proc., July 2011. [ bib ] |
[30] | R. G. McKilliam, B. G. Quinn, I. V. L. Clarkson, and B. Moran. The asymptotic properties of polynomial phase estimation by least squares phase unwrapping. Proc. Internat. Conf. Acoust. Spe. Sig. Process., pages 3592--3595, May 2011. [ bib | DOI ] |
[31] | R. G. McKilliam and I. V. L. Clarkson. Maximum-likelihood period estimation from sparse, noisy timing data. In Proc. Internat. Conf. Acoust. Spe. Sig. Process., pages 3697--3700, Las Vegas, NV, USA, Mar. 2008. [ bib | DOI ] |
[32] | R. G. McKilliam, I. V. L. Clarkson, D. J. Ryan, and I. B. Collings. Linear-time block noncoherent detection of PSK. In Proc. Internat. Conf. Acoust. Spe. Sig. Process., pages 2465--2468, Taipei, Taiwan, Apr. 2009. [ bib | DOI ] |
[33] | R. G. McKilliam and I. V. L. Clarkson. Identifiability and aliasing in polynomial-phase signals. IEEE Trans. Sig. Process., 57(11):4554--4557, Nov. 2009. [ bib | DOI ] |
[34] | R. G. McKilliam, I. V. L. Clarkson, B. G. Quinn, and B. Moran. Polynomial-phase estimation, phase unwrapping and the nearest lattice point problem. Asilomar Conference on Signals, Systems, and Computers, pages 493--495, Nov. 2009. [ bib ] |
[35] |
J. Kodithuwakku, N. Letzepis, A. Grant, and R. McKilliam.
Code-acquisition via the projection method for CDMA systems in high
MAI channels.
In Communications (ICC), 2012 IEEE International Conference on,
pages 2575--2579, 2012.
[ bib |
DOI ]
Keywords: Monte Carlo methods;channel coding;code division multiple access;interference suppression;multiuser channels;probability;signal detection;CDMA systems;Monte-Carlo simulations;code acquisition;high MAI channels;high multiple access interference;interference cancellation;low SNR conditions;missed detection probability;multiuser CDMA systems;null space;received signal projection method;time offset estimator;Approximation methods;Estimation;Interference;Multiaccess communication;Noise;Receivers;Synchronization |
[36] | B. G. Quinn, I. V. L. Clarkson, and R. G. McKilliam. On the periodogram estimator of period from sparse, noisy timing data. In Asilomar Conference on Signals, Systems, and Computers, pages 879--883, Nov 2013. [ bib | DOI ] |
[37] | R. G. McKilliam, D. J. Ryan, I. V. L. Clarkson, and I. B. Collings. Block noncoherent detection of hexagonal QAM. in Proc. Australian Commun. Theory Workshop, pages 65--70, Feb. 2010. [ bib ] |
[38] | R. G. McKilliam and G. Wyeth. Fast and robust stereo object recognition for spheres. Proc. Australasian Conference on Robotics and Automation, 2006. [ bib | .pdf ] |
[39] | R. G. McKilliam, I. V. L. Clarkson, and B. G. Quinn. An algorithm to compute the nearest point in the lattice An*. IEEE Trans. Inform. Theory, 54(9):4378--4381, Sep. 2008. [ bib | DOI | http ] |
[40] | R. G. McKilliam, I. V. L. Clarkson, W. D. Smith, and B. G. Quinn. A linear-time nearest point algorithm for the lattice An*. In International Symposium on Information Theory and its Applications, Dec. 2008. [ bib | DOI ] |
[41] | R. G. McKilliam, D. J. Ryan, I. V. L. Clarkson, and I. B. Collings. An improved algorithm for optimal noncoherent QAM detection. Proc. Australian Commun. Theory Workshop, pages 64--68, Jan. 2008. [ bib | DOI | .pdf ] |
[42] |
R. G. McKilliam, W. D. Smith, and I. V. L. Clarkson.
Linear-time nearest point algorithms for Coxeter lattices.
IEEE Trans. Inform. Theory, 56(3):1015--1022, Mar. 2010.
[ bib |
DOI ]
The Coxeter lattices are a family of lattices containing many of the important lattices in low dimensions. This includes An, E7 , E8 and their duals Anast , E7ast , and E8ast . We consider the problem of finding a nearest point in a Coxeter lattice. We describe two new algorithms, one with worst case arithmetic complexity O(nlog n) and the other with worst case complexity O(n) where n is the dimension of the lattice. We show that for the particular lattices An and Anast the algorithms are equivalent to nearest point algorithms that already exist in the literature. |
[43] | R. G. McKilliam. Lattice theory, circular statistics and polynomial phase signals. PhD thesis, University of Queensland, Australia, December 2010. [ bib ] |
[44] |
R. G. McKilliam, B. G. Quinn, I. V. L. Clarkson, and B. Moran.
Frequency estimation by phase unwrapping.
IEEE Trans. Sig. Process., 58(6):2953--2963, June 2010.
[ bib |
DOI ]
Single frequency estimation is a long-studied problem with application domains including radar, sonar, telecommunications, astronomy and medicine. One method of estimation, called phase unwrapping, attempts to estimate the frequency by performing linear regression on the phase of the received signal. This procedure is complicated by the fact that the received phase is `wrapped' modulo 2pi and therefore must be `unwrapped' before the regression can be performed. In this paper, we propose an estimator that performs phase unwrapping in the least squares sense. The estimator is shown to be strongly consistent and its asymptotic distribution is derived. We then show that the problem of computing the least squares phase unwrapping is related to a problem in algorithmic number theory known as the nearest lattice point problem. We derive a polynomial time algorithm that computes the least squares estimator. The results of various simulations are described for different values of sample size and SNR. Keywords: Central limit theorem, frequency estimation, lattices, nearest lattice point problem, number theory, phase unwrapping |
[45] |
B. G. Quinn, R. G. McKilliam, and I. V. L. Clarkson.
Maximizing the periodogram.
In IEEE Global Communications Conference, pages 1--5, Dec 2008.
[ bib |
DOI ]
Keywords: Newton method, fast Fourier transforms, frequency estimation, FFT, Newton method, frequency estimation, monotonic function, periodogram maximization |
[46] |
R. G. McKilliam, B. G. Quinn, I. V. L. Clarkson, B. Moran, and B. N. Vellambi.
Polynomial phase estimation by least squares phase unwrapping.
IEEE Trans. Sig. Process., 62(8):1962--1975, April 2014.
[ bib |
DOI ]
Keywords: Lattices;Least squares approximations;Phase estimation;Polynomials;Signal processing algorithms;Signal to noise ratio;Asymptotic properties;nearest lattice point problem;phase unwrapping;polynomial phase signals |
[47] | R. G. McKilliam, B. G. Quinn, I. V. L. Clarkson, B. Moran, and B. N. Vellambi. Polynomial phase estimation by phase unwrapping. Nov. 2012. [ bib | http ] |
This file was generated by bibtex2html 1.99.